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Abstract—One of the challenges in data mining, and in 
particular Genetic Programs, is to provide sufficient coverage of 
the search space in order to produce an acceptable model. 
Traditionally, Genetic Programs generate equations 
(chromosomes) and consider all chromosomes within a 
population for breeding purposes. Considering the enormity of 
the search space for complex problems, it is imperative to 
examine Genetic Programs breeding efforts in order to produce 
better solutions with less training. 

This research examines chromosome lineage within Genetic 
Programs in order to identify breeding patterns. Fitness values 
for chromosomes are sorted, then partitioned into five classes. 
Initial experiments reveal a distinct difference between upper, 
middle, and lower classes. Based upon initial results, a novel 
Genetic Programming process is proposed which breeds a new 
generation exclusively from the top 20 percent of a population. 
A second set of experiments statistically validate this proposed 
approach. 

I. INTRODUCTION 
Traditionally, Genetic Programs (GP) solve problems by 

generating a set of mathematical equations, or chromosomes, 
that represent a mapping between two sets of variables. 
Collectively, these chromosomes form a population. GPs 
repetitively breed new generations of chromosomes seeking 
to find an optimal, or at least satisfactory, solution. 

GPs are frequently deployed for identifying patterns in 
large, complex, noisy datasets where the corresponding 
search space is extremely large. Finding a solution within this 
search space is an extremely difficult challenge. As might be 
expected, GPs struggle at providing search space coverage. 
For example, there are more than 8.51*1037 ways of 
constructing an equation tree of height 5 consisting of 4 
variables. Running a GP experiment with a population of 
1000 equations (chromosomes) for 1000 generations 
produces at most one million possible equations. This 
experiment would cover less than 10-30 percent of all the 
possibilities. 

The previous example assumes that GPs are static in 
structure. It is well known that chromosomes rapidly increase 
in size as the population evolves [1]–[4], thus greatly 
increasing the expanse of the search space and reducing the 
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probability that a solution will be found. 
Solving large problems using GPs consumes excessive 

amounts of computer resources. Though Genetic Programs 
may successfully evolve solutions to complex problems, their 
use may sometimes be cost-prohibitive. 

What is desired is a more efficient approach to exploring 
the search space. This may be accomplished qualitatively by 
focusing the search efforts or quantitatively by increasing the 
number of searches. 

This research explores the qualitative approach by 
examining the breeding patterns of a GP. Some key questions 
addressed are, Does chromosome lineage information 
provide any insight into the effectiveness of solving 
problems? If so, how could these insights be utilized to 
make better breeding decisions? 

Gaining a better understanding about a chromosome’s 
lineage, in terms of how fitness values propagate over 
generations, could be beneficial in several ways. Greater 
emphasis could be placed on those chromosomes that 
produce better offspring. Secondly, the utility of such a 
discovery could focus the search efforts, thus reducing the 
training time, and requiring less computing resources. All 
these benefits are immensely important when applying GPs to 
large, complex, noisy problem spaces. 

To explore the role chromosome lineage plays in the 
breeding process, five initial experiments are conducted using 
synthetic datasets.  Chromosomes are clustered into different 
classes (e.g. upper, middle, and lower classes). Each of these 
classes is tracked over a generation to determine whether 
certain classes are prone to producing good (or poor) 
solutions. 

Based upon the results of the initial set of experiments, an 
alternative breeding approach is proposed that focuses on 
those chromosomes with a solid pedigree. A second set of 
experiments examines this novel approach along with a 
traditional approach to determine the merit of focusing on a 
certain portion of a GP population. 

II. RELATED RESEARCH 
McPhee et al. [5] analyze node level genetic diversity in a 

GP population over its genetic history. They observe that 
there is a profound loss of diversity over the evolution 
process indicating that a standard GP does not perform 
opportunistic breeding. 

Burke et al. [6] use lineage selection to increase diversity 
by reducing the selection pressure from “most fit” to “fit and 
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diverse.” They find that introducing diversity can avoid 
getting trapped in local optima. 

Both McPhee and Burke use lineage information as a 
method to promote diversity within the population. This 
research uses lineage information more as a mechanism to 
improve the selection process. 

III. HOW GENETIC PROGRAMS WORK 
Genetic Programs solve problems by genetically breeding 

a population of individuals, or chromosomes, over a series of 
generations. Inspired by theories of evolution, Genetic 
Programs use the analogy of evolutionary operators on 
chromosomes to optimize a fitness function. A fitness 
function assesses the goodness of a chromosome (represented 
as an equation) in terms of how well (or poorly) that equation 
fits a given dataset. The goodness of a chromosome serves as 
the basis for propagation decisions. 

An implementation of a Genetic Program starts with a 
population of individual equations, usually represented as 
tree structures. Each tree, or chromosome, can be viewed as a 
potential solution to the given problem (training data). Each 
node on the tree represents a gene, or some trait within a 
problem. Programmatically, each gene corresponds to either 
an operator or an operand. Collectively, the set of the genes 
would make up a mathematical expression. 

Collectively the set of chromosomes, which represent 
potential solutions, are known as a population. This 
population ‘reproduces’ to create a future generation. Each 
iteration of a Genetic Program produces a new generation of 
individuals. 

After the population has been initialized and the fitness of 
each individual has been evaluated, the selection of parent 
chromosomes occurs. During selection, the fittest individuals 
are selected to engage in reproduction. A fitness function 
evaluates the individuals and ranks them in terms of 
performance. An example of a fitness function is: 
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where  
k corresponds to the number of inputs; 
n represents the number of valid results; 
Se is the standard error; and 
Sy equals the standard deviation. 

 
This equation ranges from 1 through 1067. These values 

are scaled to span 1 through 1000. 
Chromosomes are paired together by their fitness for 

breeding purposes. After selecting two individuals within a 
population, several reproductive type steps occur. One 
example is crossover. The crossover process takes a subtree 
from each chromosome parent, chooses a random branch, and 
then crosses over the genetic material. Crossover occurs at 
one point, or at several points, within each chromosome.  

A second step in the breeding process is mutation.  

Mutation randomly selects an operator or operand node 
within an equation tree and modifies the value. Mutation 
promotes diversity within a population by randomly adding in 
gene variations and prevents a solution from falling into local 
minima or maxima, which is a problem experienced by most 
optimization algorithms [7], [8]. 

This process of creating a population of individuals, 
ranking the individuals by fitness, and recombining these 
individuals to produce a better set of solutions is called a 
generation. The modeling process spans multiple generations 
until an acceptable solution is found; the experiment runs for 
a specified number of generations, or the user terminates the 
run. Figure 1 shows the general Genetic Programming 
algorithm. 

  
 
 
 
 
 
 

 
Figure 1: GP Algorithm [7], [9] 

The Genetic Program 
 
Initialize the Population 
Evaluate Fitness 
Repeat 

Select Parents 
Perform Crossover 
Perform Mutation 

IV. PROPOSED RESEARCH 
In traditional GP modeling process, once a new generation 

is created, all legacy information about the previous 
generation is discarded. Perhaps this discarded ancestral 
fitness information could offer valuable clues on how to make 
better propagation decisions. This research statistically 
analyzes a chromosome’s lineage, in terms of the fitness 
values across generations. If there is a correlation between 
fitness values across generations, then it would be possible to 
focus only on those chromosomes with a good pedigree. This 
could lead to more accurate GP solutions requiring less 
training time. 

 

 

Until a Desired Fitness is Reached  

Chromosome 1 
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Figure 2: Tracking Fitness values For Two Generations 

Figure 2 illustrates the tracking of fitness values across 
multiple generations. In the Figure above, two of the most fit 
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chromosomes (1 and 2 in generation n) produce fitter children 
in generation n + 1. 

It is possible to trace lineage back several generations (e.g. 
grandparents, great-grandparents). However, this research 
only considers the previous generation in the lineage 
assessment process. 

V. INITIAL EXPERIMENTS 
Five experiments are conducted using synthetic data sets 

where the dependent values are clearly defined. Using 
synthetic data reduces the fuzziness of problems and makes it 
possible to adequately test the theory. The Genetic Program 
must not solve the equations easily, since this experiment 
requires a large number of samples. However, the Genetic 
Program needs the ability to model the equation easily. A 
difficult problem causes a Genetic Program to get trapped in 
local minima. In this case, the Genetic Program may not grow 
closer to the solution and the differences in fitness values 
over time may not be clearly illustrated.  Therefore, the five 
equations chosen may be solved by the Genetic Program 
easily within a few generations. To keep the Genetic Program 
from solving the programs, a very small random number is 
added to each dependent variable for all instances. This 
makes it impossible for the Genetic Program to solve the 
problem, while allowing the Genetic Program to come very 
close to the actual solution. 

The datasets are based on the following five equations:  
  (2)YXWZ ++=

  (3)WYXZ −+= *2

  (4)YXZ /=

  (5)
3
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 (6)

The complexity of each equation becomes progressively 
complicated for each experiment. 

All experiments define a generation as 1,000 
chromosomes. The selection method pairs chromosomes 
based on their fitness rank, with the top two fittest individuals 
mating, then the next two, etc.  

All trials run for 50 generations. For every generation, the 
1,000 chromosomes are sorted by fitness values then divided 
into five distinct groups of 200 chromosomes each. The 
fitness values of the offspring are recorded for each pair of 
parent chromosomes and the average of all fitness values 
within a group is calculated. 

The next step compares the offspring’s fitness values for 
those parents who had the best 200 chromosomes (the best 
class) with the offspring’s fitness values of those parents who 
had the middle 200 chromosomes (the middle class), along 
with those offspring whose parents had the lowest 200 fitness 
values (the worst class).  

VI. INITIAL EXPERIMENT RESULTS 
Figure 3 depicts the results from running the Genetic 

Program against equation (2). The x-axis represents the 
number of generations (1 through 50). The y-axis shows the 
average fitness values for the best class, middle class, and 
worst class groups. The black line (the one in the 300-400 
range) represents average fitness values of the offspring for 
the best class parents. The pink line (the middle line) is the 
average fitness values of the offspring for the middle class 
parent chromosomes. The navy blue line shows the average 
fitness values of the offspring for the worst class parents. 
Inspecting Figure 2, it is clear that there is a distinction 
between best, middle, and worst class groups. At no time do 
any of the group averages intersect. A t-test reveals these 
differences as statistically significant. 
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Figure 3: Results from the First Experiment 
 

Figures 4 shows the results for the GP modeling equation 
(3). The x-axis represents the number of generations (1 
through 50). The y-axis shows the average fitness values for 
the best class, middle class, and worst class groups. The black 
line (the one in the 500-700 range) represents average fitness 
values of the offspring for the upper class parents. The pink 
line (the middle line) is the average fitness values of the 
offspring for the middle class parent chromosomes. The navy 
blue line shows the average fitness values of the offspring for 
the worst class parents. Once again, it is clear that there is a 
distinction between best, middle, and worst class groups. At 
no time do any of the group averages intersect. A t-test 
reveals the differences between the classes as statistically 
significant. 



 
 

 

 
Figure 4: Results from the Second Experiment 

 
Figure 5 illustrates the differences between the three 

groups of chromosomes for the third experiment for equation 
(4). The x-axis represents the number of generations (1 
through 50). The y-axis shows the average fitness values for 
all three classes. The black line (top line) represents the best 
class group. The pink line corresponds to the average fitness 
values of the offspring for the middle set of parent 
chromosomes. The navy blue line (bottom line) shows the 
average fitness values of the offspring of the worst class 
parents. Once again, there is a distinct difference between the 
best class and the other two groups. The middle class group’s 
fitness values are generally higher than the fitness values of 
the offspring of the worst class parents. T-tests indicate that 
the differences between these groups are significant in all 
cases. 

 

 
Figure 5: Results from the Third Experiment 

 
Figure 6 shows the results for the third experiment which 

model equation (5). The average fitness values of the 
offspring of the best chromosomes are far superior to the 
other two groups. Compared to the previous experiments, this 
middle and worst class parents are not as distinguishable. The 
t-test analysis indicates that the differences between these 
groups are significant in all cases where the highest fitness 
values differ from the other groups. 
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Figure 6: Results from the Fourth Experiment 
 

Figure 7 depicts the results for the fifth experiment 
(equation 6). The black line shows average fitness values of 
the offspring of the set of the best 200 chromosomes. These 
offspring are much higher than the other (middle and worst 
class) lines. The t-tests indicate that the superiority of the best 
class parents is statistically significant to each of the other 
classes. The middle class and worst class results are 
comparable. 
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Figure 7: Results from the Fifth Experiment 
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VII. APPLIED EXPERIMENTS 
 

The previous set of experiments demonstrate the statistical 
superiority of chromosomes from the best class versus those 
chromosomes from the middle and lower classes with respect 
to average fitness values. The next question is whether this 
information may be leveraged for building better GP models 
in fewer generations. 

To answer this question, two experiments are conducted 
which compare a vanilla-based GP (all chromosomes 
participate in the formation of the next generation) versus a 
lineage-based GP which siphons the top 20 percent of the 
population, replicates this group 5 times, then breeds the next 
generation. The intent is to determine whether a 
lineage-based approach produces better models in less time. 

These experiments use datasets based on the following 



 
 

 

equations.  
  (7))()()( YSinXSinWSinZ ++=

  (8))*()(*log 10 ZYWZ
X
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The previous set of experiments perturbed the data so the 
models would not prematurely finish. These two experiments 
do not perturb data so that those models may finish early. This 
makes it possible to assess how quickly an approach 
converges to a solution. However, these two equations are a 
bit more complicated than the previous 5 equations so that the 
GP would not converge too quickly. 

Both experiments consist of 20 trials. Every trial uses a 
population of 1000 chromosomes with a maximum 
chromosome length of 2000 characters and runs for up to 50 
generations. 

Table I shows the results for modeling equation 7. It shows 
the final fitness value with 1000 as the maximum, the final 
r-squared, and the generation in which it stopped. The last 
row shows the average for each respective column. 

Both approaches converge to an exact solution 10 out of 20 
times. The lineage-based GP approach produces superior 
results over the traditional GP approach in terms of fitness, 
r-squared, and number of generations. The r-squared results 
for the lineage approach are statistically superior (α=0.10) 
over the traditional approach. 

Table II shows the results of the two approaches for 
modeling equation 8. As in the previous table, each row 

represents each trial with the last showing the averages of the 
20 trials. 

The lineage-based approach is statistically superior 
(α=0.05) than the traditional approach in terms of the fitness 
value and the r-squared. 

The lineage-based approach is a bit quicker to complete to 
a solution. This is a modest claim since the lineage approach 
converged in only one trial. 

VIII. DISCUSSION 
The initial set of experiments clearly demonstrate the 

statistical superiority of the best class group over the other 
classes. As the complexity increases over the progression of 
experiments, the gulf widens between the best class parents 
and the other two classes. 

These initial results spawned an applied experiment to 
assess the feasibility of building GP models which focus on 
the top 20 percent of a population. The results from the 
applied experiments demonstrate the superiority of a 
lineage-based modeling process. 

Although the results are superior, there are some ways the 
lineage approach could be improved. The nature of the 
lineage-based discards 80 percent of population. The initial 
generation uses randomly generated equations.  One 
approach under consideration is whether to postpone the 
lineage approach until about generation 4; this would allow 
for the population to form distinct boundaries between 
classes. 

TABLE I 
ORGINAL VS. LINEAGE APPROACH  FOR EQUATION  7 

Original GP Lineage-Based GP 

Fitness Final r2 Gen. Fitness Final r2 Gen. 

1000 1.0000 8 1000 1.0000 12 
1000 1.0000 9 1000 1.0000 2 
1000 1.0000 6 1000 1.0000 6 
1000 1.0000 8 1000 1.0000 3 
1000 1.0000 4 1000 1.0000 4 
1000 1.0000 6 1000 1.0000 6 
1000 1.0000 21 1000 1.0000 21 
1000 1.0000 4 1000 1.0000 6 
1000 1.0000 9 1000 1.0000 3 
1000 1.0000 6 1000 1.0000 6 

309 0.8316 50 934 0.9900 50 
265 0.8096 50 838 0.9746 50 
232 0.7906 50 807 0.9691 50 
228 0.7878 50 771 0.9625 50 
188 0.7601 50 470 0.8919 50 
147 0.7251 50 226 0.7867 50 
137 0.7150 50 195 0.7656 50 
121 0.6973 50 195 0.7656 50 
111 0.6846 50 195 0.7656 50 

98 0.6665 50 187 0.7593 50 

591.8 0.87341 29.1 740.9 0.9315 28.5

TABLE II 
ORGINAL VS. LINEAGE APPROACH  FOR EQUATION  8 

Original GP Lineage-Based GP 

Fitness Final r2 Gen. Fitness Final r2 Gen. 

662 0.9408 50 1000 1.0000 22 
467 0.8907 50 815 0.9705 50 
353 0.8506 50 656 0.9394 50 
339 0.8448 50 624 0.9323 50 
338 0.8447 50 471 0.8923 50 
327 0.8400 50 443 0.8834 50 
310 0.8321 50 376 0.8601 50 
288 0.8218 50 354 0.8510 50 
222 0.7845 50 337 0.8440 50 
192 0.7633 50 318 0.8357 50 
138 0.7162 50 307 0.8307 50 
116 0.6912 50 282 0.8181 50 

94 0.6600 50 164 0.7405 50 
77 0.6320 50 161 0.7379 50 
56 0.5852 50 157 0.7350 50 
55 0.5836 50 123 0.6990 50 
54 0.5802 50 111 0.6840 50 
51 0.5699 50 97 0.6651 50 
46 0.5568 50 73 0.6233 50 
32 0.4996 50 60 0.5959 50 

210.9 0.7244 50.0 346.5 0.8069 48.6



 
 

 

A second performance strategy considers the elimination 
of duplicate chromosomes. Both techniques produce 
redundant chromosomes (equations). The strategy deployed 
in both techniques sorts the equations and removes duplicates 
every 10 generations. Since the first several generations are 
critical to the success of a particular trial, it may be prudent to 
eliminate duplicates and replenish the population for every 
generation. 

IX. CONCLUSIONS 
The initial set of experiments demonstrate that fitness 

pedigree plays a significant role in producing statistically 
superior offspring. This first set of experiments lay the 
groundwork for the second set of experiments which examine 
lineage-based GP relative to traditional GP models. 

This second set of experiments show that a lineage-based 
GP, which focuses breeding effort on the top 20 percent of the 
population, produces superior results in less time. 

X. FUTURE DIRECTIONS 
This research examines the lineage for one generation back 

(parents). It may be interesting to explore 2 or more 
generations back to determine whether the chromosomal 
relationship decays over subsequent generations. Exploring 
the degree of decay would help determine the impact of 
ancestors upon their descendents. 
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