10.2. Calculate the net torque about point *O* for the two forces applied as in the figure. The rod and both forces are in the plane of the page.

Identify: $\tau = Fl$ with $l = r \sin \phi$. Add the two torques to calculate the net torque.

Set Up: Let counterclockwise torques be positive.

- Execute: $\tau_1 = -F_1 l_1 = -(8.00 \text{ N})(5.00 \text{ m}) = -40.0 \text{ N} \cdot \text{m}$. $\tau_2 = +F_2 l_2 = (12.0 \text{ N})(2.00 \text{ m})\sin 30.0^\circ = +12.0 \text{ N} \cdot \text{m}$. $\Sigma \tau = \tau_1 + \tau_2 = -28.0 \text{ N} \cdot \text{m}$. The net torque is 28.0 N · m, clockwise.
- **Evaluate:** Even though $F_1 < F_2$, the magnitude of τ_1 is greater than the magnitude of τ_2 , because F_1 has a larger moment arm.