
1

Applying Machine Learners to GUI Specifications in
Formulating Early Life Cycle Project Estimations

Gary D. Boetticher
Department of Software Engineering
University of Houston - Clear Lake

2700 Bay Area Boulevard
Houston, TX 77058 USA

+1 281 283 3805
boetticher@cl.uh.edu

ABSTRACT

Producing accurate and reliable early life cycle project estimates remains
an open issue in the software engineering discipline. One reason for the
difficulty is the perceived lack of detailed information early in the software
life cycle. Most early life cycle estimation models (e.g. COCOMO II,
Function Point Analysis) use either the requirements document or a size
estimate as the foundation in formulating polynomial equation models. This
paper explores an alternative approach using machine learners, in particular
neural networks, for creating a predictive effort estimation model. GUI-
specifications captured early in the software life cycle serve as the basis for
constructing these machine learners. This paper conducts a set of machine
learning experiments with software cost estimation empirical data gathered
from a “real world” eCommerce organization. The alternative approach is
assessed at the program unit level, project subsystem level, and project level.
Project level models produce 83 percent average accuracy, pred(25), for the
client-side subsystems.

Keywords
Machine learning, machine learners, requirements engineering, software
engineering, neural networks, backpropagation, software metrics, effort
estimation, SLOC, project estimation, programming effort

1. INTRODUCTION

One of the most important issues in software engineering is the ability to
accurately estimate software projects early in the life cycle. Low estimates
result in cost overruns. High estimates equate to missed financial
opportunities.

From a financial context, more than $300 billion is spent each year on
approximately 250,000 software projects [30]. This equates to an average
budget of $1.2 million. Coupling these facts with Boehm’s observation [2]
that project estimates range from 25 to 400 percent early in the life cycle
indicates a financial variance of $300 thousand to $4.8 million.

Why does such a high variance exist? One primary reason is the severe
lack of data early in the life cycle. In the embryonic stage of a software
project the only available artifact is a requirements document. This high-level
document provides relatively few metrics (e.g., nouns, verbs, adjectives, or
adverbs) for estimating a project’s effort. Due to the complexity and
ambiguity of the English language, formulating an accurate and reliable
prediction, based upon a requirements document, is a nearly impossible task.

Despite this high variance, the ability to generate accurate and reliable
estimates early in software life cycle is extremely desirable. Many IT
managers are under pressure to offer relatively narrow ranges of estimates
regarding anticipated completion rates.

The software engineering discipline recognizes the importance of
building early life cycle estimation models. The traditional approach involves
formulating a polynomial equation based upon empirical data. Well-known
equations include the COnstructive COst MOdel II (COCOMO II) and
Function Point Analysis. Each has produced reasonable results since their
inception [13, 28]. However, there are several drawbacks in using these well-
known equations.

Using these equations is a time-consuming process. The complexity of
each requires extensive human intervention and is subject to multiple
interpretations [21, 31]. What is needed is an alternative approach for
generating accurate estimates early in the software life cycle. An approach
which produces accurate estimates, is automated to avoid subjective
interpretation; and is relatively simple to implement.

This paper describes a process of applying machine learners, in particular
neural networks, in formulating estimation models early in the software life
cycle. A series of empirical experiments are based on input and output
measures extracted from four different ‘real world’ project subsystems. The
input measures for each experiment are derived by utilizing the GUI interface
specification document. The GUI interface document offers the advantage of
being an early life cycle artifact rich in objective measures for building effort
estimation models.

The set of experiments use 109 different data samples (or program units).
Each program unit corresponds to a form consisting of up to twelve different
types of widgets (e.g., edit boxes, buttons). Extracted widget counts serve as
the input measures. The output measure is the actual, not estimated, effort
expended in developing that particular program unit.

Section 2 provides background information and motivation for using
machine learners in project estimation. Section 3 discusses related research in
the area of machine learning applied to effort estimation. Section 4 describes

a set of machine learning experiments. Section 5 offers a discussion of the
experiments. And section 6 draws several conclusions and describes future
directions.

2. BACKGROUND

Different techniques for cost estimation have been discussed in the
literature [2, 16, and 18]. Popular approaches include: algorithmic and
parametric models, expert judgment, formal and informal reasoning by
analogy, price-to-win, top-down, bottom-up, rules of thumb, and available
capacity.

Two well-known parametric approaches for early life cycle estimation
are COCOMO II and Function Point Analysis (FPA).

The COCOMO II equation embeds many project parameters within the
equation. It is defined as follows [10]:

Effort = A * (Size)B * EM Equation 1

where
Effort refers to the Person Months needed to complete a project
A represents the type of project. There are three possible values for

this parameter.
Size is defined by using a SLOC estimate or Function Point Count.
B is a derived metric which includes the sum of five cost driver

metrics.
EM is an abbreviation for Effort Multiplier. The COCOMO II

equation defines seven effort multipliers for early life cycle
estimating.

A difficulty in applying the COCOMO II equation is managing the very
large solution space. In the early life cycle version, there are 3 options for
project type, 55 options for the cost drivers, and 57 options for the effort
multipliers. Multiplying all the options together reveals a search space of
732,421,875 different settings. This excludes the effort value supplied for the
Size parameter.

A more fundamental problem with COCOMO II is that it requires an
estimate for the size of the project represented by SLOC of Function Points.
If the size of a project were actually known early in the life cycle, then it
would be easy to formulate a reasonable effort estimate.

Another parametric approach is Function Point Analysis (FPA). This
process starts with the requirements document where a user identifies all
processes. Each process is categorized into one of five function types;
different Record Element Type, Data Element Types; and File Types
Referenced. Based upon the settings chosen, the equation produces an
Unadjusted Function Point (UFP) for each process. There are seven possible
values for each UFP ranging from 3 through 15.

The next step involves defining the Global System Characteristics
(GSC). Collectively, there are 14 different GSC parameters with 5 possible
settings for a total search space of 6,103,515,625 options. The total GSC may
range from 0 through 70.

After applying several mathematical operations to the UFP, it is
multiplied by the total GSC to produce the final Adjusted Function Point. A
software project with only one function point may range from 1.95 to 20.25
Adjusted Function Points. Assuming a mean of 11.1, this produces a variance
of 83.7. This Adjusted Function Point variance does not compare well with
Boehm’s early life cycle variance of 4 [2].

Assuming a perfect Adjusted Function Point value is determined, the
next step in the FPA requires the model builder (presumably a project
domain expert) to define a constant by which to multiply the final Adjusted
Function Point total. This last step, which is totally subjective, is the most
critical step in the process and very sensitive to distortion.

The complex nature of COCOMO II and FPA suggests the need for an
alternative approach to early life cycle project estimation.

One approach would be to formulate an early life cycle model using a
machine learning algorithm. There are different types of machine learners
including predictors, classifiers, and controllers. Since this is a predictor type
problem, a neural network approach is chosen for conducting a series of
experiments.

The goal of these experiments is to define a tool that deterministically
constructs an accurate early life cycle estimation model. Deterministically
means that there are no subjective measures introduced into the modeling
process.

To establish a context for the application of machine learners to software
project estimation; the following section describes previous research in this
area.

3. RELATED RESEARCH

Related research consists of the utilization of various types of machine
learners for predicting project effort. Also, there had been some previous
research in using GUI metrics for estimating project effort. This section
describes both of these contexts in terms of machine learning algorithms
deployed, if applicable, and results achieved.

In [1, 15, 20, 24, and 25], a Case-Based Reasoning (CBR) approach is
adopted in constructing a cost model for the latter stages of the development
life cycle. Delany [12] also uses a CBR approach applied early in
development life cycle.

Chulani [9] uses a Bayesian approach to cost modeling and generates
impressive results. He collects information on 161 projects from commercial,
aerospace, government, and non-profit organizations [9]. The COCOMO

data sets contain attributes that, for the most part, can be collected early in
the software life cycle (exception: COCOMO requires source lines of code
which must be estimated). Regression analysis was applied to the COCOMO
data set to generate estimators for software project effort. However, some of
the results of that analysis were counter-intuitive. In particular, the results of
the regression analysis disagreed with certain domain experts regarding the
effect of software reuse on overall cost.

To fix this problem, a Bayesian learner was applied to the COCOMO
data set. In Bayesian learning, a directed graph (the belief network) contains
the probabilities that some factor will lead to another factor. The probabilities
on the edges can be seeded from (e.g.) domain expertise. The learner then
tunes these probabilities according to the available data. Combining expert
knowledge and data from the 161 projects yielded an estimator that was
within 30% of the actual values, 69% of the time [9]. It is believed that the
above COCOMO result of pred(30) = 69% is a high-watermark in early life
cycle software cost estimation.

Cordero [11] applies a Genetic Algorithm (GA) approach in the tuning of
COCOMO II.

Briand [8] introduces optimized set reduction (OSR) in the construction
of software cost estimation model.

Srinivasan [29] builds a variety of models including neural networks,
regression trees, COCOMO, and SLIM. The training set consists of
COCOMO data (63 projects from different applications). The training
models are tested against the Kemerer COCOMO data (15 projects, mainly
business applications). The regression trees outperformed the COCOMO and
the SLIM model. The neural networks and function point-based prediction
models outperformed regression trees.

Samson [26] applies neural network models to predict effort from
software sizing using COCOMO-81 data. The neural network models
produced better results than the COCOMO-81.

Wittig et al. [32] estimated development effort using a neural network
model. They achieved impressive results of 75 percent accuracy pred(25).

Boetticher [6] conducted more than 33,000 different neural network
experiments on empirical data collected from separate corporate domains.
The experiments assessed the contribution of different metrics to
programming effort. This research produced a cross-validation rate of
73.26%, using pred(30).

Hodgkinson [19] adopted a top-down approach using a neurofuzzy cost
estimator in predicting project effort. Results were comparable to other
techniques including least-squares multiple linear regression, estimation via
analogy, and neural networks.

Lo et al. [23] constructed a GUI effort estimation multivariate regression
model using 33 samples. Independent variables consisted of GUI metrics
classified into 5 groups: static widgets (labels), data widgets not involving
lists (edit boxes, check boxes, radio buttons), data widgets involving lists (list

boxes, memo boxes, file lists, grids, combo boxes), action widgets involving
the database (buttons), and action widgets not involving the database
(buttons). Instead of using the actual effort values for the dependent variable,
estimates from 4 experts with a least 1 year of experience were averaged.
The average of these estimates ranged from 3 to 48 hours. Variance of the
expert’s estimates is not presented in the paper. The initial internal results
were pred(25) = 75.7% and MARE 20.1%. External results (against another
system) yielded were pred(25) = 33.3% and MARE = 192%.

4. MACHINE LEARNING EXPERIMENTS

4.1 General Description

This section describes a series of machine learning experiments based on
data gathered from four ‘real-world’ project subsystems.

Prior to conducting the experiments, it was necessary to decide which
ML approach to adopt. A neural network paradigm for creating models
seemed like a natural choice. This decision was based upon the author’s
previous successes using neural networks to model software metrics [3, 4, 5,
6, and 7].

Advantages of using neural networks include [17]: the ability to deal
with domain complexity, ability to generalize, along with adaptability,
flexibility, and parallelism.

There is also support in the literature for applying neural networks in
estimation tasks [22, 26, and 29]. However, some researchers consider the
relative merits of neural nets over other machine learning techniques (e.g.
decision tree learning) an open issue [27].

4.2 Neural Network Overview

A supervised neural network can be viewed as a directed graph
composed of nodes and connections (weights) between nodes. A set of
vectors, referred to as a training set, is presented to the neural network one
vector at a time. Each vector consists of input values and output values. In
Figure 1, the inputs are x0 through xN-1 and the output is y. The goal of a
neural network is to characterize a relationship between the inputs and
outputs for the whole set of vectors. During the training of a neural network,
inputs from a training vector propagate throughout the network. As inputs
traverse the network, they are multiplied by appropriate weights and the
products are summed up. In Figure 1, this is wi

. xi. If the summation exceeds
some specified threshold for a node, then output from that node serves as
input to another node. This process repeats until the neural network generates
an output value for the corresponding input portion of a vector. This
calculated output value is compared to the desired output and an error value
is determined. Depending on the neural network algorithm, either the weights
are recalibrated after every vector, or after one pass (called an epoch) through

all the training vectors. In either case the goal is to minimize the error total.
Processing continues until a zero error value is achieved, or training ceases to
converge. After training is properly completed, the neural network model
which characterizes the relationship between inputs and outputs for all the
vectors is embedded within the architecture (the nodes and connections) of
the neural network. After successful completion of training, a neural network
architecture is frozen and tested against an independent set of vectors called
the test set. If properly trained, the neural network produces reasonable
results against the test suite.

Figure 1: Sample Neural Network

All experiments utilize a variant of the backpropagation neural network,
called the quickprop. The quickprop algorithm converges much faster than a
typical backpropagation approach [14]. It uses the higher-order derivatives in
order to take advantage of the curvature [14]. The quickprop algorithm uses
second order derivatives in a fashion similar to Newton’s method. Using
quickprop in all the experiments also ensures stability and continuity.

4.3 Description of Experiments

Four datasets were used in the experiments. The GUI metrics were
extracted from one of four major subsystems of an electronic commerce
(procurement) product used in the process industry. Table 1 shows each
major system along with the number of program units.

Table 1. Description of the major subsystems.
Major Subsystem Number of program units

Buyer Administrator 7
Buyer 60

Distribution Server 10
Supplier 32
TOTAL 109

Each program unit consists of a GUI form along with corresponding
code written in Delphi.

In the context of neural networks, a program unit is referred to as a
vector. Each vector consists of a set of inputs along with a set of outputs.
Each vector contained twelve input parameters based upon GUI categories
described below. These include: Buttons; Charts; Check boxes/radio buttons;
Combo boxes; Grid (string grid, database grid); Grid Tabs; Edit boxes;
Labels; Memo/List boxes; Menu bars; Navigation bars; and Trees.

The grid tabs refers to how many tabs were available for each grid. For
example, the default is three (worksheets) in Microsoft EXCEL.

The output consists of the actual, not estimated, effort required for
developing each program unit. Effort values ranged from 1 to 160 hours. All
program units were developed by a single developer. This reduces the impact
of the human element in terms of various skill and knowledge levels in the
model formulation process.

All experiments use a fully-connected neural network architecture of 12-
5-11-5-1 (see Figure 2), meaning twelve inputs, one layer of five hidden
nodes, followed by another hidden layer of eleven hidden nodes, followed by
another hidden layer of five nodes, then an output layer of one node.

Figure 2: 12-5-11-5-1 Neural Network Architecture

In order to minimize experimental variance among experiments, we
standardized the experimental process. Different components of each neural
network model remain constant. Alpha, which represents how quickly a
neural network learns, may range from zero to one. Alpha for these
experiments is always one. Momentum, a variable which helps neural

networks break out of local minima, may also range from zero to one.
Momentum is also always set to 1. The threshold function is a function
associated with each node after the input layer. Function selection determines
when a node fires. Firing a node essentially propagates a value further
through the network. All experiments use an asymmetrical sigmoid function
as a threshold function.

One scan through the training data is considered an epoch. Each
experiment iterates through 10,000 epochs. Initial trials indicated that 5,000
to 7,000 epochs were sufficient for determining the highest correlation along
with the highest accuracy (with respect to the test data). The “most accurate
test results” is defined as number of correct matches within 25 percent, or
pred(25), of the actual effort values for the test vectors.

4.4 Experiments and Results

Four different neural network experiments are performed for each
subsystem. For each set of experiments, data from one of the subsystems is
treated as a test suite and the data from the other three subsystems is
combined into a training set. Each experiment is performed ten times in order
to discount any outliers. After each experiment all the weights in the neural
network are reset.

Table 2 presents the Pred(25) and MARE for each of the four types of
experiments. The Pred(25) of 64.3 percent for the ‘Buyer Administrator’ test
set is reasonable, however the other Pred(25) values are low relative to [9,
23]. The relatively low values for the Pred(25) may be attributed to range of
effort values, 1 to 160 hours. Nineteen percent of all the vectors had an effort
of one. As a consequence, the neural network experienced difficulty in
adequately approaching these low effort values. Secondly, the test sets were
organized by subsystem. This led to extrapolation issues. A total of 15
vectors from three different test sets contained maximum values for one or
more inputs/output. The only way to avoid any extrapolation problems would
be to continuously retain the 15 vectors in the training set. This is not a
realistic solution. Finally, for some of the input metrics, there were less than
three instances of values. Essentially, the corresponding metric contributed
little to the training process.

The relatively large range of effort values, along with the large
percentage of effort values less than or equal to five (65 percent) inflated the
MARE values.

Table 2. Results from initial experiments
Buyer Admin Buyer Client Distribution

Server
Supplier

Client

RUN
Pred
(25) MARE

Pred
(25) MARE

Pred
(25) MARE

Pred
(25) MARE

1 71% 54% 32% 231% 40% 212% 34% 176%
2 57% 54% 33% 355% 50% 160% 38% 126%
3 57% 98% 32% 258% 50% 319% 44% 179%
4 57% 72% 23% 385% 60% 84% 41% 200%
5 57% 89% 27% 248% 50% 66% 38% 288%
6 71% 38% 33% 210% 50% 176% 41% 171%
7 71% 82% 25% 253% 50% 74% 38% 189%
8 71% 44% 18% 312% 50% 55% 38% 198%
9 71% 53% 23% 254% 50% 492% 38% 178%

10 57% 103% 25% 652% 60% 68% 44% 131%
AVE 64.3% 68.5% 27.2% 316% 51% 172% 39.1% 184%

One question is whether the results are any different when perceived
from the subsystem (project) level. Viewing the results from a subsystem
perspective, as opposed to a program unit perspective, dramatically improves
upon the results. Table 3 shows the Pred(25) and MARE for each of the four
major subsystems. The results are determined by summing the calculated
effort values for each program unit for each individual experiment. Hence
three of the four models produced estimates 80 percent or higher with MARE
values less than 18 percent. The best case generates a Pred(25) of 90 percent
and a MARE of 12.2 percent.

Table 3. Aggregate analysis of the subsystems
Subsystem Pred(25) MARE

Buyer
Administrator

80% 17.6%

Buyer Client 80% 14.6%
Distribution Server 20% 96.7%

Supplier Client 90% 12.2%

A natural extension of the subsystem results would be to aggregate them
into corresponding project results. Table 4 presents two worst-case scenarios
and one average-case scenario. For the worst-case scenarios the minimum
average efforts and maximum average efforts are totaled. The average-case
scenario is the average estimate (for the ten experiments) for each subsystem.

Table 4. Aggregate analysis of the project
Subsystem Worst case Min.Worst Case Max. Ave. Cases Actual Effort

Buyer Admin. 158 289 220 215
Buyer Client 958 1660 1313 1202
Dist. Server 114 246 170 307

Supplier Client 505 790 644 576
TOTAL 1735 2985 2347 2300

Thus, in the worst-case scenarios, the collective estimates range from
24.6% below the actual project effort to 29.8% above the actual project
effort. The average-case estimate is within 2% of the actual project effort.

5. DISCUSSION

The vectors were grouped according to the project subsystems, rather
than applying a statistical process for organizing the vectors. This followed
the natural contours of the project at the expense of generating artificially
better results.

One question that persists is, “Why are the results so low for the
distribution server presented in table 3?” In general, server-side applications
are not intended to be interactive. As a consequence, GUI-based metrics
might not be appropriate for server-side software. However, the server-side
metrics did not taint the results presented in table 4.

This work extends the previous research of Lo et al [23] by assessing
more data in greater detail using better effort values. See Table 5 below.

Table 5. Comparison of current with previous research
Category Lo [23] Current work

Data Samples 33 109
Number of GUI metrics

utilized
5 12

Does formulating GUI metrics
require human interpretation?

Yes No

Model type Multivariate regression Neural networks
Nature of effort values Defined through expert

estimates
Based on actual effort

values
Best results Pred(25) = 75.7%,

MARE = 20.1%
Pred(25) = 90%,
MARE = 18%

Extrapolation issues frequently arose during the conducting of
experiments. Adding more data might reduce the frequency of extrapolation,
but it will never eliminate the problem. The extrapolation issues did not seem
to affect the results produced at the subsystem and overall project levels.

It is worth noting the software environment from which this data

emerged. This organization did not have a formal process. Most likely it
would be characterized as a one in the context of the Capability Maturity
Model. Thus, the experiments show that it is possible to construct very
reasonable early life cycle project estimates in light of a poorly defined
process.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This research describes a process of formulating early life cycle project
estimates based on GUI specifications. Twelve different types of widgets are
counted. Most, if not all, of the widgets are frequently used and well
understood within the software industry.

Using well-defined widgets simplifies the measurement gathering
process. Thus, the learning curve is rather shallow (as compared to
COCOMO II or FPA) for understanding the model formulation process.

The model formulation process is repeatable since there is no subjectivity
involved in counting the widgets.

The results at the program unit level seemed low. However, the results
improved dramatically when viewed from the project subsystem level. Three
of the four subsystems produced a Pred(25) of 80% or higher and a MARE
of 18% or lower.

One strategy to improve upon the results at the program unit level would
be to reduce the number of classes for the effort values. Thus a set of actual
effort values ranging from 10 to 15 hours may be collapsed into 12.5 hours.

Since the literature describes various applications of Machine Learner in
effort estimation, it would be plausible to conduct additional experiments
using other machine learning algorithms.

The process does not fare very well in situations where development is
computationally complex with little or no GUI specifications. This is evident
in the server-side results. One future activity would be to integrate the neural
network-based GUI effort estimation approach with an algorithmic approach,
such as COCOMO II or FPA. This could reduce the complexity related to
COCOMO II and FPA and extend the neural network GUI approach to
accommodate non-GUI software development.

ACKNOWLDEGMENTS

The author wishes to express his deepest gratitude for the insightful
comments and constructive criticism from the peer reviewers.

REFERENCES

1. Bisio, R., F. Malabocchia, “Cost Estimation of Software Projects through
Case-Base Reasoning.” Case-Based Reasoning Research and
Development. First International Conference, ICCBR-95 Proceedings,
1995, Pp.11-22.

2. Boehm, B., Software Engineering Economics, Englewood Cliffs, NJ,
Prentice-Hall, 1981.

3. Boetticher, G., K. Srinivas and D. Eichmann, “A Neural Net-Based
Approach to Software Metrics,” Proceedings of the 5th International
Conference on Software Engineering and Knowledge Engineering, June
1993, Pp. 271-274. Available from
http://nas.cl.uh.edu/boetticher/publications.html

4. Boetticher, G. and D. Eichmann, “A Neural Net Paradigm for
Characterizing Reusable Software,” Proceedings of the First Australian
Conf. on Software Metrics, November 1993, Pp. 41-49. Available from
http://nas.cl.uh.edu/boetticher/publications.html

5. Boetticher, G., “Characterizing Object-Oriented Software for Reusability
in a Commercial Environment,” Reuse ’95 Making Reuse Happen –
Factors for Success, Morgantown, WV, August 1995. This paper is
available at: http://nas.cl.uh.edu/boetticher/publications.html

6. Boetticher, G., “An Assessment of Metric Contribution in the
Construction of a Neural Network-Based Effort Estimator,” Second Int.
Workshop on Soft Computing Applied to Soft. Engineering, 2001.
Available at http://nas.cl.uh.edu/boetticher/publications.html

7. Boetticher, G., “Using Machine Learning to Predict Project Effort:
Empirical Case Studies in Data-Starved Domains,” Workshop on Model-
Based Requirements Engineering, 2001. Available at
http://nas.cl.uh.edu/boetticher/publications.html

8. Briand, Lionel C., Victor R. Basili, and William Thomas. Pattern
Recognition Approach for Software Engineering Data Analysis. IEEE
Trans. on Soft. Eng., November 1992, Pp. 93-942.

9. Chulani, S., and Boehm, B., and B. Steece, “Bayesian Analysis of
Empirical Software Engineering Cost Models”, IEEE Transaction on
Software Engineering, 25 4, July/August, 1999.

10. COCOMO II Model Definition Manual, 1999. Available from the
following link:
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

11. Cordero, R., M. Costramagna, and E. Paschetta. “A Genetic Algorithm
Approach for the Calibration of COCOMO-like Models,” 12th COCOMO
Forum, 1997.

12. Delany, S.J., P. Cunningham, “The Application of Case-Based
Reasoning to Early Project Cost Estimation and Risk Assessment,”
Department of Computer Science, Trinity College Dublin, TDS-CS-2000-
10, 2000.

13. Devnani-Chulani, Sunita, Clark, B., Barry Boehm, “Calibration
Approach and Results of the COCOMO II Post-Architecture Model,”
ISPA, June 1998.

14. Fahlman, S.E., An Empirical Study of Learning Speed in Back-
Propagation Networks, Tech Report CMU-CS-88-162, Carnegie Mellon
University, September 1988.

15. Finnie, G.,R., Wittig, G.,E., J.M. Desharnais, “Estimating software
development effort with case-based reasoning,” Proceedings of
International Conference on Case-Based Reasoning, D. Leake, E. Plaza,
(Eds), 1997, Pp.13-22.

16. Heemstra, F. “Software Cost Estimation,” Information and Software
Technology, October 1992, Pp. 627-639.

17. Hertz, J., Krogh A., R.G. Palmer., Introduction to the Theory of Neural
Computation, Addison Wesley, New York, 1991.

18. Hihn, J., H. Habib-Agahi, “Cost Estimation of Software Intensive
Projects: A Survey of Current Practices,” Proceedings of the
International Conference on Software Engineering, 1991, Pages 276-
287.

19. Hodgkinson, A.C., Garratt, P.W., “A Neurofuzzy Cost Estimator,” Proc.
3rd International Conf. Software Engineering and Applications (SAE),
1999, pp. 401-406.

20. Kadoda, G., Cartwright, M., Chen, L. and Shepperd, M., “Experiences
Using Case-Based Reasoning to Predict Software Project Effort,”
Empirical Software Engineering Research Group Technical Report,
Bournemouth University, January 27 2000.

21. Kemerer, Chris, “Reliability of Function Points Measurement: A Field
Experiment,” Communications of the ACM 36, 2 (February 1993), Pp.
85-97.

22. Kumar, S., Krishna, B. A., Satsangi, P.J., "Fuzzy Systems and Neural
Networks in Software Engineering Project Management," Journal of
Applied Intelligence, 4, 1994, Pp. 31 - 52.

23. Lo, R., Webby, R., R. Jeffrey, “Sizing and Estimating the Coding and
Unit Testing Effort for GUI Systems,” Proceedings of the 3rd
International Software Metrics, Los Alamitos: IEEE Computer Society
Press, 166-173, 1996.

24. Mukhopadhyay, Tridas, and Sunder Kekre, “Software effort models for
early estimation of process control applications,” IEEE Transactions on
Software Engineering, 18 (10 October), 1992, Pp. 915-924.

25. Prietula, M., S. Vicinanza, T. Mukhopadhyay, “Software effort
estimation with a case-based reasoner,” Journal of Experimental and
Theoretical Artificial Intelligence, 8(3-4), 1996, Pp. 341-363.

26. Samson, B., Ellison, D., Dugard, P., “Software Cost Estimation Using an
Albus Perceptron,” Information and Software Technology, 1997, pp. 55-
60.

27. Shavlik, J.W., Mooney, R.L., and G.G. Towell, Symbolic and Neural
Learning Algorithms: An Experimental Comparison, Machine
Learning", 1991, Pp. 111-143.

28. Siddiqee, M. Waheed. "Function Point Delivery Rates Under Various
Environments: Some Actual Results," 259-264. Proceedings of the
Computer Management Group's International Conference. San Diego,
CA, December 5-10, 1993.

29. Srinivasan, K., and D. Fisher, “Machine Learning Approaches to
Estimating Software Development Effort,” IEEE Trans. Software
Engineering, February, 1995, Pp. 126-137.

30. The Standish Group, Chaos Chronicles III, The Standish Group, January,
2003.

31. Wittig, G. E., G.R. Finnie, “Software Design for the Automation of
Unadjusted Function Point Counting,” Business Process Re-Engineering
Information Systems Opportunities and Challenges, IFIP TC8 Open
Conference. Gold Coast, Queensland, Australia, May 8-11, 1994, Pp.
613-623.

32. Wittig, G., G. Finnie, “Estimating software development effort with
connectionist models,” Information and Software Technology, 1997, pp.
469-476.

