
:
Java Interface to ObjectStore Tutorial

Release 6.1
February 2003
Release 6.1 1

Copyright

Java Interface to ObjectStore Tutorial

ObjectStore Release 6.1 for all platforms, February 2003

© 2003 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software
Corporation. This manual is also copyrighted and all rights are reserved. This manual may not, in whole
or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation
assumes no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Allegrix, Leadership by Design, Object Design, ObjectStore, Progress, Powered by Progress, Progress Fast
Track, Progress Profiles, Partners in Progress, Partners en Progress, Progress en Partners, Progress in
Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its subsidiaries or
affiliates in the U.S. and other countries. A Data Center of Your Very Own, Apptivity, AppsAlive,
AppServer, ASPen, ASP-in-a-Box, BPM, Cache-Forward, Empowerment Center, eXcelon, EXLN, Fathom,
Future Proof, Progress for Partners, IntelliStream, Javlin, ObjectStore Browsers, OpenEdge, POSSE,
POSSENET, Progress Dynamics, Progress Software Developers Network, RTEE, Schemadesigner,
SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery,
SmartViewer, SmartWindow, Stylus, Stylus Studio, WebClient, Who Makes Progress, XIS, XIS Lite, and
XPress are trademarks or service marks of Progress Software Corporation or one of its subsidiaries or
affiliates in the U.S. and other countries.

Any other trademarks and service marks contained herein may be the property of their respective owners.
2 Java Interface to ObjectStore Tutorial

Contents

Preface . VII

Benefits of ObjectStore for Java. 1
Overview of ObjectStore Benefits. .1
Serialization and Persistence .2

Description of Serialization. 2

Disadvantages of Serialization . 2

The Way ObjectStore Improves on Serialization 3
Improved Performance for Accessing Large Numbers of Objects. . . . 3

Reliable Object Management . 3

Queries . 3

Ease of Use . 4

Description of the Personalization Application 5
Overview of the Data Model .5
Personalization Application Architecture6
Description of the UserManager Class.7
Description of the User and Interest Classes8

Adding New Interests . 8

Adding New User Types . 8

Source Code for the Interest Class . 9

Source Code for the User Class . 9

Writing Your Application to Use ObjectStore 13
Basic ObjectStore Operations .13
Getting Ready to Store Objects .14

Creating Sessions .14
Release 6.1 III

Creating, Opening, and Closing Databases 15

Starting Transactions . 16

Creating Database Entry Points . 17
Description of Database Roots. 18

Creating Database Roots . 18

Example of Creating Database Roots . 18

Storing Objects in a Database . 19
Example of Storing Objects in a Database 19

Definition of Persistence Capable. 20

Accessing Objects in the Database . 21
Example of Using a Database Root . 21

Example of Using References . 21

Retaining Objects or References to Objects. 22

Deleting Objects . 23
Example of Deleting an Object . 23

Destroying an Object . 24

Destroying Objects Referenced by Destroyed Objects 25

Destroying Strings. 25

About the Persistent Garbage Collector . 26

Using Collections . 26

Compiling and Running an ObjectStore Program. 29
Installing ObjectStore . 29
Adding Entries to Your CLASSPATH . 30

Entries Required to Run ObjectStore Applications 30

Entries Required to Develop ObjectStore Applications 30

Background About Different Kinds of Class Files 31

Compiling the Program . 32
Running the Postprocessor. 32

Description of Output from the Postprocessor 33

Example of Postprocessing Classes in Place 33

Specifying an Input File to the Postprocessor 33

Placing the Annotated Files in a Separate Directory 33

Additional Information About the Postprocessor 34
IV Java Interface to ObjectStore Tutorial

:
Running the Program .35

Using ObjectStore to Query a Database 37
Querying Collections .37

Creating Queries. .37

Running Queries Against Collections .38

Specifying Variables in Queries. .38

Using Indexes to Speed Query Performance40
What an Index Does .40

Creating an Index. .41

Example of Creating an Index .41

Maintenance Required After Changing Indexed Elements.41

Choosing PSE Pro or ObjectStore . 43
Overall Capability .43
Database Size .44
Concurrent Users .44
Collections .44
Integrity, Reliability, and Recovery .45
Multimedia Content Management. .45
Ease of Using Java .45

Source Code . 47
Source Code for Interest.java .47
Source Code for User.java .48
Source Code for UserManager.java .51
Source Code for TestDriver.java .57
Source Code for PersonalizationException.java 61

Sample Output . 63

Index . 65
Release 6.1 V

VI Java Interface to ObjectStore Tutorial

Preface

Purpose Java Interface to ObjectStore Tutorial provides an overview of the basic
concepts of Java interface to ObjectStore. It uses an example application to
show you the way to define persistent classes and manipulate persistent
objects. It also shows you the way to develop and run applications that use
the Java interface to ObjectStore.

Audience This book is for experienced Java programmers who are new to writing
applications that use the Java interface to ObjectStore. If you are new to Java
interface to ObjectStore, you should read the tutorial, and then look at the
demonstration programs.

Scope This book supports Release 6.1 of the Java interface to ObjectStore.

How the Tutorial Is Organized
The tutorial provides an introduction to ObjectStore interface for Java. The
basic concepts are illustrated with a sample application called the
Personalization application. In Chapter 5, you can find information that goes
beyond the sample application.

• Chapter 1, Benefits of ObjectStore for Java, on page 1, introduces the
concept of persistence and compares object serialization to the features
provided by ObjectStore.

• Chapter 2, Description of the Personalization Application, on page 5,
presents a small sample application to show the way to use ObjectStore.

• Chapter 3, Writing Your Application to Use ObjectStore, on page 13,
introduces the core concepts of ObjectStore through explanation of code
samples drawn from the Personalization application.

• Chapter 4, Compiling and Running an ObjectStore Program, on page 29,
describes the compile and build phases of ObjectStore development using
code from the Personalization application.
Release 6.1 VII

• Chapter 5, Using ObjectStore to Query a Database, on page 37, discusses
queries and indexing, which are available in ObjectStore and PSE Pro. The
tutorial application does not implement queries, but the information in
this chapter is a basis for getting started.

• Chapter 6, Choosing PSE Pro or ObjectStore, on page 43, provides
information to help you decide whether PSE Pro, or ObjectStore is the
most appropriate solution for your requirements.

• Appendix A, Source Code, on page 47, provides a complete code example
for the Personalization application.

• Appendix B, Sample Output, on page 63, provides sample output from
running the Personalization application.

Notation Conventions
This document uses the following conventions:

Convention Meaning

Courier Courier font indicates code, syntax, file names, API
names, system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular
code, such as user input.

Italic Courier Italic Courier font indicates the name of an
argument or variable for which you must supply a
value.

Sans serif Sans serif typeface indicates the names of user
interface elements such as dialog boxes, buttons, and
fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify
only one of the enclosed items. Vertical bars represent
OR separators. For example, you can specify a or b or
c.

... Three consecutive periods indicate that you can
repeat the immediately previous item. In examples,
they also indicate omissions.
VIII Java Interface to ObjectStore Tutorial

: Preface
Examples Examples in the documentation assume that com.odi* is imported. This
allows specification of, for example,

db.open(ObjectStore.READONLY)

instead of db.open(com.odi.ObjectStore.READONLY).

ObjectStore on the World Wide Web
ObjectStore has its own Web site (www.objectstore.net) that provides a
variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

When you purchase technical support, the following services are available to
you:

• You can send questions to support@objectstore.net. Remember to include
your site ID in the body of the electronic mail message.

• You can call the Technical Support organization to get help resolving
problems.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide
the necessary details, which speeds response time.

- Frequently asked questions (FAQs) that you can browse and query.

- Online documentation for all ObjectStore products.

- White papers and short articles about using ObjectStore products.

- Sample code and examples.

- The latest versions of ObjectStore products, service packs, and publicly
available patches that you can download.

- Access to an ObjectStore product matrix.

- Support policies.

- Local phone numbers and hours when support personnel can be
reached.

Education
Services

Use the ObjectStore education services site
(www.objectstore.net/services/education) to learn about the standard
course offerings and custom workshops.

If you are in North America, you can call 1-800-477-6473 x4452 to register for
classes. For information on current course offerings or pricing, send e-mail to
classes@progress.com.
Release 6.1 IX

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the
ObjectStore Support Web server. The documentation is found at
www.objectstore.net/documentation, and is listed by product. The site
supports the most recent release and the previous supported release of
ObjectStore documentation. Service Pack README files are also included to
provide historical context for specific issues. Be sure to check this site for new
information or documentation clarifications posted between releases.

Your Comments
ObjectStore product development welcomes your comments about its
documentation. Send any product feedback to support@objectstore.net. To
expedite your documentation feedback, begin the subject with Doc:. For
example:

Subject: Doc: Incorrect message on page 76 of reference manual
X Java Interface to ObjectStore Tutorial

Chapter 1
Benefits of ObjectStore for
Java

To introduce you to ObjectStore and the benefits of using ObjectStore, this
chapter discusses the following topics:

Overview of ObjectStore Benefits 1

Serialization and Persistence 2

The Way ObjectStore Improves on Serialization 3

Overview of ObjectStore Benefits
ObjectStore combines the simplicity of object serialization, and the reliability
of a database management system (DBMS), together with in-memory-like
performance for accessing persistent objects.

Although object serialization is easy to use, you quickly run into
performance problems with large numbers of objects. Relational database
management systems provide robust and reliable data storage, but mapping
Java objects into rows and columns slows performance and increases the
amount of code to be written.

ObjectStore improves upon some of the limitations of object serialization and
relational databases, while providing performance that is better by orders of
magnitude and still maintaining an easy-to-use interface.
Release 6.1 1

Serialization and Persistence
Serialization and Persistence
The lifetime of a persistent object exceeds the life of the application process
that created the persistent object. Persistent object management is the
mechanism for storing the state of objects in a nonvolatile place so that when
the application shuts down, the objects continue to exist.

Description of Serialization
Java provides object serialization, which supports a basic form of object
persistence. You can use object serialization to store copies of objects in a file
or to ship copies of objects to an application running in another Java virtual
machine. Serialization enables you to flatten objects into a stream of bytes
that, when read later, can recreate objects equivalent to those that were
written to the stream.

Serialization provides a simple yet extensible mechanism for storing objects
persistently. The Java object type and safety properties are maintained in the
serialized form and serialization requires only per-class implementation for
special customization. Serialization is usually sufficient for applications that
operate on small amounts of persistent data and for which reliable storage is
not an absolute requirement.

Disadvantages of Serialization
Serialization is not the optimal choice for applications that

• Manage tens to hundreds of megabytes of persistent objects

• Update objects frequently

• Want to ensure that changes are reliably saved in persistent storage

Because serialization has to read and write entire graphs of objects at a time,
it works best for small numbers of objects. When the byte stream is a couple
of megabytes in size, you might find that storing objects by means of
serialization is too slow, especially if your application is doing frequent
updates that need to be saved. Another drawback is the lack of undo or abort
of changes to objects.

In addition, serialization does not provide reliable object storage. If your
system or application crashes when objects are being written to disk by
serialization, the contents of the file are lost. To protect against application or
system failures and to ensure that persistent objects are not destroyed, you
must copy the persistent file before each change is saved.
2 Java Interface to ObjectStore Tutorial

Chapter 1: Benefits of ObjectStore for Java
The Way ObjectStore Improves on
Serialization

The three key improvements that ObjectStore provides over serialization are

• Improved performance for accessing large numbers of objects

• Reliable object management

• Queries

In addition, ObjectStore is easy to use, allows access to as little as a single
object at a time, and allows multiple applications to read the same database
at the same time.

Improved Performance for Accessing Large Numbers of
Objects

While serialization reads and writes complete graphs of objects, ObjectStore
provides the capability to read and write a few objects at a time. ObjectStore
also provides the capability to access or fetch a smaller subset of objects from
a larger number of objects. ObjectStore fetches related objects automatically
when the application code refers to them.

Reliable Object Management
A primary difference between serialization and ObjectStore is in the area of
transactions and recovery. With serialization, persistent stores are not
recoverable automatically. Consequently, in the event of an application or
system failure, a file can be recovered only to the beginning of the application
session and only if a copy of the file is made before the application begins.

In contrast, ObjectStore can recover from an application failure or system
crash. If a failure prevents certain changes in a transaction from being saved
to disk, ObjectStore ensures that none of that transaction’s changes is saved
in the database. When you restart the application, the database is consistent
with the way it was before the transaction started.

Queries
ObjectStore provides a mechanism for querying collections of objects. A
query returns a subset of objects for which the query expression is true. To
improve the performance of a query on a particularly large collection, you
Release 6.1 3

The Way ObjectStore Improves on Serialization
can build indexes on the collection. For more information on queries,see
Chapter 5, Using ObjectStore to Query a Database, on page 37.

Ease of Use
As with serialization, ObjectStore provides an easy-to-use interface for
storing and retrieving Java objects. You define persistence-capable Java
classes and their fields and methods in the same way that you define
transient Java classes.

You use standard Java constructs to create and manipulate both persistent
and transient instances. Transparent object persistence through ObjectStore
enables developers to make use of the full power of Java and to easily
incorporate existing class libraries with ObjectStore.

The ObjectStore for Java API provides database features that allow you to

• Create, open, and close databases

• Start and end transactions

• Store and retrieve persistent objects

ObjectStore automatically generates the equivalent of serialization’s
readObject and writeObject for each persistence-capable class. As with
serialization, you can override the implementation of these methods.
4 Java Interface to ObjectStore Tutorial

Chapter 2
Description of the
Personalization Application

This tutorial refers to the Personalization application to help illustrate the key
principles of ObjectStore. The following topics describe the Personalization
application:

Overview of the Data Model 5

Personalization Application Architecture 6

Description of the UserManager Class 7

Description of the User and Interest Classes 8

Overview of the Data Model
Consider the task of personalizing a web site to cater to an individual user’s
interests and access patterns. A personalized web site delivers customized
content to the browser user. To achieve customization, a database of users
and their interests must be maintained in the web architecture.

The personalization database tracks user interests so that web content can be
generated dynamically based on those interests. Because web sites change
rapidly, it must be easy to define new interests to the database. Each user’s
set of interests is different, and users can change their interests at any time.

The following figure shows the personalization object model with
Rumbaugh Object Modeling Technique (OMT) notation. White classes are
transient; that is, they are internal to the application’s memory. Shaded
Release 6.1 5

Personalization Application Architecture
classes are persistence capable; that is, instances of them can be stored in an
ObjectStore database.

Personalization Application Architecture
The source code for the Personalization application is included with
ObjectStore. By default, the files are installed in the com\odi\tutorial
directory. The code is also listed in Appendix A, Source Code, on page 47.

Client UserManager
subscribeNewUser()

addInterest()

User
add Interest()
removeInterest()
getName()
getUid()
getInterests()
name
email
uid

CorporateUser
validate()
digitalCertificate

RetailUser
validate()
userName
password

allUsers

allInterests

Interest
interest(name, value)
name
value
6 Java Interface to ObjectStore Tutorial

Chapter 2: Description of the Personalization Application
Five files make up the Personalization application:

Description of the UserManager Class
The client application interfaces with the UserManager class, which controls
access to User and Interest objects in the database. The UserManager also
controls user access, registration, and session management. The
UserManager might run as an application server that operates behind a web
server and provides access to the personalization database.

The UserManager class has a number of static members that keep track of
the database that is open, the set of registered users, and the set of interests
defined to the database. It also has a number of static methods, each of which
executes a transaction in ObjectStore.

The tutorial example reads screen input to generate requests, but requests
can easily bypass the client application using the Remote Method Invocation
(RMI), an Object Request Broker (ORB), or as Common Gateway Interface
(CGI) environment variables if you are using Hypertext Transport Protocol
(HTTP).

The UserManager class contains most of the database-specific code, such as
starting and ending transactions. There are no UserManager objects stored in
the database, which means that the UserManager class is not required to be
persistence capable. Complete source code for this class is listed in Appendix
A in Source Code for UserManager.java on page 51.

File Description

Interest.java Code for Interest objects

User.java Code for User objects

UserManager.java Code for the UserManager
class which controls access to
the objects in the database

TestDriver.java Code for the user interface.

PersonalizationException.java Code for handling exceptions
specific to the application.
Release 6.1 7

Description of the User and Interest Classes
Description of the User and Interest
Classes

There are two persistence-capable classes in the Personalization application:
the User class and the Interest class. Only instances of persistence-capable
classes can be stored in a database. Chapter 4, Compiling and Running an
ObjectStore Program, on page 29, describes the way you use the
postprocessor to make classes persistence capable.

User objects contain core information about a user, for example, name, email
address, and personal identification number (PIN). User objects are an
acquaintance of (that is, they are associated with, but do not own) Interest
objects. Interest objects contain descriptions of the types of content the
associated user is interested in. The Interest’s name (for example, Food)
and value (Pizza) define the interest of the user. Users can change their
profiles dynamically at run time by adding and removing Interest objects.

You define the User class for persistent use in the same way that you define
it for transient use. The Interest class is also defined like any other Java
class. Other than the import com.odi.* statement, there is almost no special
code for persistent use of the User or Interest class. This is one of the key
advantages of the transparent Java language binding that
ObjectStoreprovides.

Adding New Interests
You can create new interests at run time because of the simple metadata
aspect of the Interest class. That is, an Interest object has a name and a
value. The name (for example, Food) and value (Pizza) can be defined at run
time. New classes are not required to add or change interests.

Adding New User Types
As you define new types of users, you could add them as a specialized type
of User. For example, CorporateUser and RetailUser might be
specializations of the generic User class. These specialized user types might
overload and perform various functions. For example, different user classes
could apply different heuristics for authentication. For simplicity, the
tutorial example implements only the generic User class.
8 Java Interface to ObjectStore Tutorial

Chapter 2: Description of the Personalization Application
Source Code for the Interest Class
Following is a portion of the source file for the Interest class. Complete
source code is in Appendix A, in Source Code for Interest.java on page 47.

package com.odi.tutorial;
import com.odi.*;

/**
 * The Interest class models a particular interest that a user
 * might have. It contains a name and a value. For example, the
 * name of an interest might be "food" and the value might be
 * "pizza".
 */

public class Interest
{

/* the name of the interest */
private String name;
/* the value of the interest */
private String value;
/* the user who has this interest */
private User user;
/* accessor functions */
public String getName() { return name; }
public String getValue() { return value; }
public void setValue(String value) { this.value = value; }
public User getUser() { return user; }

/**
 * Constructs a new interest object given a name and a value
 */

public Interest(String name, String value, User user)
{

this.name = name;
this.value = value;
this.user = user;

}
}

Source Code for the User Class
Following is a portion of the source code for the User class. Complete source
code is in Appendix A, Source Code for User.java on page 48.

package com.odi.tutorial;

import java.util.*;
import com.odi.*;
import com.odi.util.*;

/**
Release 6.1 9

Description of the User and Interest Classes
 * The User class models users. Users have names, email addresses,
 * and PINS. Each user also has a set of interests. The application
 * uses PINs to validate a user's identity.
 */
public
class User {

/* The name of the user */
private String name;

/* The user's email address */
private String email;

/* The user's Personal Identification Number */
private int PIN;

/* The set of user's interests */
private OSHashMap interests;

/* accessors */
public String getName() { return name; }
public String getEmail() { return email; }
public int getPIN() { return PIN; }
public Map getInterests() { return interests; }

/**
 * Constructs a user object given the name, email and PIN
 */
public User(String name, String email, int PIN) {

this.name = name;
this.email = email;
this.PIN = PIN;
this.interests = new OSHashMap(5); /* initial hash table size */

}

/**
 * Add an interest to the User's list of interests.
 *
 * @param interestName the name of the interest
 * @param interestValue the value of the interest
 *
 * @exception PersonalizationException If the interest is
 * already there (the same name as another interest)
 */
public Interest addInterest(String interestName, String interestValue)

 throws PersonalizationException {
// Implementation ...

}

/**
 * Update an interest in the User's list of interests.
 *
10 Java Interface to ObjectStore Tutorial

Chapter 2: Description of the Personalization Application
 * @param interestName the name of the interest
 * @param interestValue the new value of the interest
 *
 * @exception PersonalizationException is thrown if the interest is
 * already not there.
 */
public Interest changeInterest(String interestName, String interestValue)

 throws PersonalizationException{
// Implementation ...

}

/**
 * Remove an interest from the User's list of interests.
 *
 * @param interestName The name of the Interest to remove.
 *
 * @exception PersonalizationException if the interest is not
 * found in the user's list of interests
 */
public Interest removeInterest(String interestName)

 throws PersonalizationException {
// Implementation ...

}

Release 6.1 11

Description of the User and Interest Classes
12 Java Interface to ObjectStore Tutorial

Chapter 3
Writing Your Application to
Use ObjectStore

This chapter discusses the core concepts involved in writing an ObjectStore
application. It uses the Personalization application to provide examples of
the concepts. This chapter discusses the following topics:

Basic ObjectStore Operations 13

Getting Ready to Store Objects 14

Creating Database Entry Points 17

Storing Objects in a Database 19

Accessing Objects in the Database 21

Deleting Objects 23

Using Collections 26

Basic ObjectStore Operations
To store and access persistent data, all ObjectStore applications must
implement the following basic operations:

• Create and join a session. See Creating Sessions on page 14.

• Create or open a database. See Creating, Opening, and Closing Databases
on page 15.

• Start a transaction. See Starting Transactions on page 16.

• Create or retrieve a database root. See Creating Database Roots on
page 18.
Release 6.1 13

Getting Ready to Store Objects
In addition, you must perform the following before running your application
for the first time:

• Modify (or annotate) classes that will be stored in a database so they are
persistence capable (or persistence aware for classes that need access to
persistent objects). You do this by running the oscfp postprocessor after
compiling your source code. See Running the Postprocessor on page 32.

• Set or modify the CLASSPATH environment variable to point to the
annotated class files. See Adding Entries to Your CLASSPATH on
page 30.

Getting Ready to Store Objects
Before you can create and manipulate persistent objects with ObjectStore,
you must perform the following operations:

• Create a session.

• Create or open a database.

• Start a transaction.

In the Personalization application, all these operations are handled by
methods of the UserManager class.

Creating Sessions
To use ObjectStore, your application must create a session. A session is the
context in which ObjectStore databases are created or opened and
transactions can be executed. Only one transaction at a time can exist in a
session. Both ObjectStore and PSE Pro allow you to create multiple sessions
and thus have multiple concurrent transactions in a single Java VM process.

Any number of Java threads can participate in the same session. Each thread
must join a session to be able to access and manipulate persistent objects. To
create a session, you call the Session constructor and specify the host and
properties. The method signature is

public static Session create(String host,
Java.util.Properties properties)

A thread can join a session with a call to Session.join(). For example:

/* Create a session and join this thread to the new session. */
session = Session.create(null, null);
14 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
session.join();

ObjectStore ignores the first parameter in the create() method. You can
specify null. The second parameter specifies null or a property list. See the
Java API User Guide, Description of Properties.

Creating, Opening, and Closing Databases
Before you begin creating persistent objects, you must create a database to
hold the objects. In subsequent processes, you open the database to allow the
process to read or modify the objects. To create a database, you call the static
create() method on the Database class and specify the database name and
an access mode. The method signature is

public static Database create(String name, int fileMode)

The initialize method in the UserManager class shows an example.

public static void initialize(String dbName)
{

/* Other code, including creating a session and joining thread to session*/

/* Open the database or create a new one if necessary. */
try {

db = Database.open(dbName, ObjectStore.UPDATE);
} catch (DatabaseNotFoundException e) {

db=Database.create(dbName, ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);
}

}
The initialize() operation first creates a session, then joins the current
thread to that session. Next, initialize() tries to open the database. If the
database does not exist, DatabaseNotFoundException is thrown and is
caught by initialize(), which then creates the database. initialize()
also stores a reference to the database instance in the static variable db.

The Database.create() and the Database.open() methods are called with
two parameters. In both methods, the first parameter specifies the pathname
of a file. In the create() method, the second parameter is a UNIX-style
protection number. In the open() method, the second parameter specifies
the access mode for the database, that is, ObjectStore.UPDATE or
ObjectStore.READONLY.

Shutting
down

The UserManager.shutdown() method shows an example of closing a
database and terminating a session.

/**
* Close the database and terminate the session.
*/
Release 6.1 15

Getting Ready to Store Objects
public static void shutdown() {
db.close();
session.terminate();

}

Starting Transactions
You create, destroy, open, and close a database outside a transaction. You
access and manipulate objects in a database inside a transaction. Therefore,
a program must start a transaction before it can manipulate persistent data.
While the transaction is in progress, a program can read and update objects
stored in the open database. The program can choose to commit or abort the
transaction at any time.

Committing
transactions

When a program commits a transaction, ObjectStore updates the database to
contain the changes made to persistent data during the transaction. These
changes are permanent and visible only after the transaction commits. If a
transaction aborts, ObjectStore undoes (rolls back) any changes to persistent
data made during that transaction.

Purpose of
transactions

In summary, transactions do two things:

• They mark off code sections whose effects can be undone.

• They mark off functional program areas that are isolated from the changes
performed by other sessions or processes (clients). From the point of view
of other sessions or processes, these functional sections execute either all
at once or not at all. That is, other sessions or processes do not see the
intermediate results.

Creating
transactions

To create a transaction, insert calls to mark the beginning and end of the
transaction. To start a transaction, call the begin() method on the
Transaction class. This returns an instance of Transaction and you can
assign it to a variable. The method signature is

public static Transaction begin(int type)

The type of the transaction can be ObjectStore.READONLY or
ObjectStore.UPDATE. Other transaction types are discussed in Java API
User Guide, Description of Transaction Types.

Ending
transactions

ObjectStore provides the Transaction.commit() method for ending a
transaction successfully. When transactions terminate successfully, they
commit and their changes to persistent objects are saved in the database. The
Transaction.abort() method is used to end a transaction unsuccessfully.
When transactions terminate unsuccessfully, they abort and their changes to
persistent objects are discarded.
16 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
When an application commits a transaction, ObjectStore saves and commits
any changes in the database. It also checks to see whether any transient
objects are referred to by persistent objects. If any are, and if the referred-to
objects are persistence-capable objects, ObjectStore stores the referred-to
objects in the database. This is the process of transitive persistence, also
called persistence by reachability.

The default commit operation makes all persistent objects inaccessible
outside the transaction’s context. After you commit a transaction, if you want
to access data in the database, you must start another transaction and
navigate to the object again from a database entry point.

ObjectStore also provides optional commit modes (or states) that allow you
to retain the objects so that you can access them outside a transaction or in a
different transaction.

These commit modes include

• ObjectStore.RETAIN_HOLLOW

• ObjectStore.RETAIN_READONLY

• ObjectStore.RETAIN_UPDATE

• ObjectStore.RETAIN_STALE (the default)

• ObjectStore.RETAIN_TRANSIENT

The Personalization application uses the ObjectStore.RETAIN_HOLLOW state
when it commits transactions so that the application does not need to retrieve
the database root and navigate to the object in subsequent transactions. For
more information about retain states, see Retaining Objects or References to
Objects22

Creating Database Entry Points
To access objects in a database, you need a mechanism for referring to these
objects. In other words, you need an entry point. In a relational database
system, the entry points are the tables defined to the database. The tables
have names that you can use in queries to gain access to the rows of data. You
cannot directly access a row by its table name.

In ObjectStore, the names or entry points are called roots and they are more
flexible than in the relational database model.
Release 6.1 17

Creating Database Entry Points
Description of Database Roots
You can use a database root to name any object defined in the database. You
can use a root to reference a collection object, which is ObjectStore’s
equivalent of a table; this is what the Personalization application does. You
can, however, also choose to assign roots to individual objects.

A database root provides a way to give an object a persistent name. A root
allows an object to serve as an initial entry point into persistent storage.
When an object has a persistent name, any process can look it up by that
name to retrieve it. After you retrieve one object, you can retrieve any object
related to it by navigating object references or by a query.

Each database typically has a relatively small number of entry point objects,
each of which allows access to a large network or collection of related objects.
The Personalization application uses two roots: one for User objects and one
for Interest objects.

Creating Database Roots
You must create a database root inside a transaction. You call the
Database.createRoot() method on the database in which you want to
create the root. The method signature for this instance method on the
Database class is

public void createRoot(String name, Object object)

The name you specify for the root must be unique in the database. The object
that you specify to be referred to by the root can be transient and persistence
capable, persistent, or null. If it is not yet persistent, ObjectStore makes it
persistent automatically when you call createRoot().

Example of Creating Database Roots
In the remainder of the UserManager.intialize() operation, the
Personalization application begins a transaction and looks for the database
roots allUsers and allInterests. If they are not there, the application
creates them, and then commits the transaction.

public static void initialize(String dbName)

// database open code omitted

/* Find the allUsers and allInterests roots or create them if not there. */
Transaction tr = Transaction.begin(ObjectStore.UPDATE);
try {

allUsers = (Map) db.getRoot("allUsers");
18 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
allInterests = (Set) db.getRoot("allInterests");
} catch (DatabaseRootNotFoundException e) {

/* Create the database roots and give them appropriate values */
db.createRoot("allUsers", allUsers = new OSHashMap());
db.createRoot("allInterests", allInterests = new OSHashSet());

}

/* End the transaction and retain a handle to allUsers and allInterests */
tr.commit(ObjectStore.RETAIN_HOLLOW);

Most of the methods defined on UserManager access the root objects and use
them to find a particular user, add a new user, or remove a user. The next
section discusses these operations.

The Personalization application keeps track of all the users who register with
the site, as well as the interests of each registered user. To track users, the
application uses a persistent Map that is indexed on the user names. This
allows quick look-up of a user in the database. To track interests, the
application uses a Set of interests. These Maps and Sets are implementations
of the JDK 1.2 collections. For more information, see Using Collections on
page 26.

Storing Objects in a Database
Objects become persistent when they are referenced by other persistent
objects. The Personalization application defines persistent roots; therefore,
when a transaction commits, ObjectStore finds all objects reachable from
these persistent roots and stores them in the database. This type of
persistence is called persistence by reachability and helps preserve the
automatic storage management semantics of Java.

Example of Storing Objects in a Database
For example, in the Personalization application consider the
UserManager.subscribe() method, which adds a new user to the
database.

public static int subscribe(String name, String email)
throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.UPDATE);

/* First check to see if the user's name is already there. */
Release 6.1 19

Storing Objects in a Database
if (allUsers.get(name) != null) {
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User already there: " + name);

}

/* The user name is not there so add the new user;
 first generate a PIN in the range 0..10000. */

int pin = pinGenerator.nextInt() % 10000;
if (pin < 0) pin = pin * -1;
User newUser = new User(name, email, pin);
allUsers.put(name, newUser);

tr.commit(ObjectStore.RETAIN_HOLLOW);
return pin;

}

The Personalization application checks whether the user’s name is already
defined in the database. If the name is defined, the Personalization
application throws a PersonalizationException. If the name is not already
defined, then the Personalization application creates a new user, adds that
user to the allUsers collection, and commits the transaction. Because the
allUsers collection is already stored in the database, ObjectStore stores the
new user object in the database when it commits the transaction.

In the Personalization application, another example of storing objects in a
database is the addInterest() method defined on the User class. To add an
interest to a user’s set of interests, the application calls

interests.put(interestName, interest);

This adds an Interest object to the user’s interests, which are stored in a
Map. When the transaction commits, ObjectStore makes the new Interest
object persistent because the user is a persistent object and its Map is
persistent. See Appendix A, Source Code, on page 47 for the complete code.

Definition of Persistence Capable
An object must be persistence capable before an application can store that
object in an ObjectStoredatabase. Persistence capability is the capacity to be
stored in a database. If you can store an object in a database, the object is
persistence capable. If you can store the instances of a class in a database, the
class is a persistence-capable class.

(ObjectStore also allows for classes that are persistence aware. Persistence-
aware classes can access and manipulate instances of persistence-capable
classes but cannot themselves be stored in a database. See the Java API User
Guide, Creating Persistence-Aware Classes.)
20 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
To make a class persistence capable, you compile the class definitions as
usual, then run the ObjectStore class file postprocessor on the class files. The
class file postprocessor annotates the classes you define to make them
persistence capable. This means that the postprocessor makes a copy of your
class files, places them in a directory you specify, and adds lines of code
(annotations) that are needed for persistence. Details about the way to run
the postprocessor are in Chapter 4, Compiling and Running an ObjectStore
Program, on page 29.

The annotations added by the postprocessor allow ObjectStore to
understand the state of objects so ObjectStore can save their state in
persistent storage. The annotations also allow ObjectStore to automatically
ensure that

• Fields are always fetched before being accessed.

• Modified instances are always updated in the database at commit time.

Accessing Objects in the Database
After an application stores objects in a database, the application can use
references to these objects in the same way that it uses references to transient
objects. An application obtains initial access to objects in a database by
navigating from a root or through an associative query. An application can
retain references to persistent objects between transactions to avoid having
to obtain a root at the start of each transaction.

Example of Using a Database Root
To access objects in a database, you must start a session, open the database,
and start a transaction. Then you can obtain a database root to start
navigating the database. For example, in the Personalization application (in
UserManager.java), you obtain the "allUsers" root to obtain User objects.

allUsers = (Map) db.getRoot("allUsers");

Example of Using References
Consider again the subscribe() method in the Personalization application.
The first part of this method protects against storing a duplicate name by
checking whether the user’s name is already in the database. For example:

/* First check to see if the user's name is already there. */
if (allUsers.get(name) != null) {
Release 6.1 21

Accessing Objects in the Database
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User already there: " + name);

}

Because the class variable allUsers references the allUsers collection, the
application can use the standard Java Map.get() method to check if the
name is already stored. The same code works for a persistent or a transient
collection.

Retaining Objects or References to Objects
Each time the Personalization application commits a transaction, it specifies
the ObjectStore.RETAIN_HOLLOW option. This option keeps references that
were available during the transaction. The application can use the references
in subsequent transactions.

After the Personalization application commits the initial transaction, the
class variable allUsers continues to reference the allUsers collection.
When it begins a new transaction, the application need not reestablish a
reference to allUsers with the getRoot() method.

When an application commits a transaction, the default retain option is
ObjectStore.RETAIN_STALE. This option makes all persistent objects
inaccessible outside a transaction. To access any objects in the database, you
must start a transaction, use a root to access an initial object, and navigate to
other objects from the root.

For example, if the Personalization application specified
ObjectStore.RETAIN_STALE when it committed a transaction, it could not
access the allUsers collection outside a transaction. Also, to access the
allUsers collection again, the application would need to start a new
transaction and obtain a new reference with a call to the getRoot() method
to obtain the allUsers Map.

If you want to access the contents of persistent objects outside a transaction,
you can specify the ObjectStore.RETAIN_READONLY or
ObjectStore.RETAIN_UPDATE option. These options allow you to read or
update objects whose contents were available during the transaction. For
example, the Personalization application specifies the
ObjectStore.RETAIN_READONLY option in validateUser().

public static User validateUser(String userName, int PIN)
{

Transaction tr = Transaction.begin(ObjectStore.READONLY);
User user = (User) allUsers.get(userName);
22 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
if (user == null) {
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException ("Could not find user: " + userName);

}
if (user.getPIN() != PIN) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException ("Invalid PIN for user: " + userName);

}
tr.commit(ObjectStore.RETAIN_READONLY);
return user;

}

If the userName and PIN passed to the validateUser() method denote a
registered user, the validateUser() method returns a User object. Because
User objects are persistent objects, if you want their contents to be accessible
outside the transaction in which they were fetched from the database, you
must specify the ObjectStore.RETAIN_READONLY or ObjectStore.RETAIN_
UPDATE option when you commit the transaction.

If you use the default ObjectStore.RETAIN_STALE option, the receiver gets
a stale User object. This causes ObjectStore to throw an exception when the
application tries to access the User object. If you specify the
ObjectStore.RETAIN_HOLLOW option, the validateUser() method returns
a reference to a User object but not the contents of the User object. That is, no
name, eMail, or PIN information is available. You can use the returned
reference in a subsequent transaction.

Deleting Objects
When you delete objects in ObjectStore, you must

• Disconnect objects from their relationships and associations

• Destroy the object so that it is removed from the database

Example of Deleting an Object
To remove users from the database, for example, the Personalization
application calls the UserManager.unSubscribe() method.

public static void unsubscribe(String name)
throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.UPDATE);

User user = (User) allUsers.get(name);
Release 6.1 23

Deleting Objects
if (user == null) {
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException ("Could not find user: " + name);

}

/* remove the user from the allUsers collection, and
 * remove all of the users interests from the allInterests collection */
allUsers.remove(name);
Iterator interests = user.getInterests().values().iterator();
while (interests.hasNext())

allInterests.remove(interests.next());

/* finally destroy the user and all its subobjects */
ObjectStore.destroy(user);

tr.commit(ObjectStore.RETAIN_HOLLOW);
}

First, the Personalization application ensures that the user exists in the
allUsers collection. If the user does not exist, the application throws an
exception. Next, the application calls the remove() method to remove the
user from the allUsers collection. This disconnects the user from the set of
users, which means that this user is no longer reachable and can now be
removed from the database. However, because there are still interests
associated with the user, the application removes all the user’s interests from
the allInterests collection. Finally, to remove the user from the database,
the application calls destroy() on the User object.

Destroying an Object
The destroy() method is an operation defined on the ObjectStore class.
The signature is

public static void destroy(Object object)

The object you specify must be persistent or the destroy() method has no
effect.

By default, when you destroy an object, ObjectStore does not destroy objects
that the destroyed object references. In the Personalization application, the
User object references two strings — name and email — as well as a map of
Interests. To destroy these objects along with the User object that
references them, the application must define the
IPersistent.preDestroyPersistent() hook method.
24 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
Destroying Objects Referenced by Destroyed Objects
When an application calls the ObjectStore.destroy() method, ObjectStore
calls the preDestroyPersistent() method before actually destroying the
specified object. A user-defined class should override this method to destroy
any internal persistent data structures that it references. In the
Personalization application, the preDestroyPersistent() method, as
defined on the User class, looks like the following:

public void preDestroyPersistent()
{

if (!ObjectStore.isDestroyed(name))
ObjectStore.destroy(name);

if (!ObjectStore.isDestroyed(email))
ObjectStore.destroy(email);

/* destroy each of the interests */
Iterator interestIter = interests.values().iterator();
while (interestIter.hasNext()) {

Interest interest = (Interest) interestIter.next();
ObjectStore.destroy(interest);

}
/* destroy the interests list too */
ObjectStore.destroy(interests);
}

When you call the ObjectStore.destroy() method on an object, it removes
the primitive objects that are referenced by this object but it does not destroy
fields in the object that are String, Long, or Double types. For User objects,
then, the PIN attribute, which is an int, is deleted automatically. But the
application must explicitly destroy the name and email strings. In addition,
destroying a Map does not touch any of the objects referenced by that map.
Therefore, the application must iterate over the map of interests and destroy
each of the Interest objects before destroying the map itself.

Destroying Strings
Before deleting the email and name strings, the application checks whether
they have already been destroyed. If the user’s name and email happened to
have the same value, they could refer to the same String object in the
database. This is because ObjectStore supports String pooling where only
one copy of the String is stored in the database. Because Java Strings are
immutable, this presents a problem when you explicitly delete a String
object. See the Java API User Guide, Destroying Strings.
Release 6.1 25

Using Collections
About the Persistent Garbage Collector
ObjectStore provides a persistent garbage collector utility that automatically
handles removing objects from the database. When using ObjectStore, you
need not concern yourself with deleting objects. You are responsible for
disconnecting your objects from relationships and associations, but
ObjectStore can take care of removing all unreachable objects from the
database.

The primary advantage of using the persistent garbage collector is that you
do not have to write code to delete objects from the database. This allows you
to avoid the problems associated with explicit deletion, such as dangling
references and orphaned objects. See the Java API User Guide, Performing
Garbage Collection in a Database.

Using Collections
The Personalization application uses collection objects to keep track of
registered users, to store the related interests each user has, and to keep track
of all defined interests.

Java
collections

Sun’s JDK 1.2 has been enhanced to support collections. A collection (also
known as a container) is a single object (such as Java's familiar Vector class)
that represents a group of objects. The JDK 1.2 collections API is a unified
framework for representing and manipulating collections and for allowing
them to be manipulated independently of the details of their representation.

Collections, including Lists, Sets, Maps, and others help improve reuse and
interoperability. They allow you to implement generic, reusable data objects
that conform to the standard Collection interfaces. They also enable you to
implement algorithms that operate on Collection objects independently of
the details of their representation.

ObjectStore
collections

ObjectStore provides several collection implementations that implement the
Collection interfaces defined in the JDK 1.2 and that provide improved
scalability. These include

• OSVectorList

• OSHashSet

• OSTreeSet

• OSHashBag
26 Java Interface to ObjectStore Tutorial

Chapter 3: Writing Your Application to Use ObjectStore
• OSHashMap

• OSTreeMap

ObjectStore supports the hash table and vector representations, which are
designed to provide good performance for persistent collections. OSTreeSet
and OSTreeMap are based on a new B-tree implementation that is designed
specifically for persistent collections with very large extents (hundreds of
thousands of entries). Rather than causing your Java application to wait for
all objects to be read into the collection from the database when the collection
is first accessed, ObjectStore loads objects dynamically, several at a time, as
your application navigates the elements in the collection.

The Personalization application uses a Map (OSHashMap) to keep track of all
registered users. The user’s name is the key for the map. In addition, the User
class uses a Map to store the related interests that a particular user has.

Maps introduce a new requirement for classes of objects that will be stored as
keys in persistent collections. These classes must provide a suitable
hashCode() method. Objects that are stored as keys in Maps must provide
hash codes that remain the same across transactions. The default
Object.hashCode() method supplies an identity-based hash code. This
identity hash code might depend on the virtual memory address or on
internal implementation-level metadata associated with the object. Such a
hash code is unsuitable for use in a persistent identity-based Map because it
might be different each time an object is fetched from the database.

For your persistence-capable classes, you can override the hashCode()
method and supply your own, or you can rely on the class file postprocessor
to supply a hashCode() method suitable for storing instances in persistent
hash tables. See the Java API User Guide, Storing Objects as Keys in Persistent
Hash Tables, for more information about supplying your own hashCode()
methods.

The Personalization application uses a set (OSHashSet) to keep track of all
interests that are defined. Because the Interest objects are stored in Maps
that are part of the User objects, the application does not need the
allInterests set to make Interest objects persistent. The allInterests
set is useful because it allows you to perform queries efficiently, such as “find
all users who have a particular interest.”

For information on querying and indexing collections, see Chapter 5, Using
ObjectStore to Query a Database, on page 37.
Release 6.1 27

Using Collections
28 Java Interface to ObjectStore Tutorial

Chapter 4
Compiling and Running an
ObjectStore Program

To run an application, such as the Personalization application, you must
perform the steps described in the following sections:

Installing ObjectStore 29

Adding Entries to Your CLASSPATH 30

Compiling the Program 32

Running the Postprocessor 32

Running the Program 35

Installing ObjectStore
For information about installations, see the README.htm file in the top-level
directory of your ObjectStore installation.

After the installation is complete, update your PATH environment variable to
contain the bin directory from the installation. This allows you to use the
Class File Postprocessor (osjcfp) and other tools.

For example, under Windows you would add the following entry to your
PATH environment variable:

c:\Odi\osji\bin
Release 6.1 29

Adding Entries to Your CLASSPATH
Adding Entries to Your CLASSPATH
ObjectStore requires certain entries in the CLASSPATH environment variable
before you can use it. When you want to develop ObjectStore programs as
well as use ObjectStore, you must add additional entries to your CLASSPATH.

Entries Required to Run ObjectStore Applications
To use ObjectStore, you must set your CLASSPATH environment variable to
contain

• The osji.jar file. This allows the Java VM to locate ObjectStore.

• The ObjectStore tools.jar file. This allows the Java VM to locate the
ObjectStore files for the Class File Postprocessor and other ObjectStore
database tools.

You must have these .jar files explicitly listed in your class path. You
cannot list only an entry for the directory that contains them. For example,
under Windows, you might have the following entries in your CLASSPATH
variable:

c:\Odi\osji\osji.jar;c:\Odi\osji\tools.jar

Entries Required to Develop ObjectStore Applications
To develop and run ObjectStore applications, you must add entries to the
CLASSPATH variable that allow Java and ObjectStore to find your

• Source directory

• Annotated class file directory

The source directory contains your Java source files and your class files
(compiled source). As described in Definition of Persistence Capable on
page 20, ObjectStore must postprocess those class files that you want to make
into persistence-capable and persistence-aware classes. ObjectStore takes
these .class files and produces new .class files that contain annotations
that are needed for persistence.

You can decide whether to place these annotated files in the same directory
as the source files or in a separate directory. For example, suppose that
c:\Odi\osji\com\odi\tutorial is the directory that contains the source
files for the tutorial package. You can decide to annotate your class files in
place. That is, you can instruct the postprocessor to overwrite your original
30 Java Interface to ObjectStore Tutorial

Chapter 4: Compiling and Running an ObjectStore Program
class files with the annotated class files. To do this, you must add the
following entry to your CLASSPATH variable:

c:\Odi\osji

This entry allows the Java VM and ObjectStore to find the
com\odi\tutorial directory, which contains both the source files and the
annotated class files.

If you decide to place the annotated class files in a directory that is separate
from that of your source files, for example,
c:\Odi\osji\com\odi\tutorial\osjcfpout, you must add the following
entries to your CLASSPATH variable:

c:\Odi\osji\com\odi\tutorial\osjcfpout;c:\Odi\osji

The first entry allows ObjectStore to find the annotated class files. The second
entry allows ObjectStore to find your source files.

Background About Different Kinds of Class Files
In general, when you are developing an ObjectStore application, you are
concerned about three kinds of .class files:

• Annotated class files that represent persistence-capable or persistence-
aware classes.

• Superfluous class files that were input to the postprocessor and are now
superseded by the annotated class files. These are the original class files
created by the compiler.

• Unannotated class files that do not need to be postprocessed but that are
still required by your application.

After compiling your application, ObjectStore has to find the original class
files to annotate them. The postprocessor gives you the option of annotating
the class files in place, which means that the superseded class files are
replaced by the annotated class files. This is generally the easiest way to use
ObjectStore because your CLASSPATH does not have to contain a separate
entry for the annotated class files.

After postprocessing your application, you can run your application. When
you run your program, Java has to locate the annotated class files and the
unannotated class files that have not been superseded.

The location of the annotated class files must precede the location of your
original class files in the CLASSPATH. This allows the Java VM to find the
annotated class files before it finds your superseded (original) class files. You
Release 6.1 31

Compiling the Program
can find detailed instructions for doing this in the Java API User Guide,
Chapter 8, Generating Persistence-Capable Classes Automatically.

Compiling the Program
You compile an ObjectStore application in the same way that you compile
any other Java application. For example, to compile the Personalization
application, change to the c:\Odi\osji\com\odi\tutorial directory and
enter

javac *.java

You can use the asterisk (*) to compile all .java files or you can compile each
file individually by specifying the file name. Case is significant for the file
name, so you must specify, for example, User.java and not user.java.

When you compile the Personalization application, the javac compiler
outputs the following run-time byte code files:

• User.class

• Interest.class

• UserManager.class

• TestDriver.class

• PersonalizationException.class

Running the Postprocessor
You must run the class file postprocessor (osjcfp) on the class files of the
classes that you want to be persistence capable. The postprocessor generates
new annotated files in place (overwrites original class files) or in a directory
that you specify. When you run your program, you use the annotated class
files and not your original class files.

Before you run the postprocessor, ensure that the bin directory that contains
the postprocessor executable is in your path, as noted in Adding Entries to
Your CLASSPATH on page 30.

Complete information about the postprocessor is in the Java API User Guide,
Chapter 8, Generating Persistence-Capable Classes Automatically.
32 Java Interface to ObjectStore Tutorial

Chapter 4: Compiling and Running an ObjectStore Program
Description of Output from the Postprocessor
When you run the postprocessor to make a class persistence capable, the
postprocessor creates an annotated class file for each class it postprocesses.
For persistence-capable classes that are private, the postprocessor generates
additional files named xxxxClassInfo.class, where xxxx is the class name.

Since none of the classes in the Personalization application are private, the
osjcfp command given above generates the following annotated class files:

• Interest.class

• User.class

Example of Postprocessing Classes in Place
In the Personalization application, both the Interest and User classes are
persistence capable. To postprocess these classes in place, change to the
c:\Odi\osji\com\odi\tutorial directory and enter

osjcfp -inplace -dest . Interest.class User.class

When you specify the -inplace option, the postprocessor ignores the
destination argument (-dest), but it is still required.

Specifying an Input File to the Postprocessor
If you have several class files to postprocess, you might find it easier to use a
file to specify the arguments. To do this, create a text file that contains the
arguments for the postprocessor and specify the text file name with the @
sign when you run the postprocessor.

For example, suppose that in the c:\Odi\osji\com\odi\tutorial
directory you create the cfpargs file with the following contents:

-inplace -dest
-pc User.class Interest.class

The -pc option instructs the postprocessor to make the specified classes
persistence capable. You can then run the postprocessor with the following
command:

osjcfp @cfpargs

Placing the Annotated Files in a Separate Directory
To put the annotated files in a separate directory, specify the -dest option
followed by the name of the directory in which you want the postprocessor
Release 6.1 33

Running the Postprocessor
to put the annotated class files. For example, use the following command to
place the annotated User and Interest class files in the osjcfpout
directory:

osjcfp -dest osjcfpout Interest.class User.class

The -dest option specifies the destination directory for the annotated files.
The argument for this option must be the same as the directory in your
CLASSPATH environment variable that establishes the location of the
annotated files. In this example, CLASSPATH should point to
c:\Odi\osji\com\odi\tutorial\osjcfpout.

You must explicitly create the output directory before you run the
postprocessor. The postprocessor creates a directory structure that matches
your package structure, in this case,
c:\Odi\osji\com\odi\tutorial\osjcfpout\com\odi\tutorial.

Additional Information About the Postprocessor
Under normal circumstances, you must postprocess together all classes in
your application that you want to be persistence capable or persistence
aware. Failure to do so can result in problems that are difficult to diagnose
when you run your application. For example, objects might not be fetched
automatically from the database when needed.

The postprocessor must be able to examine all class files in an application
when it makes any class in the application persistence capable. There are
postprocessor options that allow you to determine the classes that the
postprocessor makes persistence capable. If it is inconvenient or impossible
to postprocess all classes in your application together, you can postprocess
separate batches of files. See Postprocessing a Batch of Files Is Important in
the Java API User Guide.

It is good practice to provide accessor methods to encapsulate state in an
object, as shown in the source code for the Interest class in Appendix A,
Source Code, on page 47.

When using ObjectStore, accessor methods allow ObjectStore to fetch objects
automatically from the database. It is easy to localize where ObjectStore must
annotate your code to perform fetch and update checks, which occur only in
the accessor methods and are not spread throughout your code.
34 Java Interface to ObjectStore Tutorial

Chapter 4: Compiling and Running an ObjectStore Program
Running the Program
Before you run an ObjectStore program, ensure that the ObjectStore lib
directory is in your library search path. Run your ObjectStore program as a
Java application.

For example, the following is a typical command line that runs the
Personalization application:

java com.odi.tutorial.TestDriver test.odb

When you run an ObjectStore program, you specify the fully qualified class
name to the Java VM. In this example, com.odi.tutorial.TestDriver is
the fully qualified class name.

The TestDriver program expects an argument that contains the pathname
of the database's .odb file, namely test.odb. If you are using PSE Pro, the
application also creates test.odt and test.odf, and these three files (the
.odb, .odt, and .odf files) form the database. You can specify any pathname
you want, as long as the file name ends with .odb. This example uses a
relative pathname, so ObjectStore creates the files in the directory in which
you run the program.

Sample Output from the application is in Appendix B, Sample Output, on
page 63.
Release 6.1 35

Running the Program
36 Java Interface to ObjectStore Tutorial

Chapter 5
Using ObjectStore to Query
a Database

ObjectStore provides a mechanism for querying java.util.Collection
objects. A query applies a predicate expression (an expression that evaluates
to a Boolean result) to all elements in a collection. The query returns a subset
collection that contains all elements for which the expression is true.

To accelerate the processing of queries on particularly large collections, you
can build indexes on the collection.

Although the Personalization application does not implement queries, this
chapter discusses the following topics on queries.

Querying Collections 37

Using Indexes to Speed Query Performance 40

For more information about creating and using queries and indexes, see
Working with Collections in Chapter 7 of the Java API User Guide.

Querying Collections
Using queries is a two-step process:

1 Create the query.

2 Run the query against a collection.

Creating Queries
To create a query, you run the Query constructor and pass in a Class object
and a query string. The Class object specifies the type of element contained
Release 6.1 37

Querying Collections
by the collection you want to query. This element type must be a publicly
accessible class, and any members (fields or methods) specified in the query
string must be publicly accessible as well.

The query string is a predicate expression, which is defined with native Java.
There is no SQL (Structured Query Language) or JDBC required. Query
strings can include standard Java arithmetic, conditional, and relational
operators, as well as simple methods.

The following example shows the creation of a query that finds all interests
in which the interest name is "wine":

Query query = new Query(Interest.class, "getName() ==
\"wine\"");

This example uses a public method instead of a field. This allows the
Interest name field to remain private and preserves the encapsulation of
the interest’s state. If the name field was public, you could specify the query
like this:

Query query = new Query(Interest.class, "name == \"wine\"");

When you create a query, you do not bind it to a particular collection. You
can create a query, run it once, and throw it away. Alternatively, you can
reuse a query multiple times against the same collection or against different
collections.

You can also use variables in query strings. See Specifying Variables in
Queries on page 38.

Running Queries Against Collections
You run a query against a specific collection with a call to the
Query.select() method. This call specifies the collection to be queried. For
example, after you define a query as in the previous section, you can run that
query like this:

Collection wine = query.select(allInterests);

In this example, the query tests the elements in the set of allInterests to
find the elements whose name is wine.

Specifying Variables in Queries
You can use variables in queries instead of constants. In the previous
example, you might want to substitute for different name values, depending
on whether you are looking for wine, food, or some other interest. The
38 Java Interface to ObjectStore Tutorial

Chapter 5: Using ObjectStore to Query a Database
following example shows the way to use a variable value in a query
expression:

String interestName = "wine";
FreeVariables freeV = new FreeVariables();
freeV.put("x", String.class);
Query query = new Query(Interest.class, "getName() == x",

freeV);
FreeVariableBindings freeVB = new FreeVariableBindings();
freeVB.put("x", interestName);
Collection queryResults = query.select(

allInterests.values(), freeVB);

First, create a FreeVariables list and add a variable, x in this example, to it.
When you add the variable, you specify the type of variable. In this case, the
type of x is String because it is going to represent a String in the query
string. When you create the query,

• Specify the type of element contained by the collection you want to query,
as you would for a query that uses constants.

• In the query string, specify the variable added to the FreeVariables list,
for example, replace the value "wine" with the variable x.

• Pass the FreeVariables list, freeV in this example, as an argument to the
Query constructor.

Binding
variables

Before you can execute the query, you must bind the variable in the query
string to a variable in the program. To do this, create a
FreeVariableBindings list. In this example, freeVB binds the variable x to
the variable interestName.

Sample query
with a
variable

When you execute the query, pass the FreeVariableBindings list as an
argument to the query select() method. For example, the following is a
method that finds all users with a particular interest:

/**
 * Get all users with a particular interest.
 *
 * @param interestName: The name of the interest.
 *
 * @return An array of names of users with this interest.
 **/

public static String[] find Users(String interestName)
throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.READONLY);
String queryString = "getName() == \"" + interestName + "\"";
Query interestQuery = new Query(Interest.class, queryString);
Release 6.1 39

Using Indexes to Speed Query Performance
Collection interests = interestQuery.select(allInterests);
String[] users = new String[interests.size()];
int index = 0;
Iterator iter = interests.iterator();
while (iter.hasNext())

users[index++] =
((Interest)iter.next()).getUser().getName();

tr.commit(ObjectStore.RETAIN_READONLY);
return users;

}

Using Indexes to Speed Query
Performance

When you want to run a query on a particularly large collection, it is useful
to build indexes on the collection to accelerate query processing. You can add
indexes to any collection that implements the
com.odi.util.IndexedCollection interface. This interface provides
methods for adding and removing indexes and for updating indexes when
the indexed data changes.

While querying is supported on all com.odi.util collections, only
com.odi.util.OSTreeSet already implements the IndexedCollection
interface. This means that if you want to add an index to another type of
collection (other than OSTreeSet), you must define a collection class that
implements the IndexedCollection interface.

What an Index Does
An index provides a reverse mapping from a field value or from the value
returned by a method when it is called, to all elements that have the value. A
query that refers to an indexed field executes faster. This is because it is not
necessary to examine each object in the collection to determine those
elements that match the predicate expression. Also, ObjectStore does not
need to fetch into memory the elements that do not match the query.

To use an index, you create it, and then specify the indexed field or method
in a query. A query can include both indexed fields and methods and
nonindexed fields and methods. ObjectStore evaluates the indexed fields
and methods first and establishes a preliminary result set. ObjectStore then
applies the nonindexed fields and methods to the elements in the
preliminary result set.
40 Java Interface to ObjectStore Tutorial

Chapter 5: Using ObjectStore to Query a Database
Creating an Index
Use these methods, defined on IndexedCollection, to create an index:

addIndex(Class, String)

addIndex(Class, String, boolean, boolean)

The Class argument indicates the element type to which the index applies.
The String indicates the element member to be indexed.

The optional boolean arguments allow you to specify whether the index is
ordered and whether it allows duplicates. If you do not specify the boolean
arguments, the index is unordered and it allows duplicates.

Example of Creating an Index
The following example shows the creation of an index on the return value
from the getName() method on the Interest class. To execute this, the
collection that contains the Interest objects, allInterests, must
implement the IndexedCollection interface. In this example, this is
accomplished by specifying allInterests to be an OSTreeSet collection.
For example, you could have the following code in the
UserManager.initialize() method in the Personalization application:

db.createRoot("allInterests", allInterests =
new OSTreeSet(db));

allInterests.addIndex(Interest.class, "getName()");

Maintenance Required After Changing Indexed Elements
After you add an index to a collection, ObjectStore automatically maintains
the index as you add to or remove elements from the collection. However, it
is your responsibility to update the index when indexed members change in
instances that are already elements of an indexed collection.

For example, suppose you insert Jones into a collection called
userCollection, and then you build an index for userCollection on the
email field. If you remove Jones from the collection, ObjectStore updates the
email index so it no longer includes the entry for the Jones object. However,
if you leave Jones in the collection, but change Jones’s email address, you
must manually update the index to contain the correct email entry.

To update an index, you must

1 Remove the incorrect instance from the index. For example, remove Jones
from the index.
Release 6.1 41

Using Indexes to Speed Query Performance
2 Update the incorrect instance. For example, modify the email address for
Jones.

3 Add the updated instance to the index. For example, add the updated
Jones object to the index.

An example follows. For more information, see Enhancing Query
Performance with Indexes in Chapter 7 of the Java API User Guide.

User jones = /* assume jones references Jones */
userCollection.removeFromIndex(User.class, "email", jones);
jones.setEmail("jones@objectdesign.com");
userCollection.addToIndex(User.class, "email", jones);
42 Java Interface to ObjectStore Tutorial

Chapter 6
Choosing PSE Pro or
ObjectStore

This section compares PSE Pro and ObjectStore. It considers the following
characteristics:

Overall Capability 43

Database Size 44

Concurrent Users 44

Collections 44

Integrity, Reliability, and Recovery 45

Multimedia Content Management 45

Ease of Using Java 45

Overall Capability
PSE Pro supports large single-user databases and queries over large
collections.

ObjectStore delivers high-performance object storage for both Java and C++
programs. It provides scalable concurrent access to very large databases in a
distributed multitiered environment. ObjectStore provides complete
database management system features that ensure reliability and high
availability. This includes backup and recovery, security, roll forward,
replication, and failover.
Release 6.1 43

Database Size
The ObjectStore Java API is a superset of the PSE Pro for Java API. It is easy
to migrate applications from PSE Pro to ObjectStore when additional
features are required.

Database Size
PSE Pro can handle databases that exceed the tens-of-megabytes range, and
is capable of handling databases that contain millions of objects and
databases whose sizes are in the hundreds-of-megabytes range. Beyond that,
ObjectStore handles even larger databases, in the tens- to hundreds-of-
gigabytes range. ObjectStore also provides object clustering to support finer
control over the physical placement of objects, which is necessary in very
large databases.

Concurrent Users
PSE Pro is not intended for large numbers of concurrent users. They can
support multiple readers, but writers are serialized because locks are held at
the database level. If you require that your application support a high
volume of concurrent updates, you should consider ObjectStore. With
ObjectStore, multiple users can concurrently access and update objects that
are stored in several databases distributed around a network.

Collections
PSE Pro and ObjectStore both support high-performance, indexed queries
over large collections. PSE Pro and ObjectStore provide robust collections
libraries that support storage and indexed associative retrieval of large
groups of objects. These libraries provide arrays, lists, bags, and sets, with B-
tree and hash table indexing. PSE Pro and ObjectStore also provide query
optimizers, which formulate efficient retrieval strategies and minimize the
number of objects that must be examined in response to a query.
44 Java Interface to ObjectStore Tutorial

Chapter 6: Choosing PSE Pro or ObjectStore
Integrity, Reliability, and Recovery
Both PSE Pro and ObjectStore ensure the integrity and reliability of your
data. ObjectStore provides on-line backup and recovery, roll forward,
replication, and failover to enable full support for administration of the
database in a highly available 7x24 environment.

Multimedia Content Management
ObjectStore includes a comprehensive library of Object Managers that
provide support for multimedia content management. Today’s Java
applications make extensive use of data types such as image, audio, full text,
video, and HTML. The Object Manager for each of these types helps you
maintain this data. In addition, Object Managers are useful for specialized
data types such as spatial and time series. Support for multimedia data types
goes beyond storage management. An extended data type can also have
sophisticated behavior defined by its methods, such as content-based
retrieval of images.

Ease of Using Java
PSE Pro and ObjectStore provide powerful data management environments
for Java applications. They provide a seamless binding to the Java language.
The easy-to-use interface drastically reduces the amount of code required to
manage persistent Java objects, but it still provides developers with the full
power of Java to define, manipulate, and share important application data.

Whether you use PSE Pro or ObjectStore, creating persistent Java objects is as
easy as creating transient Java objects. This means that the increased
productivity of the Java environment is further enhanced with PSE Pro and
ObjectStore.
Release 6.1 45

Ease of Using Java
46 Java Interface to ObjectStore Tutorial

Appendix A
Source Code

This chapter provides the source code for the following Personalization
application classes:

Source Code for Interest.java 47

Source Code for User.java 48

Source Code for UserManager.java 51

Source Code for TestDriver.java 57

Source Code for PersonalizationException.java 61

Source Code for Interest.java
package com.odi.tutorial;

import com.odi.*;

/**
 * The Interest class models a particular interest that a user may
 * have. It contains a name and a value. For example, the name of
 * an interest might be "food", and the value might be "pizza".
 */

public class Interest
{

/* the name of the interest */
private String name;

/* the value of the interest */
private String value;

/* the user who has this interest */
private User user;
Release 6.1 47

Source Code for User.java
/* accessor functions */
public String getName() { return name; }
public String getValue() { return value; }
public void setValue(String value) { this.value = value; }
public User getUser() { return user; }

/**
 * Constructs a new interest object given a name and a value
 */
public Interest(String name, String value, User user)
{

this.name = name;
this.value = value;
this.user = user;

}

/*
 * Destroy the interest's associated objects
 */
public void preDestroyPersistent()
{

if (!ObjectStore.isDestroyed(name))
ObjectStore.destroy(name);

if (!ObjectStore.isDestroyed(value))
ObjectStore.destroy(value);

}
}

Source Code for User.java
package com.odi.tutorial;

import java.util.*;
import com.odi.*;
import com.odi.util.*;

/**
 * The User class models users. Users have names, email addresses,
 * and PINS. Each user also has a set of interests. The application
 * uses PINs to validate a user's identity.
 */
public
class User {

/* The name of the user */
private String name;

/* The user's email address */
private String email;
48 Java Interface to ObjectStore Tutorial

: Source Code
/* The user's Personal Identification Number */
private int PIN;

/* The set of user's interests */
private OSHashMap interests;

/* accessors */
public String getName() { return name; }
public String getEmail() { return email; }
public int getPIN() { return PIN; }
public Map getInterests() { return interests; }

/**
 * Constructs a user object given the name, email and PIN
 */
public User(String name, String email, int PIN) {

this.name = name;
this.email = email;
this.PIN = PIN;
this.interests = new OSHashMap(5); /* initial hashtable size */

}

/*
 * Destroy the associated objects
 */
public void preDestroyPersistent() {

if (!ObjectStore.isDestroyed(name))
ObjectStore.destroy(name);

if (!ObjectStore.isDestroyed(email))
ObjectStore.destroy(email);

/* destroy each of the interests */
Iterator interestIter = interests.values().iterator();
while (interestIter.hasNext()) {

Interest interest = (Interest) interestIter.next();
ObjectStore.destroy(interest);

}
/* destroy the interests list too */
ObjectStore.destroy(interests);

}

/**
 * Add an interest to the User's list of interests.
 *
 * @param interestName the name of the interest
 * @param interestValue the value of the interest
 *
 * @exception PersonalizationException If the interest is
 * already there (the same name as another interest)
 */
public Interest addInterest(String interestName, String interestValue)

 throws PersonalizationException
Release 6.1 49

Source Code for User.java
{
Object previous = interests.get(interestName);
if (previous != null)

throw new PersonalizationException("Interest already there: " +
interestName);

Interest interest = new Interest(interestName, interestValue, this);
interests.put(interestName, interest);
return interest;

}

/**
 * Update an interest in the User's list of interests.
 *
 * @param interestName the name of the interest
 * @param interestValue the new value of the interest
 *
 * @exception PersonalizationException is thrown if the interest is
 * already not there.
 */
public Interest changeInterest(String interestName, String interestValue)

 throws PersonalizationException
{

Interest interest = (Interest)interests.get(interestName);
if (interest == null)

throw new PersonalizationException("No such registered interest: " +
interestName);

interest.setValue(interestValue);
return interest;

}

/**
 * Remove an interest from the User's list of interests.
 *
 * @param interestName: The name of the Interest to remove.
 *
 * @exception PersonalizationException is thrown if the interest is not
 * found in the user's list of interests
 */
public Interest removeInterest(String interestName)

 throws PersonalizationException
{

Interest interest = (Interest)interests.remove(interestName);
if (interest == null)

/* did not find the interest */
throw new PersonalizationException("Interest not found: " + name);

 return interest;
}

}

50 Java Interface to ObjectStore Tutorial

: Source Code
Source Code for UserManager.java
package com.odi.tutorial;

import java.util.*;
import java.io.*;
import com.odi.*;
import com.odi.util.*;
import com.odi.util.query.*;

/**
 * The UserManager acts as the interface to the Personalization data
 * that is stored persistently. In real use, it might serve as an
 * application service that would receive requests (RMI or ORB
 * requests perhaps) and service those requests by accessing the
 * database.
 */
public
class UserManager
{

/* The database that this UserManager is operating against. */
private static Database db;

/* The active session for this UserManager */
private static Session session;

/* The extent of all users in the database is held in a root.
 We use a map, whose key is the name of the user. */

private static Map allUsers;

/* The extent of all interests in the database is held in a root.
 We use a Set, which might have one or more indexes. */

private static Set allInterests;

/* This is used to allocate the Personal Identification Number (PIN) */
private static Random pinGenerator;

public static void initialize(String dbName)
{

/* initialize a random number generator to allocate PINs */
pinGenerator = new Random();

/* Create a session and join this thread to the new session. */
session = Session.create(null, null);
session.join();

/* Open the database or create a new one if necessary. */
try {

db = Database.open(dbName, ObjectStore.UPDATE);
} catch (DatabaseNotFoundException e) {

db =
 Database.create(dbName, ObjectStore.ALL_READ | ObjectStore.ALL_WRITE);
Release 6.1 51

Source Code for UserManager.java
}
/* Find the allUsers and allInterests roots or create them if not there. */
Transaction tr = Transaction.begin(ObjectStore.UPDATE);
try {

allUsers = (Map) db.getRoot("allUsers");
allInterests = (Set) db.getRoot("allInterests");

} catch (DatabaseRootNotFoundException e) {

/* Create the database roots and give them appropriate values */
db.createRoot("allUsers", allUsers = new OSHashMap());
db.createRoot("allInterests", allInterests = new OSHashSet());

}

/* End the transaction and retain a handle to allUsers and allInterests */
tr.commit(ObjectStore.RETAIN_HOLLOW);
return;

}

/**
 * Close the database and terminate the session.
 */
public static void shutdown()
{

db.close();
session.terminate();

}

/**
 * Add a new user to the database; if the user's name already
 * exists, throw an exception.
 *
 * @param name: The name of the user to be added
 * @param email: The email address of the user
 *
 * @return: The PIN of the new user.
 *
 * @exception PersonalizationException is thrown if the user
 * is already there.
 */
public static int subscribe(String name, String email)

throws PersonalizationException
{

Transaction tr = Transaction.begin(ObjectStore.UPDATE);

/* First check to see if the user's name is already there. */
if (allUsers.get(name) != null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User already there: " + name);

}

/* The user name is not there so add the new user;
52 Java Interface to ObjectStore Tutorial

: Source Code
 first generate a PIN in the range 0..10000. */
int pin = pinGenerator.nextInt() % 10000;
if (pin < 0) pin = pin * -1;
User newUser = new User(name, email, pin);
allUsers.put(name, newUser);

tr.commit(ObjectStore.RETAIN_HOLLOW);
return pin;

}

/**
 * Removes the user from the database.
 *
 * @param name: The name of the user to be removed.
 *
 * @exception PersonalizationException is thrown if the user is
 * not found.
 */
public static void unsubscribe(String name)

throws PersonalizationException
{

Transaction tr = Transaction.begin(ObjectStore.UPDATE);

User user = (User) allUsers.get(name);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException ("Could not find user: " + name);

}

/* remove the user from the allUsers collection, and
 * remove all of the user's interests from the allInterests collection */
allUsers.remove(name);
Iterator interests = user.getInterests().values().iterator();
while (interests.hasNext())

allInterests.remove(interests.next());

/* finally destroy the user and all its subobjects */
ObjectStore.destroy(user);

tr.commit(ObjectStore.RETAIN_HOLLOW);
}

/**
 * Validates a username / PIN pair, and returns the user object.
 */
public static User validateUser(String userName, int PIN)
{

Transaction tr = Transaction.begin(ObjectStore.READONLY);
User user = (User) allUsers.get(userName);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("Could not find user: " + userName);
Release 6.1 53

Source Code for UserManager.java
}
if (user.getPIN() != PIN) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("Invalid PIN for user: " + userName);

}
tr.commit(ObjectStore.RETAIN_READONLY);
return user;

}

/**
 * Add an interest to an existing user's set of interests.
 *
 * @param userName: The name of the user.
 * @param interestName: The name of the interest to create.
 * @param interestValue: The value of the new interest.
 *
 * @exception PersonalizationException: thrown if the user is
 * not found or if the user already has this interest.
 */
public static void addInterest(String userName, String interestName,

 String interestValue)
throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.UPDATE);
User user = (User) allUsers.get(userName);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User not found: " + userName);

}
else {

try {
Interest interest = user.addInterest(interestName, interestValue);
allInterests.add(interest);

} catch (PersonalizationException e) {
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw e;

}
}

tr.commit(ObjectStore.RETAIN_HOLLOW);
return;

}

/**
 * Remove an interest from a user's set of interests.
 *
 * @param userName: The name of the user.
 * @param interestName: The name of the interest to remove.
 *
 * @exception PersonalizationException: thrown if the user is
54 Java Interface to ObjectStore Tutorial

: Source Code
 * not found or the interest is not found.
 */
public static void removeInterest(String userName, String interestName)

throws PersonalizationException
{

Transaction tr = Transaction.begin(ObjectStore.UPDATE);
User user = (User) allUsers.get(userName);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User not found: " + userName);

}
else {

try {
Interest interest = user.removeInterest(interestName);
allInterests.remove(interest);
ObjectStore.destroy(interest);

} catch (PersonalizationException e) {
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw e;

}
}

tr.commit(ObjectStore.RETAIN_HOLLOW);
return;

}

/**
 * Update an interest in an existing user's set of interests.
 *
 * @param userName: The name of the user.
 * @param interestName: The name of the interest to modify.
 * @param interestValue: The new value of the interest.
 *
 * @exception PersonalizationException: Thrown if the user is
 * not found or if the user does not already have this interest.
 */
public static void changeInterest(String userName, String interestName,

 String interestValue)
throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.UPDATE);
User user = (User) allUsers.get(userName);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException("User not found: " + userName);

}
else {

try {
user.changeInterest(interestName, interestValue);

} catch (PersonalizationException e) {
Release 6.1 55

Source Code for UserManager.java
tr.abort(ObjectStore.RETAIN_HOLLOW);
throw e;

}
}

tr.commit(ObjectStore.RETAIN_HOLLOW);
return;

}

/**
 * Get the interests for a particular user.
 *
 * @param userName: The name of the user.
 *
 * @return: a Set of interests.
 *
 * @exception PersonalizationException: Thrown if the user is
 * not found.
 */
public static Collection getInterests(String userName)

throws PersonalizationException
{

Transaction tr = Transaction.begin(ObjectStore.READONLY);

User user = (User) allUsers.get(userName);
if (user == null) {

tr.abort(ObjectStore.RETAIN_HOLLOW);
throw new PersonalizationException ("User not found: " + userName);

}

/* recursively fetch all of the objects accessible from the users
 * set of interests, so that they can be returned and accessed
 * outside of a transaction */
ObjectStore.deepFetch(user.getInterests());

/* Commit using RETAIN_READONLY so the interests can be accessed
 * outside of this transaction. */
tr.commit(ObjectStore.RETAIN_READONLY);

return user.getInterests().values();
}

/**
 * Retrieves all of the users.
 *
 * @return an array containing the names of all registered users.
 *
 * @exception Exception:
 */
public static String[] getUserNames()
{

Transaction tr = Transaction.begin(ObjectStore.READONLY);
56 Java Interface to ObjectStore Tutorial

: Source Code
String[] names = new String[allUsers.size()];
Iterator userIter = allUsers.values().iterator();
int userIndex = 0;

while (userIter.hasNext())
names[userIndex++] = ((User)userIter.next()).getName();

tr.commit(ObjectStore.RETAIN_HOLLOW);
return names;

}

}

Source Code for TestDriver.java
package com.odi.tutorial;

import com.odi.util.*;
import java.util.*;
import java.io.*;

/**
 * The TestDriver class exercises the UserManager code. It
 * implements a simple UI that is driven by terminal I/O.
 */
public
class TestDriver
{

/* Main: reads input commands from the terminal and exercises
 * the UserManager code.
 */
public static void main(String argv[])
{

if (argv.length < 1) {
System.out.println("Usage: java TestDriver <databaseName>");
return;

}

/* the database to operate on is a command-line argument;
 * the file to read commands from is an optional second argument
 * (if no input file is specified, commands are read from System.in)
 */
String dbName = argv[0];
InputStream input = System.in;
if (argv.length > 1)

try {
input = new FileInputStream(argv[1]);

} catch (FileNotFoundException e){}

/* initialize the UserManager, which opens the database */
Release 6.1 57

Source Code for TestDriver.java
UserManager.initialize(dbName);

/* read command input */
BufferedReader instream =

new BufferedReader(new InputStreamReader(input));

/* print help message describing the legal commands */
printHelp();

while (true) {
try {

System.out.println();

/* read a line of command input */
String inputLine = instream.readLine();
if (inputLine == null) { /* end of input */

UserManager.shutdown();
return;

}

/* tokenize the command input with a StringTokenizer */
StringTokenizer tokenizer = new StringTokenizer(inputLine, "");
if (!tokenizer.hasMoreTokens()) continue;
String command = tokenizer.nextToken();
System.out.println();

/* ******************* */
/*HELP*/
/* ******************* */

if ("help".startsWith(command)) {
printHelp();

}
/* ******************* */
/* SUBSCRIBE NEW USER*/
/* ******************* */

else if ("subscribe".startsWith(command)) {
int PIN = UserManager.subscribe(readString(tokenizer) /*userName */,

readString(tokenizer) /*userEmail */);
System.out.println("Your personal identification number is " + PIN);

}
/* ******************* */
/*UNSUBSCRIBE USER */
/* ******************* */

else if ("unsubscribe".startsWith(command)) {
UserManager.unsubscribe(readString(tokenizer) /* userName */);

}
/* ******************* */
/*VALIDATE USER PIN*/
/* ******************* */

else if ("validate".startsWith(command)) {
User usr =

UserManager.validateUser(readString(tokenizer) /*userName */,
58 Java Interface to ObjectStore Tutorial

: Source Code
readInt(tokenizer) /* PIN*/);
System.out.println("User name " + usr.getName());
System.out.println("PIN: " + usr.getPIN());
System.out.println("email: " + usr.getEmail());

}
/* ******************* */
/* LIST ALL USERS*/
/* ******************* */

else if ("listusers".startsWith(command)) {
String[] names = UserManager.getUserNames();

if (names.length == 0)
System.out.println("There are no registered users.");

for (int i = 0; i<names.length; i++) {
System.out.println("" + names[i]);

}
}

/* ******************* */
/* ADD AN INTEREST */
/* ******************* */

else if ("addinterest".startsWith(command)) {
UserManager.addInterest(readString(tokenizer) /* userName */,

readString(tokenizer) /* interest name */,
readString(tokenizer) /* interest value */);

}
/* ******************* */

 /* REMOVE AN INTEREST */
/* ******************* */

else if ("removeinterest".startsWith(command)) {
UserManager.removeInterest(readString(tokenizer) /* userName */,

readString(tokenizer) /* interest name */);
}

/* ******************* */
/*CHANGE AN INTEREST */
/* ******************* */

else if ("changeinterest".startsWith(command)) {
UserManager.changeInterest(readString(tokenizer) /* userName */,

readString(tokenizer) /* interest name */,
readString(tokenizer) /* interest value */);

}
/* ******************* */
/* LIST USER INTERESTS */
/* ******************* */

else if ("interests".startsWith(command)) {
String userName = readString(tokenizer);
Collection interests =

UserManager.getInterests(userName);
Iterator iter = interests.iterator();
if (!iter.hasNext())
Release 6.1 59

Source Code for TestDriver.java
System.out.println("" + userName +
" has no registered interests.");

while (iter.hasNext()) {
Interest i = (Interest)iter.next();
System.out.println("" + i.getUser().getName() +
 " is interested in " + i.getName() + ": " + i.getValue());

}
}

/* ******************* */
/* EXIT PROGRAM */
/* ******************* */

else if ("exit".startsWith(command)) {
UserManager.shutdown();
return;

}
/* ******************** */
/* UNRECOGNIZED COMMAND */
/* ******************** */

else {
System.out.println("Command not recognized.Try \"help\"");

}
} catch (PersonalizationException e) {

System.out.println("" + e.toString());
}
catch (Exception e) {

System.out.println("" + e.toString());
UserManager.shutdown();
return;

}
}

 }

static void printHelp()
{

System.out.println();
System.out.println("Each command consists of the command name,

and a (possibly empty)");
System.out.println("list of arguments, separated by spaces.");
System.out.println();
System.out.println("Legal commands are:");
System.out.println("help // print this message");
System.out.println("subscribe <username> <email>

// enter a new user into the db");
System.out.println("unsubscribe <username>

// remove a user from the db");
System.out.println("validate <username> <PIN>

// validate PIN and display user data");
System.out.println("listusers // list all users");
System.out.println("addinterest <username> <interestname> <value>
60 Java Interface to ObjectStore Tutorial

: Source Code
// register an interest ");
System.out.println("removeinterest <username> <interestname>

// unregister an interest ");
System.out.println("changeinterest <username> <interestname> <value>

// change an interest ");
System.out.println("interests <username>

//display all interests for a user");
System.out.println("exit// exit the program");

}

static String readString(StringTokenizer tokenizer)
{

if (tokenizer.hasMoreElements())
return tokenizer.nextToken();

else
throw new PersonalizationException("unexpected end of command input");

}

static int readInt(StringTokenizer tokenizer)
{

if (tokenizer.hasMoreElements()) {
String token = tokenizer.nextToken();
try {

return Integer.valueOf(token).intValue();
} catch (NumberFormatException e) {

throw new PersonalizationException(
"Number Format Exception reading \"" + token + "\"");

}
}
else

throw new PersonalizationException("unexpected end of command input");
}

}

Source Code for
PersonalizationException.java
package com.odi.tutorial;

import java.util.*;

/**
 * The PersonalizationException is thrown when certain error
 * conditions arise. For example
 * -- a uid is not found
 * -- a user already exists in the database
 * -- an interest is not found
Release 6.1 61

Source Code for PersonalizationException.java
 * -- an interest already exists in the user’s set of interests
 */
public final class PersonalizationException extends RuntimeException

{
public PersonalizationException (String message) {

super (message);
}

}

62 Java Interface to ObjectStore Tutorial

Appendix B
Sample Output

Following is some sample input and output from the Personalization
application. Each command consists of the command name and a (possibly
empty) list of arguments, separated by spaces. Legal commands are
described in the following table:

Following is the output:

Command Action

help Displays a list of commands with
brief descriptions

subscribe username email Enters a new user in the database

unsubscribe username Removes a user from the database

validate username PIN Validates PIN and displays user data

listusers Lists all users

addinterest username
interestname

Registers an interest

removeinterest username
interestname

Unregisters an interest

changeinterest username
interestname

Changes an interest

interests username Displays all interests for a user

exit Exits the program
Release 6.1 63

subscribe landis landis@objectdesign.com
Your person identification number is 1489

subscribe obrien obrien@objectdesign.com
Your person identification number is 7712

validate landis 1489
User name landis

PIN: 1489
email: landis@objectdesign.com

addinterest landis wine burgundy
addinterest obrien wine bordeaux
addinterest obrien sports hockey
listusers

obrien
landis

interests obrien
obrien is interested in wine: bordeaux
obrien is interested in sports: hockey

changeinterest obrien sports marathon
interests obrien

obrien is interested in wine: bordeaux
obrien is interested in sports: marathon

exit
64 Java Interface to ObjectStore Tutorial

Release 6.1
Index
A
addInterest() method 10
annotations 21
applications

class files 31
CLASSPATH required entries 30
compiling 32
failure 3
running 35

@ option to postprocessor 33

B
binding variables 39

C
changeInterest() method 10
CLASSPATH variable 30
collections

creating queries 37
indexes 40
introduction 26
PSE Pro and ObjectStore comparison 44
queries 37
running queries 38

compiling applications 32
concurrent users 44

D
database roots 17
database size 44
databases

actions allowed in and out of
transactions 16

closing 15
creating 15
creating sessions 14
deleting objects 23
destroying objects 24
entry points 17
opening 15
roots 17

destroying objects 24
destroying strings 25

E
entry points 17
examples

add interest to user 10
changeInterest() method 10
creating collection indexes 41
deleting objects 23
Interest constructor 9
postprocessing persistence-capable

classes 33
query with variable 39
65

Release 3.0
removeInterest() method 11
static members 7
static methods 7
use of collections 19
User class constructor 10
UserManager class 7

F
FreeVariableBindings class 39
FreeVariables class 38

G
garbage collection 26

I
IndexedCollection class 40
indexes

creating 41
definition 40
updating 41

installing 29
Interest class

adding new interests 8
constructor 9
description 8

J
.jar files 30

L
lib directory 35
Lists 26

M
Map class example 19
Maps 26
multiple sessions 14

O
Object Managers 45
objects

accessing in the database 21
deleting 23
destroying 24
persistent garbage collection 26
retaining 22

ObjectStore
collections 44
comparison with PSE 43
concurrent users 44
database size 44

ObjectStore.RETAIN_HOLLOW 22
ObjectStore.RETAIN_READONLY 22
ObjectStore.RETAIN_STALE 22
ObjectStore.RETAIN_UPDATE 22
.odb files 35
.odf files 35
.odt files 35
OSHashBag 26
OSHashMap 26
OSHashSet 26
osjcfpout directory 33
osji.jar file 30
OSTreeMap 26
OSTreeSet 26
OSVectorList 26

P
PATH variable 29
persistence-capable classes

definition 20
descriptions 8
Interest class 8
postprocessing 32
User class 8

persistence-capable objects
storing in database 17

persistent garbage collector 26
66 Java Interface to ObjectStore Tutorial

Index
persistent objects
accessing 21
creating 19
deleting 23
destroying 24
garbage collection 26
lifetime 2
retaining between transactions 22

postprocessor
batches 34
destination directory 33
input files 33
introduction 32
output 34
processing in place 33

PSE Pro
collections 44
comparison with ObjectStore 43
concurrent users 44
database size 44

Q
queries

binding variables 39
creating 37
indexes 40
introduction 37
running 38
using variables 38

R
reachability 17
recovery 3
removeInterest() method 11
retain options 22
roots

creating 18
description 17

S
serialization

hundreds of megabytes 2
performance problem 1
persistence 2
recovery 3
reliability 2

sessions
creating 14
multiple 14
threads 14

Set class example 19
Sets 26
specialized data types 45
static members 7
static methods 7
system crash 3

T
tools.jar file 30
transactions

aborting 16
creating sessions 14
purpose 16
retaining objects between 22
starting 16

transient objects 17
transitive persistence 17

U
undoing changes 16
updating indexes 41
User class

constructor 9
description 8
specialized types of users 8
subscribing new users 19

UserManager class
description 7
Release 6.1 67

Release 3.0
initialize() method 18
shutdown() method 15
transactions 7
68 Java Interface to ObjectStore Tutorial

	Java Interface to ObjectStore Tutorial
	Preface
	Benefits of ObjectStore for Java
	Overview of ObjectStore Benefits
	Serialization and Persistence
	Description of Serialization
	Disadvantages of Serialization

	The Way ObjectStore Improves on Serialization
	Improved Performance for Accessing Large Numbers of Objects
	Reliable Object Management
	Queries
	Ease of Use

	Description of the Personalization Application
	Overview of the Data Model
	Personalization Application Architecture
	Description of the UserManager Class
	Description of the User and Interest Classes
	Adding New Interests
	Adding New User Types
	Source Code for the Interest Class
	Source Code for the User Class

	Writing Your Application to Use ObjectStore
	Basic ObjectStore Operations
	Getting Ready to Store Objects
	Creating Sessions
	Creating, Opening, and Closing Databases
	Starting Transactions

	Creating Database Entry Points
	Description of Database Roots
	Creating Database Roots
	Example of Creating Database Roots

	Storing Objects in a Database
	Example of Storing Objects in a Database
	Definition of Persistence Capable

	Accessing Objects in the Database
	Example of Using a Database Root
	Example of Using References
	Retaining Objects or References to Objects

	Deleting Objects
	Example of Deleting an Object
	Destroying an Object
	Destroying Objects Referenced by Destroyed Objects
	Destroying Strings
	About the Persistent Garbage Collector

	Using Collections

	Compiling and Running an ObjectStore Program
	Installing ObjectStore
	Adding Entries to Your CLASSPATH
	Entries Required to Run ObjectStore Applications
	Entries Required to Develop ObjectStore Applications
	Background About Different Kinds of Class Files

	Compiling the Program
	Running the Postprocessor
	Description of Output from the Postprocessor
	Example of Postprocessing Classes in Place
	Specifying an Input File to the Postprocessor
	Placing the Annotated Files in a Separate Directory
	Additional Information About the Postprocessor

	Running the Program

	Using ObjectStore to Query a Database
	Querying Collections
	Creating Queries
	Running Queries Against Collections
	Specifying Variables in Queries

	Using Indexes to Speed Query Performance
	What an Index Does
	Creating an Index
	Example of Creating an Index
	Maintenance Required After Changing Indexed Elements

	Choosing PSE Pro or ObjectStore
	Overall Capability
	Database Size
	Concurrent Users
	Collections
	Integrity, Reliability, and Recovery
	Multimedia Content Management
	Ease of Using Java

	Source Code
	Source Code for Interest.java
	Source Code for User.java
	Source Code for UserManager.java
	Source Code for TestDriver.java
	Source Code for PersonalizationException.java

	Sample Output
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U

