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ABSTRACT

Given a choice, software project managers frequently prefer traditional methods of making decisions

rather than rely on empirical software engineering (empirical/machine learning-based models). One

reason for this choice is the perceived lack of credibility associated with these models. To promote better

empirical software engineering, a series of experiments are conducted on various NASA datasets to

demonstrate the importance of assessing the ease/difficulty of a modeling situation. Each dataset is

divided into 3 groups, a training set, and “nice/nasty” neighbor test sets. Using a nearest neighbor

approach, “Nice neighbors” align closest to same class training instances. “Nasty neighbors” align to the

opposite class training instances. The “Nice,” “Nasty” experiments average 94 and 20 percent accuracy

respectively. Another set of experiments show how a 10-fold cross-validation is not sufficient in

characterizing a dataset. Finally, a set of metric equations is proposed for improving the credibility

assessment of empirical/machine learning models.
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INTRODUCTION

Software Project Management: State Of Practice

Software project management has improved over the years. For example, the Standish Group, a

consulting company, which has been studying IT management since 1994 noted in their latest release of

the Chaos Chronicles (Standish 2003) that “2003 Project success rates improved by more than 100

percent over the 16 percent rate from 1994.” Furthermore, “Project failures in 2003 declined to 15

percent of all projects. This is a decrease of more than half of the 31 percent in 1994.”

Even with these successes, there are still significant opportunities for improvement in software project

management. Table 1 shows several “state of practice” surveys collected in 2003 from IT companies in

the United States (Standish 2003); South Africa (Sonnekus 2003); and the United Kingdom (Sauer

2003).

Table 1: State of Practice Surveys
Year Successful Challenged Failure Projects Surveyed

United States  (Chaos Chronicles III) 34% 51% 15% 13,522

South Africa 43% 35% 22% 1,633

United Kingdom 16% 75%   9% 421

According to the Chaos Chronicles (Standish 2003) successful projects refers to projects that are

completed on time and within budget with all features fully implemented; project challenged means that

the projects are completed, but exceed budget, go over time, and/or are lacking some/all of the features

and functions from the original specifications; and project failures are those projects which are

abandoned and/or cancelled at some point.

Applying a weighted average to Table 1 results in 34 percent of the projects identified as successful, 50

percent are challenged, and 16 percent end up in failure. Thus, about one-third of the surveyed projects



end up as a complete success, half the projects fail to some extent, and one sixth end up as complete

failures. Considering the role of computers in various industries, such as the airlines and banking, these

are alarming numbers.

From a financial perspective1, the lost dollar value for US projects in 2002 is estimated at $38 billion

with another $17 billion in cost overruns for a total project waste of $55 billion against $255 billion in

project spending (Standish 2003). Dalcher (Dalcher 2003) estimates the cost for low success rates at

$150 billion per year attributable to wastage arising from IT project failures in the Unites States, with an

additional $140 billion in the European Union. Irrespective of which estimate is adopted, it is evident

that software project mismanagement results in an annual waste of billions of dollars.

Empirical Software Engineering

One of the keys for improving the chances of project development success is the application of

empirical-based software engineering. Empirical-based software engineering is the process of

collecting software metrics and using these metrics as a basis for constructing a model to help in the

decision-making process.

Two common types of software metrics are project and product metrics. Project metrics refer to the

estimated time, money, or resource effort needed in completing a software project. The Standish Group

(Standish 2003) perceives software cost estimating as the most effective way to avoid cost and schedule.

Furthermore, several studies (Chaos 2003 and Jones 1998) have shown that by using software cost-

estimation techniques, the probability of completing a project successfully doubles. Thus, estimating the

schedule, cost, and resources needed for the project is paramount for project success.

                                                                
1 All monetary amounts are depicted in U.S. dollars.



Product metrics are metrics extracted from software code and are frequently used for software defect

prediction. Defect prediction is a very important area in the software development process. The reason is

that a software defect dramatically escalates in cost over the software lifecycle. During the coding phase,

finding and correcting defects costs $977 per defect (Boehm 2001). In the system-testing phase, the cost

jumps to $7,136 per defect (Boehm 2001). If a defect survives to the maintenance phase, then the cost to

find and remove increases to $14,102 (Boehm 2001).

From an industry perspective, Tassey (Tassey 2002) estimates that the annual cost of software defects in

the United States is $59.5 billion and that “feasible” improvements to testing infrastructures could

reduce the annual cost of software defects in the United States by $22.2 billion. The Sustainable

Computing Consortium (SCC), an academic, government and business initiative to drive IT

improvements, estimates that from a global perspective, defective computer systems cost companies

$175 billion annually. Thus, there are major financial incentives for building models capable of

predicting software defects.

There are primarily two methods for constructing models in empirical software engineering. The first

adopts an empirical approach which emphasizes direct observation in the modeling process and results

in one or more mathematical equations. Common examples of this approach include COCOMO I

(Boehm 1981), COCOMO II (Boehm 2000), Function Points (Albrecht 1979; and 1983), SLIM (Putnam

1978) for effort estimation. The second method automates the observation process by using a machine

learning approach to characterize relationships. Examples of machine learners include Bayesian Belief

Networks (BBN), Case-Based Reasoners (CBR), decision tree learners, genetic programs, and neural

networks. The by-product of applying these learners include mathematical equations, decision trees,

decision rules, and a set of weights as in the case of a neural network. For the purpose of this paper, a



cursory description will suffice, further details regarding the application of machine learners in software

engineering may be found at (Khoshgoftaar 2003; Pedrycz 2002; and Zhang 2005).

Although the financial incentives are huge, empirical software engineering has received modest

acceptance by software practitioners. A project manager may estimate a project by using a human-based

approach, an empirical approach, or a machine learning approach. Even though popular models, such as

COCOMO or Function Points, have existed for more 25 or more years their application is rather low. In

2004, Jørgenson (2004) compiled a series of studies regarding the frequency of human-based estimation

and finds it is used 83 percent (Hihn 1991), 62 percent (Heemstra 1991), 86 percent (Paynter 1996), 84

percent (Jørgenson 1997), and 72 percent (Kitchenham 2002). It is evident that human-based estimation

is the dominant choice relative to empirical or machine learning-based estimation. Furthermore,

Jørgenson (2004) states the empirical-based estimation ranges from about 7 to 26 percent and machine

learning-based estimation is only about 4 to 12 percent.

A key question is “Why haven’t empirical-based models and particularly machine learner models

gained greater acceptance by software practitioners?”

One possible answer to this question is the difficulty in assessing the credibility of these models. A

model may boast accurate results, but these results may not be realistic. Thus, the lack of perceived

credibility makes it difficult for software practitioners to adopt a new technology within their software

development process.

It may be argued that “credibility processes” exist in the form of n-fold cross validation and accuracy

measures. Unfortunately, none of these approaches address the issue of a dataset’s difficulty (how easy

or hard is it to model). An empirical model that produces spectacular results may be the consequence of

a test set that closely resembles a training set rather than the capability of empirical learner. The outcome



is a set of unrealistic models that is unlikely to be adopted by industry. Without a mechanism for

assessing a dataset’s difficulty, empirical/machine learning models lose credibility.

This paper introduces several credibility metrics which may be incorporated into the model formulation

process with the goal of giving greater credibility. Before introducing these metrics, a series of

experiments are conducted to demonstrate some of the difficulties in using a dependent variable for

making sampling decisions. The dependent variable, also known as the class variable, is the attribute

we are trying to predict from a set of independent (non-class) variables. The initial set of experiments

demonstrates the importance of sampling on non-class attributes. These experiments examine the “best

case” versus “worst case” for a NASA-based defect repository dataset.

Next, a second set of experiments demonstrates that a 10-fold cross validation may not be sufficient in

building realistic models.

After demonstrating some of the inadequacies of current validation processes, several credibility metrics

are introduced. These metrics measure the difficulty of a dataset. Adoption of these metric equations will

lead to more realistic models, greater credibility to models, and an increased likelihood that software

practitioners will embrace empirical software engineering.

RELATED RESEARCH

This section provides a general overview of different sampling/resampling techniques, a description of

the K-nearest neighbor (KNN) algorithm, and an overview of assessing models for accuracy.

Traditional sampling typically adopts a random, stratified, systematic, or clustered approach. The

randomized approach, which is the simplest, randomly selects tuples to be in the test set. One way to

improve estimates obtained from random sampling is by arranging the population into strata or groups.



A non-class attribute (e.g. age, gender, or income) is used to stratify samples. Systematic sampling

orders data by an attribute, then selects every ith element on the list afterwards. Cluster sampling is a

method of selecting sampling units in which the unit contains a cluster of elements (Kish 1965).

Examples of cluster samples may include all students of one major from all university students, or

residents from a particular state.

When extracting samples for a test set, systematic and clustering focus on the class (or dependent)

variable. Stratified sampling may use a non-class variable, but typically this is limited to at most one of

the non-class variables and does not consider the non-class attribute in light of the class attribute. The

problem is that non-class (independent) variables contain a lot of vital information which needs to be

considered when partitioning tuples intro training and test sets.

An n-fold cross validation is a resampling method for validating a model. For this technique, data is

partitioned into n-classes, and n models are constructed with each of the n-classes rotated into the test

set. N-fold cross validation addresses the issue of data distribution between training and test sets, but

does not consider difficulty in modeling the training data.

The K-nearest neighbor (KNN) algorithm is a supervised learning algorithm which classifies a new

instance based upon some distance formula (e.g. Euclidean). The new instance is classified to a category

relative to some majority of K-nearest neighbors. Traditionally, the KNN algorithm is viewed as a

machine learner, rather than a method for dividing training and test data.

Regarding approaches for measuring accuracy, Shepperd et al. (2000) discuss the merits of various

methods for measuring accuracy including TotalError, TotalAbsoluteError, TotalRelativeError,

BalancedMMRE, MMRE, Pred(X), Mean Squared Error, and R2. There is validity in using one or more



of these accuracy methods. However, they do not provide any information regarding the difficulty in

modeling a dataset.

A SIMPLE EXAMPLE

To illustrate why it is important to consider the relationship between non-class attributes over a training

and test set, consider the data set in Table 2. It consists of three attributes: Source Lines of Code

(SLOC); v(g), also known as cyclomatic complexity, which equals the number of decision points within

a program plus one; and defects. For this example, defects refer to the number of software defects

present in a software component. If a software component has zero defects, then it is classified as an A,

otherwise it is classified as a B.

Table 2: Simple Dataset

SLOC v(g) Defects

81 13 A

87 13 A

182 33 A

193 32 A

53 10 B

58 10 B

140 30 B

150 27 B

Figure 1 plots of these points. The points form 4 clusters of As and Bs respectively.



Figure 1: Plot of Tuples from Table 2

If the goal is to build a model for predicting software defects, a systematic sampling approach may be

applied which generates the follow training and test sets:

Table 3A: Training Data Table 3B: Test Data

SLOC v(g) Defects SLOC v(g) Defects

81 13 A 87 13 A

182 33 A 193 32 A

58 10 B 53 10 B

150 27 B 140 30 B

Applying a nearest neighbor approach to the non-class attributes, it is clear that the As in the test set

match the As in the training set. This is depicted as arrows between Tables 3A and 3B. The same is true

for those defects in the B class. It is expected that such an experiment would produce very good results

irrespective of the machine learner selected. Figure 2 highlights training samples with gray boxes.



Figure 2: Plot of Training and Test Sets (Square Boxes Are Training Samples)

Suppose a second experiment is conducted using stratified sampling and produces the following training

and test sets:

Table 4A: Training Data Table 4B: Test Data

SLOC v(g) Defects SLOC v(g) Defects

81 13 A 182 33 A

87 13 A 193 32 A

140 30 B 53 10 B

150 27 B 58 10 B

Applying a nearest neighbor approach to the non-class attributes, it is clear that the As in the test set

match a B instance in the training set. Also, the Bs in the test set match an A instance in the training set.

It is expected that such an experiment would generate very poor results irrespective of the machine

learner selected. Figure 3 highlights training samples with gray boxes.



Figure 3: Plot of Training and Test Sets (Square Boxes Are Training Samples)

By ignoring nearest neighbors when building models, success/failure may be a function of the nearest

neighbor distribution rather than the capability of the algorithm/machine-learner.

To illustrate the importance of considering nearest neighbor in training/test distribution, a series of

experiments are conducted using NASA-based defect data. Although the focus is on defect data, the idea

easily extends to other types of software engineering data (e.g. effort estimation data).

NASA DATA SETS

To demonstrate how non-class attributes dramatically impact the modeling process, a series of

experiments are conducted against five NASA defect data sets. These experiments fall into two

categories. The “Nice” experiments use a test set where the non-class attributes of the test data have

nearest-neighbors in the training set and are the same class value. The “Nasty” experiments use a test set

where the non-class attributes of the test data have nearest-neighbors in the training set with an opposite

class value.

All experiments use five public domain defect datasets from the NASA Metrics Data Program (MDP)

and the PROMISE repository (Shirabad 2005). These five datasets, referred to as CM1, JM1, KC1, KC2,



and PC1, contain static code measures (e.g. Halstead, McCabe, LOC) along with defect rates. Table 5

provides a project description for each of these data sets.

Table 5. Project Description for Each Data Set

Project Source
Code

Description

CM1 C NASA spacecraft instrument
KC1 C++ Storage management for receiving/processing ground data
KC2 C++ Science data processing. No software overlap with KC1.
JM1 C Real-time predictive ground system
PC1 C Flight software for earth orbiting satellite

Each data set contains twenty-one software product metrics based on the product’s size, complexity and

vocabulary. The size metrics include total lines of code, executable lines of code, lines of comments,

blank lines, number of lines containing both code and comments, and branch count. Another three

metrics are based on the product’s complexity. These include cyclomatic complexity, essential

complexity, and module design complexity. The other twelve metrics are vocabulary metrics. The

vocabulary metrics include Halstead length, Halstead volume, Halstead level, Halstead difficulty,

Halstead intelligent content, Halstead programming effort, Halstead error estimate, Halstead

programming time, number of unique operators, number of unique operands, total operators, and total

operands.

The class attribute for each data set refers to propensity for defects. The original MDP data set contains

numeric values for the defects, while the PROMISE data sets convert the numeric values to Boolean

values where TRUE means a component has 1 or more defects and FALSE equates to zero defects. The

reason for the conversion is that the numeric distribution displayed signs of an implicitly data-starved

domain (many data instances, but few of interest) where less than 1 percent of the data has more than 5

defects (Menzies 2005a).



DATA PREPROCESSING

Data pre-processing removes all duplicate tuples from each data set along with those tuples that have

questionable values (e.g. LOC equal to 1.1). Table 6 shows the general demographics of each of the data

sets after pre-processing.

Table 6: Data Pre-Processing Demographics

Project
Original

Size
Size w/ No Bad,

No Dups
0

Defects
1+

Defects
%

Defects

CM1 498 441 393 48 10.9%

JM1 10,885 8911 6904 2007 22.5%

KC1 2109 1211 896 315 26.0%

KC2 522 374 269 105 28.1%

PC1 1109 953 883 70 7.3%

NEAREST NEIGHBOR EXPERIMENTS

Training and Test Set Formulation

To assess the impact of nearest-neighbor sampling upon the experimental process, twenty experiments

are conducted on each of the five data sets.

For each experiment, a training set is constructed by extracting 40 percent of data from a given data set.

Using stratified sampling to select 40 percent of the data maintains the ratio between Defect/Non-defect

data. As an example, JM1 has 8911 records, 2007 (22.5 percent) of which have 1 or more defects. A

corresponding training set for the JM1 project contains 3564 records, 803 (22.5 percent) of which are

classified as having 1 or more defects (TRUE).

It could be argued that a greater percentage (more than 40 percent) of the data could be committed to the

training set. There are several reasons for choosing only 40 percent. First, Menzies claims that only a

small portion of the data is needed to build a model (Menzies 2005b). Second, since the data is

essentially a two-class problem, there was no concern about whether each class would receive sufficient



representation. Finally, it is necessary to insure that there is sufficient amount of test data for assessing

the results.

Once a training set is established, the remaining 60 percent of the data is partitioned into two test groups.

Prior to splitting the test data, all of the non-class attributes are normalized by dividing each value by the

Difference (Maximumk - Minimumk for each column k). This guarantees that each column receives equal

weighting. The next step loops through all the test records. Each test record is compared with every

training record to determine the minimum Euclidean Distance for all of the non-class attributes. If the

training and test tuples with the smallest Euclidean Distance share the same class values (TRUE/TRUE

or FALSE/FALSE), then the test record is added to the “Nice Neighbor” test set, otherwise add it to the

“Nasty Neighbor” test set. Figure 4 shows the corresponding algorithm.

Essentially, this is the K-Nearest Neighbor algorithm that determines a test tuple’s closest match in the

training set. Nearest neighbors from the same class are considered “Nice,” otherwise they are classified

as “Nasty.”

Figure 4: Nice/Nasty Neighbor Algorithm

For j=1 to test.record_count
minimumDistance = 9999999
For i=1 to train.record_count
  Dist = 0
For k=1 to train.column_count - 1
  Dist = Dist + (trainik – testjk)

2

end k
 if (abs(Dist) < abs(minimumDistance))

then if Traini.defect = Testj.defect
  then minimumDistance = Dist
  else minimumDistance = -Dist

end i;
if minimumDistance > 0
  then Add_To_Nice_Neighbors
if minimumDistance < 0
  else Add_To_Nasty_Neighbors
if minimumDistance = 0

then if Traini.defect = Testj.defect
then Add_To_Nice_Neighbors
else Add_To_Nasty_Neighbors

end j;



All experiments use the training data to build a model between the non-class attributes (e.g. size,

complexity, or vocabulary) and the class attribute defect (which is either True or False).

After constructing 300 data sets (1 training set and 2 tests sets; 20 trials per software project; 5 software

projects), attention focuses on data mining tool selection.

Data Mining Tool Selection

Since the data contains 20-plus attributes and only two class values (TRUE/FALSE), the most

reasonable data mining tool in this situation is a decision tree learner. A decision tree selects an attribute

which best divides the data into two homogenous groups (based on class value). The split selection

recursively continues on the two or more subtrees until all children of a split are totally homogenous (or

the bin dips below a prescribed threshold). Decision tree learners are described as greedy in that they do

not look ahead (2 or more subtree levels) due to the associated computational complexity.

One of the most popular Public Domain Data Mining tools is the Waikato Environment for Knowledge

Analysis (WEKA) tool (Witten 2000). WEKA is an open-source machine learning workbench.

Implemented in Java, WEKA incorporates many popular machine learners and is widely used for

practical work in machine learning. According to a recent KDD poll (KDD 2005), Weka was rated

number two in terms of preferred usage as compared to other commercial and public domain tools.

Within WEKA, there are many learners available. The experiments specifically use the Naïve Bayes

and J48 learners for analysis. There are reasons for adopting these tools. First, these tools performed very

well in more than 1000 data mining experiments conducted by the author. Second, success in using these

particular learners was noted Menzies, et al. (Menzies 2005b) in their analysis of the NASA defect

repositories.

A Naïve Bayes classifier uses a probabilistic approach to assign the most likely class for a particular

instance. For a given instance x, a Naïve Bayes classifier computes the conditional probability



P (C = ci | x) = P(C = ci | A1 = ai1,…An = ain) (1)

for all classes ci and tries to predict the class which has the highest probability. The classifier is

considered naïve (Rish 2001) since it assumes that the frequencies of the different attributes are

independent.

A second learner, J48, is based on Quinlan’s C4.5 (Quinlin 1992).

Assessment Criteria

The assessment criterion uses four metrics in all experiments to describe the results. They are:

• PD, which is the probability of detection. This is the probability of identifying a module with a fault

divided by the total number of modules with faults.

• PF, which is the probability of a false alarm. This is defined as the probability of incorrectly

identifying a module with a fault divided by the total number of modules with no faults.

• NF, which is the probability of missing an alarm. This is defined as the probability of incorrectly

identifying a module where the fault was missed divided by the total number of modules with faults.

• Acc, which is the accuracy. This is the probability of correctly identifying faulty and non-faulty

modules divided by the total number of modules under consideration.

Each of these metrics is based on simple equations constructed from WEKA’s confusion matrix as

illustrate by Table 7.

Table 7. Definition of the Confusion Matrix

A Defect is
Detected.

A Defect is not
Detected.

A Defect is
Present.

A = 50
Predicted=TRUE
Actual= TRUE

B = 200
Predicted= FALSE

Actual= TRUE
A Defect is
not Present.

C = 100
Predicted= TRUE
Actual=FALSE

D = 900
Predicted= FALSE

Actual= FALSE



PD is defined as:

PD = A / ( A+B ) (2)

PF is defined as:

PF = C / ( C + D ) (3)

NF is defined as:

PF = A / ( A + B ) (4)

and Acc is defined as:

Acc = ( A + D ) / ( A + B + C + D ) (5)

Based on the example in Table 7, the corresponding values would be:

PD = 50 / ( 50 + 200 ) = 20% (6)

PF = 100 / (100 + 900 ) = 10% (7)

NF = 200 / (200 + 50 ) = 80% (8)

Acc = ( 50 + 900 ) / ( 50 + 100 + 200 + 900 ) = 76% (9)

Results

Table 8 shows the accuracy results of the 20 experiments per project. As might be expected, the “Nice”

test set did very well for all five projects for both machine learners averaging about 94 percent accuracy.

Its counterpart, the “Nasty” test set, did not fare very well, averaging about 20 accuracy.

It is interesting to note that the JM1 data set, with 7 to 20 times more tuples than any of the other

projects, is above the overall average for the “Nice” data sets, and below the overall average on the

“Nasty” data sets. Considering the large number of tuples in this data set and how much of the solution

space is covered by the JM1 data set, it would seem that a tuple in the test set would have difficulty

aligning to a specific tuple in the training set.

Table 8. Accuracy Results from All the Experiments



Nice Test Set Nasty Test Set
J48 Naïve

Bayes
J48 Naïve

Bayes
CM1 97.4% 88.3% 6.2% 37.4%
JM1 94.6% 94.8% 16.3% 17.7%
KC1 90.9% 87.5% 22.8% 30.9%
KC2 88.3% 94.1% 42.3% 36.0%
PC1 97.8% 91.9% 19.8% 35.8%

Average 94.4% 93.6% 18.7% 21.2%

Regarding PD, the results as expressed in Table 9 for the “Nice” test set are superior to the “Nasty” test

set for the learners. An overall weighted average is preferred over a regular average in order not to bias

the results towards those experiments with very few defect samples.

The results in Table 9 can be misleading. 76 of the 100 “Nice” test sets contained zero defect tuples. Of

the remaining 24 “Nice” test sets, only 2 of these 24 had 20 or more samples with defects.

Table 9. Probability of Detection Results
Nice Test Set Nasty Test Set
J48 Naïve

Bayes
J48 Naïve

Bayes
CM1 0.0% 0.0% 5.9% 37.4%
JM1 71.9% 92.9% 14.9% 16.4%
KC1 45.8% 87.5% 22.7% 31.0%
KC2 100.0% 100.0% 42.2% 36.0%
PC1 11.7% 75.0% 10.9% 30.8%

Overall
Weighted
Average

45.6% 60.8% 16.8% 20.0%

The “Nice” test set did very well at handling false alarms as depicted in Table 10. The “Nasty” test set

triggered alarms about 18 to 37 percent of the time depending upon learner. Overall, the sample size is

small for the “Nasty” test sets. 90 percent (from the 100 experiments) of the “Nasty” test sets contain

zero instances of non-defective data. For the remaining 10 “Nasty” data sets, only 3 contain 10 or more

instances of non-defective modules.



Table 10. Probability of False Alarms Results
Nice Test Set Nasty Test Set

J48 Naïve
Bayes

J48 Naïve
Bayes

CM1 2.6% 11.7% 0.0% 50.0%
JM1 5.1% 5.0% 61.7% 66.1%
KC1 9.0% 12.5% 46.4% 91.7%
KC2 11.8% 5.9% 0.0% 50.0%
PC1 1.7% 7.9% 1.9% 70.6%

Overall
Weighted
Average

5.4% 6.3% 18.5% 37.1%

To better understand these results, consider Tables 11 and 12. These tables show the weighted averages

(rounded) of all confusion matrices for all 100 experiments (20 per test group). In the “Nice” test data,

99.6 percent are defined as having no defects (FALSE). Less than 1 percent of the tuples actually contain

defects. Although the “Nice” test sets fared better than the “Nasty” test sets regarding defect detection,

the relatively few samples having 1 or more defects in the “Nice” test sets discount the results.

Analyzing the “Nasty” data sets in Tables 11 and 12 reveal that 97.2 percent (e.g. (50 +

249)/(50+249+2+7)) of the data contains 1 or more defects.

Table 11. Confusion Matrix, Nice Test Set (Rounded)

J48 Naïve Bayes
2 3 3 2

58 1021 68 1011

Table 12. Confusion Matrix, Nasty Test Set (Rounded)

J48 Naïve Bayes
50 249 60 241
2 7 3 5



Referring back to the right-most column of Table 6, the percentage of defects to the total number of

modules ranged from 7.3 to 28.1 percent. Considering that all training sets maintained their respective

project ratio of defects to total components, it is quite surprising that the “Nice” and “Nasty” data sets

would average such high proportions of non-defective and defective components respectively.

To better understand these results, two additional experiments are conducted using the KC1 data set. The

first experiment randomly allocates 60 percent of the data to the training set, while the second allocates

50 percent of the data. Both experiments maintain a defect/non-defective ratio of 26 percent (see Table

6). For both experiments the test data is divided into 8 groups using a 3-nearest neighbor approach. For

each test vector, its 3 closest neighbors from the training set are determined. These neighbors are ranked

based on first, second, to third closest neighbor. A “P” means that there is a positive match (same class),

and an “N” means there is a negative match (opposite class). Thus, a “PPN” means that the first and

second closest matches are from the same class and the third closest match is from the opposite class.

Thus, the best case would be a “PPP” where the 3 closest training vectors are all from the same class.

Tables 13 and 14 show the results from these experiments. It is interesting to note that all 8 bins contain

homogenous (all TRUEs, or all FALSEs) data. There is a general trend for the bin configuration to

change from all non-defective tuples (all FALSEs) to all defective tuples (TRUEs) as the neighbor status

changes from all positives (PPP) to all negatives (NNN). Also, the accuracy seems positively correlated

to the nearest neighbor classifications.

Table 13. KC1 Data, KNN=3, 60 Percent of Training Data

Accuracy
Neighbor

Description
#  of

TRUEs
#  of

FALSEs J48
Naïve
Bayes

PPP None None NA NA

PPN 0 354 88 90



PNP 0 5 40 20

NPP None None NA NA

PNN 3 0 100 0

NPN 13 0 31 100

NNP 110 0 25 28

NNN None None NA NA

Table 14. KC1 Data, KNN=3, 50 Percent of Training Data

Accuracy
Neighbor

Description
#  of

TRUEs
#  of

FALSEs J48
Naïve
Bayes

PPP 0 19 89 84

PPN 0 417 91 91

PNP 0 13 23 0

NPP None None NA NA

PNN None None NA NA

NPN 18 0 100 100

NNP 132 0 20 20

NNN 7 0 0 29

These last two sub-experiments confirm the results achieved in tables 11 and 12.

10-Fold/Duplicates Experiment

The next experiment demonstrates that a 10-fold cross validation does not provide a total perspective

regarding the validation of a dataset.

This experiment uses the five NASA datasets described in the earlier sections. For each dataset, two

types of experiments are conducted: the first uses the original dataset (less bad data) with duplicates, and

a second where duplicates are removed. Note that each original dataset had only one bad data sample.



Each experiment uses a 10-fold cross validation for each of the 20 trials. A defect prediction model is

constructed based on the C4.5 learner from WEKA (J48) using the default settings.

Table 15 shows the results from these experiments. For all five NASA datasets, the learner produces a

better model with the inclusion of duplicates. A t-test shows that these differences are statistically

significant for all five NASA datasets.

Table 15. Duplicate/No Duplicate Experimental Results

Accuracy Average of 29 Runs
With

Duplicates
No

Duplicates
CM1 88.07% 87.46%
JM1 79.68% 76.56%
KC1 84.29% 74.03%
KC2 81.65% 76.22%
PC1 93.43% 91.65%

In these experiments, the duplicates are the “nice neighbors” described in the previous set of

experiments. Performing a 10-fold cross validation insures that datasets with duplicates will have a

distinct advantage over datasets without duplicates.

DISCUSSION

In general, project managers are reluctant to embrace empirical-based models in their decision-making

process. Jørgensen (2004) estimates more than 80 percent of all effort estimation is human-based and

only about 4 percent is machine learning-based. If empirical software engineering is going to have any

hope of gaining favor with project managers, then it is critical that the modeling process be understood

very well.



The first set of experiments shows the extreme range of answers in corresponding best case/worst case

scenarios. These experiments clearly indicate how significantly nearest-neighbor sampling influences the

results despite the fact that no dataset had any duplicates.

The second set of experiments reflects a more realistic situation where an empirical software engineer

may (or may not) include duplicates in the modeling process. The difference in results is statistically

significant. For some learners, the issue of duplicates is not a problem. However, as seen with the C4.5

learner, it is a problem.

In order to avoid building artificial models, perhaps the best approach would be to not allow duplicates

within datasets. Another attribute could be added to the dataset, Number of Duplicates, so that

information regarding duplicates is not lost.

This solves the issue of duplicates within datasets, however it does not address the issue regarding the

synergy between testing and training datasets (nice versus nasty test sets). The next section addresses this

issue.

BETTER CREDIBILITY THROUGH NEAREST NEIGHBOR-BASED SAMPLING

As demonstrated in the first set of experiments, it is evident that nearest neighbor test data distribution

dramatically impacts experimental results. The question is How may nearest neighbor sampling be

incorporated into the project development process in order to generate realistic models?

There are at least two possible solutions: one of which adapts to an organization’s current software

engineering processes; the second solution offers an alternative process.

In the first approach, a software engineer determines the nearest neighbor for each of the tuples in the

test set (based on non-class attributes), relative to the training set. If the test tuple’s nearest neighbor in



the training set shares the same class instance value, then add 1 to a variable called Matches. Matches

will be used to define a metric called Experimental Difficulty (Exp_Difficulty) as follows:

Exp_Difficulty = 1 - Matches / Total_Test_Instances (10)

The Experimental Difficulty provides a qualitative assessment of the ease/difficulty for modeling a given

data set. Combining this metric with an accuracy metric would offer a more realistic assessment of the

results. For example, a “Exp_Difficulty * Accuracy” would give a more complete picture regarding the

goodness of a model leading to better model selection and more credible models. For an n-fold cross

validation, the Experimental Difficulty could be calculated for each fold, then averaged over the n folds.

A second approach starts with the whole data set prior to partitioning into training and test sets. For each

tuple in the data set, its nearest neighbor (with respect to the non-class attributes) is determined. Add 1 to

the Match variable if a tuple’s nearest neighbor is from the same class. Modifying equation 10, results in

the following equation:

Overall_Difficulty = 1 - Matches / Total_Data_Instances (11)

This gives an idea of the overall difficulty of the data set. A software engineer may partition the data in

order to increase (or decrease) Experimental_Difficulty. In the context of industrial-based benchmarks,

the Experimental_Difficulty may be adjusted to coincide to a value adopted by another researcher. This

lends greater credibility to comparing experimental results.

Considering an estimated 99 percent of the world’s datasets are proprietary, this approach provides an

additional benchmark for those models constructed on private datasets. Furthermore, these metric

equations provide a means for assessing the robustness of the results.



CONCLUSIONS

Most datasets are proprietary in nature, making it impossible to replicate results in this situation. As

demonstrated by the NASA experiments, not all data distributions result in similar results. This work

extends previous research in defect prediction (Khoshgoftaar 2003; Porter 1990; Srinivasan 1995; and

Tian 1995) by conducting nearest-neighbor analysis for gaining a deeper understanding of how datasets

relate to each other, and thus the need for developing more realistic empirical/machine learning-based

models. In the first set of NASA experiments, the “Nice” dataset experiments (easy datasets to model)

resulted in an average accuracy of 94.0 percent and the “Nasty” dataset experiments (difficult datasets to

model) produced an average accuracy of 19.5 percent. These results suggest that success in modeling a

training data set may be attributable to the ease/difficulty of the data set, rather than the capability of the

machine learner.

Including duplicates within a dataset reduces the difficulty of a dataset since similar tuples may appear in

both the training and test sets. This research proposes removing duplicates in order to eliminate any bias.

Finally, this work proposes a set of metric equations for measuring the difficulty of a dataset. Benefits of

using these metric equations include:

• The creation of more realistic models. These metrics will help the Software Engineering

community better gauge the robustness of a model.

• Greater credibility for models based on private datasets. Since most datasets are proprietary, it is

difficult to assess the quality of a model built in this context. Using the proposed metrics will make it

easier to compare experiment results when the replication is impossible.

• Greater chances of adoption by the industrial community. As mentioned earlier, human-based

estimation is still the method of choice. By providing a difficulty metric with a set of results, project

managers will be able to assess the goodness of an empirical model. This will make it easier for a



project manager to trust an empirical/machine learning-based model. Thus making it easier for the

industrial community to more readily adopt empirical software engineering approaches.

FUTURE DIRECTIONS

This work could be extended from a 2-class to an n-class problem. For example, the NASA datasets

could be divided into four classes, (0, 1, 2, 3+ defects).

Another common type of Software Engineering dataset estimates programming effort. Thus, a likely

future direction would examine these types of datasets.

Finally, it would be interesting to see whether accuracy results could be scaled by the “dataset difficulty

metrics” in order to make better comparisons over datasets of varying difficulty.
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