
2 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

A I ’ s S e c o n d C e n t u r y

When Will It Be Done?

Machine Learners
Answer the 300-
Billion-Dollar Question
Gary D. Boetticher, University of Houston-Clear Lake

When will it be done?” Senior managers will ask their software project managers

this question over 250,000 times this year. Corporations, which collectively

commit over 300 billion dollars annually toward new software project initiatives,1 will

want to know the answer. However, when you consider Barry Boehm’s claim that early

software life-cycle estimates vary by a factor of four
(25 to 400 percent),2 providing an accurate, reliable
project estimate presents a challenge indeed.

To answer the question, a project manager might
resort to one of three estimation approaches: human-
based, algorithmic, or machine learner-based. Man-
agers will use a human-based approach—which
includes expert judgement, analogy, and rule of
thumb—87 percent of the time, algorithmic or
machine learners only 13 percent of the time.3 Con-
sidering the popularity of algorithmic models (such
as Function Point Analysis) for estimating effort,
machine learner use is probably much less than half
of 13 percent—perhaps three or four percent.

This is surprising considering recent successes
in machine learner estimation. In three instances,
machine learners produced project effort estimates
within 25 percent accuracy at least 75 percent of
the time. The high-water mark of these efforts pro-
duces estimates with 25 percent accuracy 83 per-
cent of the time.4 All three cases greatly exceed
Boehm’s factor-of-four expectation. I contend that
a greater application of AI, through machine learn-
ers, in software estimation would greatly improve
accuracy, reliability, and repeatability in software
development.

Case studies
To standardize results, I define two benchmarks

for the case studies:

• Prediction accuracy in project estimation refers
to how often a machine learner can achieve a result

within a specified range. The informal standard in
effort estimation is 25 percent accuracy, denoted
as pred(0.25). So, a result of pred(0.25) = 75 per-
cent means the machine learner model produces
results with 25 percent accuracy 75 percent of the
time.

• Mean magnitude of relative error is the average
difference between actual and calculated results
in absolute terms. Many consider an MMRE
below 25 percent a good model and below 50 per-
cent a usable model.

All three cases assume the accuracy rate of
pred(0.25) and build their machine learner-based
models using data extracted from industrial set-
tings, as opposed to deriving models from simula-
tions. This reinforces these results’ real-world
applicability.

Case 1: Wittig and Finnie
Gerhard Wittig and Gavin Finnie estimated

development effort by applying a back-propagation
neural network model to the Australian Software
Metrics Association data set.5 You can obtain the
ASMA data set from the International Software
Benchmarking Standards Group (www.isbsg.org)
for a nominal cost. The current version, ISBSG data
suite 8.0, contains data (42 metrics) from 2,000
software projects.

Wittig and Finnie used ISBSG data suite 5.0 in
their experiments. They started with a data set of 136
samples composed of seven inputs and one output.
After eliminating extreme outliers, they partitioned

The international

$300-billion software

development industry

needs better predictors

for software

development costs.

Data miners can learn

such predictors with

impressive accuracy.

the remaining 115 samples into 105 training
and 10 test vectors. They replicated their
experiment three times by randomly select-
ing the independent training and test vectors.
The ASMA experiments produced an
MMRE of 17 percent with an accuracy of 75
percent pred(0.25).

Wittig and Finnie observed that they con-
sistently obtained optimal results using a
learning rate of 0.3 and a momentum coeffi-
cient of 0.6 on a network with one hidden
layer. They also found that the Gaussian and
Sigmoid transfer functions performed the
best, with the Sigmoid resulting in the lower
prediction errors.

Case 2: Chulani and colleagues
Sunita Chulani and her colleagues syn-

thesized machine learning (Bayesian analy-
sis) with expert estimation and an algorith-
mic model.6 They initially applied a
multiple-regression approach to a Cocomo
II (Cost Constructive Model) data set and
identified counterintuitive values for some
of the effort multipliers (for example, the
resuse effort multiplier). Cocomo II is an
effort estimation formula defined as

Person Months = a(Size)b * P(EMi),

where a refers to the project development
mode, Size is based on either source lines of
code or function points, b refers to one of five
size factors, and EMi represents one of 17
effort multipliers (assuming a postarchitec-
ture model).

To remedy the counterintuitive results,
Chulani and her colleagues assembled a
group of project estimation experts, also
referred to as a Delphi group, to assess
each of the 17 Cocomo effort multipliers.
Each member of the Delphi group offered
a set of ratings; the group tabulated the
results and then peer reviewed them. Sev-
eral iterations of assessment reduced the
variance in ratings.

These ratings served as a priori data for
tuning the Cocomo II model. Chulani and her
colleagues produced a new Cocomo II ver-
sion that included a 10 percent weighted
average to adjust the a priori expert-deter-
mined model parameters. Applying the new
Cocomo II version to a 1998 Cocomo II data
set that included 161 samples, produced esti-
mates of 55 percent and 63 percent accuracy
and pred(0.25)—before and after stratifica-
tion, respectively.

Chulani and her colleagues extended this

new version by combining sample Cocomo
II data with the a priori Delphi ratings to pro-
duce a posteriori Bayesian updates (com-
bined updates). The Bayesian theorem com-
bines prior information (Delphi expert
ratings) with sample information (data
model) and derives the posterior informa-
tion (final estimates). They obtained the
multiplier information by examining vari-
ances from the prior and sample informa-
tion. If the variance of an a priori (Delphi
expert) probability distribution for a certain
multiplier is smaller than the corresponding
sample data variance, the posterior distribu-
tion will be nudged closer to the a priori dis-
tribution. This implies that the sample infor-
mation is noisy and you must lean more

heavily on the prior (expert) information.
Applying the a posteriori Bayesian updates

to the 1998 Cocomo II data set, with 161 sam-
ples, yielded estimates of 68 percent and 76
percent accuracy and pred(0.25)—before and
after stratification. So, extending Cocomo II
with the Bayesian learner improved accuracy
results by 13 percent.

This hybrid approach is appealing because
it shows that you can integrate machine
learner and traditional approaches (as
opposed to a replacement).

Case 3: Boetticher
When blending machine learner tech-

niques with algorithmic models, you must
address the algorithmic models’ subjectiv-
ity. I have eliminated this subjectivity issue
by extracting metrics from a GUI specifica-
tions document and by constructing a super-
vised neural network effort estimator.4

The inputs for the supervised neural net-
work experiments consist of various GUI-
based widget counts (for example, number

of buttons, list boxes, or combo boxes)
extracted from a business-to-business petro-
chemical application. I collected a total of 12
different widget counts.

The output value is the effort associated
with each form (corresponding screen). Most
organizations track effort at the project level
rather than at the product level. Conse-
quently, you can’t assess effort per form. For
these experiments, I kept fine-granularity
effort information (for example, hours per
form) in each form’s coding.

The B2B application comprises four
subsystems distributed among 109 differ-
ent forms. Each form is an instance in the
data set. I conducted a 10-way cross vali-
dation on the 109 samples using a variant
of the backpropagation neural network
called Quickprop. Quickprop exploits sec-
ond-order derivatives to quickly reach a
solution.7

All experiments used a learning rate of 1,
a momentum of 1, a neural network archi-
tecture of 12 inputs, five hidden nodes,
another layer of 11 hidden nodes, a third hid-
den layer of five hidden nodes, and an out-
put layer of one node. I let the neural net-
works run for 1,000 epochs. However, most
models converged within 250 epochs. As a
precaution, I let a couple of models run for
10,000 epochs. The extra time did not
improve accuracy.

I grouped estimates from the individual
forms by their corresponding subsystem.
Using the aggregate values generates results
averaging 83.3 percent accuracy, pred(0.25),
and an MMRE averaging 14.7 for client-side
components.

Interestingly, the whole neural network
modeling process completed in less than an
hour. Considering this approach’s potential
payoff, this is a relatively trivial time
investment.

In an ideal setting, a project’s require-
ments document would serve as the basis for
producing an accurate, reliable estimate.
Unfortunately, a requirements document
provides sparse data for building such a
model. However, a GUI specifications doc-
ument is rich in GUI metrics. This work
demonstrates that you can formulate an esti-
mate very early in the software life cycle.
Using GUI-based metrics eliminates the
uncertainty found in algorithmic models.
Counting widgets is a simple, objective, and
repeatable process that requires minimal
technical training. So, this methodology is
easy to incorporate.

MAY/JUNE 2003 computer.org/intelligent 3

The whole neural network

modeling process completed in

less than an hour. Considering

this approach’s potential payoff,

this is a relatively trivial time

investment.

This article has cited a few of AI’s high-
water marks in software effort estima-

tion. Hopefully, the case studies’ results will
inspire project managers to seriously consider
applying AI to estimate effort. An AI process
might not necessarily replace current techniques
within an organization but certainly ought to be
considered as additional resource.

References

1. Chaos Chronicles v.3.0, The Standish Group,
Jan. 2003; www.standishgroup.com/chaos/
toc.php.

2. B. Boehm, Software Engineering Economics,
Prentice-Hall, 1981.

3. M. Jørgensen, “A Review of Studies on Expert
Estimation of Software Development Effort,”
to be published in J. Science and Software, 2004.

4. G. Boetticher, “Applying Machine Learners
to GUI Specifications in Formulating Early
Life Cycle Project Estimations,” Software
Engineering with Computational Intelligence,
T.M. Khoshgoftaar, ed., Kluwer, 2003.

5. G. Wittig and G. Finnie, “Estimating Software
Development Effort with Connectionist Mod-
els,” Information and Software Technology,
vol. 39, no.7, 1997, pp. 469–476.

6. S. Chulani, B. Boehm, and B. Steece,
“Bayesian Analysis of Empirical Software
Engineering Cost Models,” IEEE Trans. Soft-
ware Eng., vol. 25, no. 4, July/Aug. 1999, pp.
573–583.

7. S.E. Fahlman, An Empirical Study of Learning
Speed in Back-Propagation Networks, tech.
report CMU-CS-88-162, Dept. of Computer
Science, Carnegie Mellon Univ., 1988.

For more information on this or any other comput-
ing topic, please visit our digital library at
http://computer.org/publications/dlib.

4

A I ’ s S e c o n d C e n t u r y

T h e A u t h o r
Gary D. Boetticher is
an assistant professor in
the School of Science
and Computer Engi-
neering at the Univer-
sity of Houston, Clear
Lake. His research in-
terests include data
mining, maching learn-

ing, bioinformatics, and software metrics. He
received his PhD in computer science from West
Virginia University. He is a member of the ACM
and IEEE. Contact him at the Dept. of Software
Eng., Univ. of Houston, Clear Lake, 2700 Bay
Area Blvd., Houston, TX 77058; boetticher@
cl.uh.edu.

