
Using Machine Learning to Predict Project Effort: Empirical
Case Studies in Data-Starved Domains

Gary D. Boetticher
Department of Software Engineering
University of Houston - Clear Lake

2700 Bay Area Boulevard
Houston, TX 77058 USA

+1 281 283 3805
boetticher@cl.uh.edu

ABSTRACT
Ideally, software engineering should be able to use machine
learning to control or significantly decrease the costs
associated with building software. In reality, there are very
few examples of applying such applications early in the
software life cycle. One reason for the scarcity of examples
is the lack of empirical data in the software engineering
discipline. This dilemma is quite evident when constructing
models to predict project effort. This raises the question of
“How to generate sufficient amounts of data when it is
sparse?” One approach is to assess projects from a bottom-
up perspective. This approach uses estimates gathered from
products in predicting project effort. This paper conducts a
set of machine learning experiments with software cost
estimation data from two separate organizations. These
experiments explore the possibility of performing project
estimating from a bottom-up perspective and characterize
predictive potential within two different organizations. The
results are statistically assessed and a process is proposed
for applying the described techniques.

Keywords
Machine learning, requirements engineering, software
engineering, neural networks, backpropagation, software
metrics, effort estimation, SLOC, project estimation,
programming effort

1. INTRODUCTION

In the mid 90's, The Standish Group surveyed over 8,000
software projects. They found that the average project
exceeded its planned budget by 90 percent and its schedule
by 222 percent. More than 50 percent of the completed
projects had less than 50 percent of original requirements
[45].

These statistics represent symptoms of deep underlying
problems, which include the lack of data early in the life
cycle.

This scarcity of data seems plausible when considering the
distribution of software organization against the Software

Engineering Institute's capability maturity model (CMM)
[35]. A CMM level below 3, out of a possible 5, indicates a
lack of written definition, which includes data, at various
life cycle phases. About 80 to 85 percent of all software
organizations exist below CMM level 3 [14, 17]. Those that
do collect data and use them in project estimation processes
are unlikely to share their valuable knowledge at the risk of
losing a possible competitive advantage. As a result,
scarcity occurs in both quantity and quality for most
organizations.

This may explain the unreliability of early life cycle
algorithmic effort estimators. Boehm [6] claims that very
early life cycle phase accuracy varies by a factor of 4 (e.g.,
between 25% and 400%). This claim was supported by
Heemstra [23].

This raises the question as to why is machine learning (ML)
not used more frequently in formulating early-life cycle
cost estimation models in order to address the data
starvation problem? Recent reviews of the use of ML in SE
(e.g. [31, and 32]) report that ML in SE is a mature
technique based on widely-available tools using well
understood algorithms (e.g. neural nets or decision tree
learners or Bayes nets [15, 20, 26, and 39]. Further,
machine learning tools that can handle very large data sets
now come bundled and integrated with standard
commercial packages such as Microsoft's SQL® Server
2000™ [41] and Oracle9i™ [4]. Finally, clear and simple
methodological guidelines for ML in SE have existed for
nearly a decade [36]. Nevertheless, the total number of
reported applications (as seen in [31 and 32]) is not large.

Probably the main reason is the scarcity of data. This
makes it difficult to use ML algorithms and formulate
theories from data in order to construct decision support
tools early in the software life cycle.

A second reason is the approach to project estimation.
Traditional cost estimation models such as Putnam,
Function Points, and COCOMO I and II [1, 2, 6, 7, and 38]
reveal the use of a top-down perspective (project-based

instead of product-based) in cost modeling. This approach
makes it difficult to cull a sufficient amount of empirical
data for building cost-estimation models. What is preferred
is a bottom-up approach where metric formulation
originates from the product. Reasons for adopting a
bottom-up approach include:

• More data is available. There is a cardinality of 1 to N
between projects and products. Building project-based
models is difficult due to the lack of project data that
corporations possess. Also, corporations are not willing
to share their project data with other organizations, so
building up a sufficient amount of project data for
constructing a model is very difficult.

• Automation of data collection. Many popular mature
software metrics exist such as size, cyclomatic
complexity [30], and program vocabulary [22] for
characterizing software products (e.g., software
programs). There are many publicly available well-
established tools for extracting these metrics.

Boehm [6] first described a bottom-up approach in 1981.
Interestingly, a literature search does not reveal the use of
any ML algorithm in this approach early in the software life
cycle.

Thus, a bottom-up approach is adopted for conducting a
series of experiments. The empirical data was extracted
from two separate corporations. Performing these
experiments address whether it is feasible to adopt a
bottom-up approach. Furthermore, these experiments
assume that project prediction occurs early in the software
life cycle. As a result, the type of data available for
building models is highly constrained.

Section 2 describes related research in the areas of cost
modeling, and compensating for sparse data. Section 3
describes a set of machine learning experiments. Section 4
offers a discussion of the experiments. And section 5
describes several conclusions and future directions.

2. RELATED WORK

Cost Estimation Framework

Different techniques for cost estimation have been
discussed in the literature [6, 23, and 25]. Popular
approaches include: algorithmic and parametric models,
expert judgment, formal and informal reasoning by
analogy, price-to-win, top-down, bottom-up, rules of
thumb, and available capacity.

Heemstra [23] describes 29 software cost models that have
been created since 1966. Due to the lack of data early in the
software life cycle, most of these models apply to the latter
stages of the software life cycle. However, there is one
approach that identifies requirements measures and uses
those to predict development effort [13].

More recently, machine learning models have also been
developed in the area of cost estimation.

In [5, 21, 28, 34, and 37], a Case-Based Reasoning (CBR)
approach is adopted in constructing a cost model for the
latter stages of the development life cycle. Delany [18] also
uses a CBR approach applied early in development life
cycle.

Chulani [15] uses a Bayesian approach to cost modeling
and generates impressive results. He collects information
on 161 projects from commercial, aerospace, government,
and non-profit organizations [15]. The COCOMO data sets
contain attributes that, for the most part, can be collected
early in the software life cycle (exception: COCOMO
requires source lines of code which must be estimated).
Regression analysis was applied to the COCOMO data set
to generate estimators for software project effort. However,
some of the results of that analysis were counter-intuitive.
In particular, the results of the regression analysis disagreed
with certain domain experts regarding the effect of software
reuse on overall cost.

To fix this problem, a Bayesian learner was applied to the
COCOMO data set. In Bayesian learning, a directed graph
(the belief network) contains the probabilities that some
factor will lead to another factor. The probabilities on the
edges can be seeded from (e.g.) domain expertise. The
learner then tunes these probabilities according to the
available data. Combining expert knowledge and data from
the 161 projects yielded an estimator that was within 30%
of the actual values, 69% of the time [15]. It is believed that
the above COCOMO result of pred(30) = 69% is a high-
watermark in early life cycle software cost estimation1.

Cordero [16] applies a Genetic Algorithm (GA) approach
in the tuning of COCOMO II.

Briand [12] introduces optimized set reduction (OSR) in
the construction of a software cost estimation model.

Srinivasan [44] builds a variety of models including neural
networks, regression trees, COCOMO, and SLIM. The
training set consists of COCOMO data (63 projects from
different applications). The training models are tested
against the Kemerer COMOMO data (15 projects, mainly
business applications). The regression trees outperformed
the COCOMO and the SLIM model. The neural networks
and function point-based prediction models outperformed
regression trees.

Samson [40] applies neural network models to predict
effort from software sizing using COCOMO-81 data. The
neural network models produced better results than the
COCOMO-81.

1 Some might argue that this is a very low high-watermark. The author

disagrees. Given all the factors that can influence a software project, it
is very surprising that pred(30) = 69 can be achieved at all.

Wittig et al. [47] estimated development effort using a
neural network model. They achieved impressive results of
75 percent accuracy pred(25).

Boetticher [11] conducted more than 33,000 different
neural network experiments on empirical data collected
from separate corporate domains. The experiments assessed
the contribution of different metrics to programming effort.
This research produced a cross-validation rate of 73.26%,
using pred(30).

Hodgkinson [27] adopted a top-down approach using a
neurofuzzy cost estimator in predicting project effort.
Results were comparable to other techniques including
least-squares multiple linear regression, estimation via
analogy, and neural networks.

Learning When Data is Scarce

Some strategies/models are proposed regarding the issue of
data scarcity.

• Seek more data from the domain (which may be
impractical due to the issues cited above) [12, 15].

• Address outliers within a domain [12, 15].

• Quickly build some lightweight domain models and use
them to generate more data. This approach is explored
elsewhere (see [32, and 33]).

• Seed the learner with some background knowledge. In
this approach, the learner does not learn a totally new
theory from scratch. Instead, it fine-tunes the seeded
theory according to the supplied data [15].

• Use an Analytic Hierarchy Process (AHP). This process
constructs matrices using subject pairwise comparisons
[3, and 43].

• Propagate data using a variety of imputation methods
[46].

3. MACHINE LEARNING EXPERIMENTS

General Description

This section describes two sets of machine learning
experiments based on data gathered from two separate
corporations.

Prior to conducting the experiments, it was necessary to
decide which ML approach to adopt. A neural network
paradigm for creating models to explore data-starved
domains seemed like a natural choice. This decision was
based upon the author’s previous successes using neural
networks to model software metrics [8, 9, 10, and 11].

Advantages of using neural networks include [24]: the
ability to deal with domain complexity, ability to
generalize, along with adaptability, flexibility, and
parallelism.

There is also support in the literature for applying neural
networks in estimation tasks [29, 40, and 44]. However,
some researchers consider the relative merits of neural nets
over other machine learning techniques (e.g. decision tree
learning) an open issue [42].

A supervised neural network can be viewed as a directed
graph composed of nodes and connections (weights)
between nodes. A set of vectors, referred to as a training
set, is presented to the neural network one vector at a time.
Each vector consists of input values and output values. In
figure 1 below, the inputs are x0 through xN-1 and the output
is y. The goal of a neural network is to characterize a
relationship between the inputs and outputs for the whole
set of vectors. During the training of a neural network,
inputs from a training vector propagate throughout the
network. As inputs traverse the network, they are
multiplied by appropriate weights and the products are
summed up. In Figure 1, this is wi

. xi. If the summation
exceeds some specified threshold for a node, then output
from that node serves as input to another node. This
process repeats until the neural network generates an output
value for the corresponding input portion of a vector. This
calculated output value is compared to the desired output
and an error value is determined. Depending on the neural
network algorithm, either the weights are recalibrated after
every vector, or after one pass (called an epoch) through all
the training vectors. In either case the goal is to minimize
the error total. Processing continues until a zero error value
is achieved, or training ceases to converge. After training is
properly completed, the neural network model which
characterizes the relationship between inputs and outputs
for all the vectors is embedded within the architecture (the
nodes and connections) of the neural network. After
successful completion of training, a neural network
architecture is frozen and tested against an independent set
of vectors called the test set. If properly trained, the neural
network produces reasonable results against the test suite.

Figure 1: Sample Neural Network

A variant of the backpropagation neural network, called the
quickprop, builds all the models for the experiments. The
quickprop algorithm, developed by Fahlman, converges
much faster than a typical backpropogation approach [19].
It uses the higher-order derivatives in order to take

advantage of the curvature [19]. The quickprop algorithm
uses second order derivatives in a fashion similar to
Newton’s method. Using quickprop in all the experiments
also ensures stability and continuity.

As discussed earlier, a bottom-up perspective uses data
from products instead of projects. Inputs for the neural
network will consist of software metrics extracts from
software. Normally, this could include size, complexity,
vocabulary, cohesion, coupling, etc. However, the premise
of this work is whether it is feasible to use metrics which
could be gathered early in the software life cycle to predict
project effort. Therefore, only a size-based metric, Source
Lines of Code (SLOC), is used as input. The other types of
product metrics, vocabulary, complexity, coupling,
cohesion, do not appear until the code is actually written.
The output value, programming effort, represents the
number of hours needed to code the form. A vector in a
neural network experiment corresponds to the metrics
extracted for an actual program. Table one depicts 104
vectors (computer programs) consisting of one input value,
the program’s size, represented as Source Lines of Code
(SLOC), and one output value, represented by effort. Effort
is the number of hours that was needed to write the
program.

Vector
Number

SLOC
(Input)

Effort
(Output)

1 21 1
2 58 1
: : :

103 1253 121
104 2796 160

Table 1: Training Data in the First Experiment

All experiments use a fully-connected neural network
architecture of 1-3-1 (see Figure 2), meaning one input, one
output, and one hidden layers of consisting of three nodes.

Figure 2: 1-3-1 Neural Network Architecture

In order to minimize experimental variance among
experiments, we standardized the experimental process.
Different components of each neural network model remain
constant. Alpha, which represents how quickly a neural
network learns, may range from zero to one. Alpha for
these experiments is one. Momentum, a variable which

helps neural networks break out of local minima, may also
range from zero to one. Momentum also is set to 1. The
threshold function is a function associated with each node
after the input layer. Function selection determines when a
node fires. Firing a node essentially propagates a value
further through the network. All experiments use an
asymmetrical sigmoid function as a threshold function.

One scan through the training data is considered an epoch.
Each experiment was limited to a maximum of 1,000
epochs. An automated log kept track of the most accurate
test results and corresponding epoch. A thousand epochs
offer sufficient opportunity for the neural network to
approach a solution. In previous neural network
experiments [11] a solution was reached within 100 epochs.

The “most accurate test results” is defined as number of
correct matches with 25 percent, or pred(25), of the actual
test values.

Data Suite 1: Electronic Commerce Software

The first dataset consists of 104 vectors (program units).
Each vector contains metrics (see Table one) extracted
from three major subsystems (buyer/supplier clients, and
electronic commerce manager) within one software
product. This product supports electronic commerce
(procurement) in the process industry.

Data Suite 2: Fleet Management Software

The second dataset consists of 434 vectors extracted from a
fleet management software corporation.

The baseline code for both datasets is based on software
written in Delphi. Furthermore, these datasets are
completely independent of each other in terms of
personnel, products, and actual metrics.

Experiment Set 1

The first set of experiments used the Fleet management
data as the training set (434 vectors) and the electronic
commerce data as the test set (104 vectors). Table two
illustrates this configuration.

Vector SLOC Effort
1 26 1
: : :

T
ra

in
in

g
D

at
a

434 4398 245

1 15 1
: : :T

es
t

D
at

a

104 2796 160
Table 2: Training/Test Data for the First Experiment

An experiment consists of training a neural network for
1000 epochs and recording when the trained neural network
generated the most accurate results against the test suite.
Normally, the best test results occurred within the first 150
training epochs.

 A total of ten experiments are performed. Each experiment
starts at epoch zero and all the weights are assigned random
values. The first set of experiments ran on average for
about 44 seconds on a 450 MHZ computer.

Table three shows the results from the first set of
experiments. These results show how accurate the neural
network is at estimating programming effort on a
“programming unit” basis. The 104 in the “Possible
Correct” column represents the total number of vectors in
the test suite. The “Actual Correct” column shows the
highest number of correct effort estimates for those vectors
in the test suite for a given epoch. Hence, a perfect score
would be 104. An estimate is considered correct if it is
within 25% of the actual value. “Percent Correct” divides
the “Actual Correct” by the “Possible Correct”.

Experiment
Possible
Correct

Actual
Correct

Percent Correct
pred(25)

1 104 11 11%
2 104 10 10%
3 104 11 11%
4 104 7 7%
5 104 12 12%
6 104 2 2%
7 104 8 8%
8 104 10 10%
9 104 14 13%

10 104 10 10%
Table 3: Product-based Results for Electronic

Commerce Test Data

Overall, this constitutes an average of 9% for pred(25).
This means a neural network can estimate the effort
required to develop a single module with 25 percent
accuracy reliably 9 percent.

These results are quite low. However, in the early life cycle
phases the concern is estimating project effort not product
efforts. To assess this approach from the project
perspective the actual product effort values are summated
and compared to the total software development effort for
the project. Table four shows these results.

Project Devel opment EffortExperiment
Number Actual Calculated

Project
Accuracy

1 2083 1958 -6%
2 2083 1962 -6%
3 2083 1998 -4%
4 2083 2238 7%
5 2083 2110 1%
6 2083 3412 64%
7 2083 2555 23%
8 2083 2104 1%
9 2083 2083 0%
10 2083 1777 -15%

Table 4: Project-based Results for Electronic
Commerce Test Data

Columns two and three for table four represent the
summation of the 104 actual and calculated effort values
for a given experiment. Collectively, the electronic
commerce consisted of 104 program units which required a
total of 2083 hours of effort. “Project Accuracy” is equal to
1 – (Calculated/Actual).

These results show an accuracy of pred(25) ninety-percent
of the time. The average difference between actual and
calculated for these ten experiments is 13 percent.

Experiment Set 2

The second set of experiments uses the electronic
commerce data as the training set (104 vectors) and the
Fleet management data as the test set (434 vectors).
Essentially the training and test sets exchanged places (see
Table 2). These experiments ran on average for about 35
seconds on a 450 MHZ computer.

This second set of experiments raises two questions. Would
104 training vectors be a sufficient amount for developing a
reasonable neural network model? Second, how does the
data extrapolation problem affect the results? The
electronic commerce data contains maximum values for
SLOC and effort of 2796 and 160 respectively. The Fleet
Management data contains SLOC and effort maximum
values of 4398 and 245 respectively. Thus, a trained neural
network could not produce an effort value greater than 160.

One approach to address this isssue is to scale the results by
the ratio of the maximum SLOC values for each data set. In
this case the scale factor is 1.57 (4398 divided by 2796).

Table five shows the results from the second set of
experiments. Column one is the actual number of vectors in
the test suite. Column two represents the actual number of
calculated estimates, on a programming unit basis, within
25 percent of the actual values. Column three is column
two divided by column one. Column four demonstrates
how accuracy improves by applying the scaling factor
described above. And column five is column four divided
by column one.

Possible
Correct

Actual
Correct

(raw scores)

% Correct
pred(25)

(raw scores)

Actual
Correct
(scaled)

% Correct
pred(25)
(scaled)

434 130 30% 142 33%
434 133 31% 96 22%
434 78 18% 179 41%
434 118 27% 172 40%
434 132 30% 136 31%
434 130 30% 117 27%
434 134 31% 68 16%
434 146 34% 241 56%
434 130 30% 117 27%
434 106 24% 118 43%

Table 5: Product-based Results for Fleet Management
Test Data

The overall raw and scaled averages for the individual
software components is 29 and 34 percent respectively
using a pred(25). These results are better than the first set
of experiments, but are quite low.

As described in the first set of experiments, the focus is on
the project effort, not the product effort. Once again the
program unit efforts are summated. Table six shows the
project assessments for the 10 experiments using both raw
and scaled results.

Actual Proj.
Development

Effort

Calc. Proj.
Dev. Effort
(Raw Score)

Project
Accuracy

(Raw Score)

Calc. Proj.
Dev. Effort

(Scaled)

Project
Accuracy
(Scaled)

15949 9464 -41% 14887 -7%
15949 8787 -45% 13821 -13%
15949 9066 -43% 14261 -11%
15949 9809 -38% 15429 -3%
15949 9281 -42% 14599 -8%
15949 8753 -45% 13768 -14%
15949 8640 -46% 13591 -15%
15949 10855 -32% 17074 7%
15949 8915 -44% 14022 -12%
15949 9299 -42% 14627 -8%

Table 6: Project-based Results for Fleet Management
Test Data

The first column represents the total effort for the fleet
management project. Column two shows the sum of the
calculated estimates. The extrapolation problem is evident
by the fact that project calculations for all the experiments
underestimated the actual effort deployed. Column three
shows the underestimation in percent format.

Column 4 scales the results from column 2. Column 5
depicts how close the scaled calculated estimates are to the
actual values. Visual inspection reveals that scaling plays
an important role in improving the results. None of the
project estimates (column 3) are within 25 percent,
pred(25), of the actual project estimate. However, the
scaled project estimate produces 100 percent for pred(25).

Both sets of experiments show that it is quite feasible to
estimate project effort from a bottom-up perspective. Issues
related to adopting such an approach are discussed in the
next section.

4. DISCUSSION

The experiments show that it is possible to summate and
scale a set of program units in order to arrive at the total
programming effort required for a project. The next
question is “How to incorporate this programming effort
estimate into a project estimate early in the life cycle?”

This approach is not intended to be the panacea for all
software development methodologies. However, for those
life cycle methodologies which create a prototype very
early in the process, then it is very appropriate. In this

situation stakeholders could create a list of components and
estimate the SLOC for each of the envisioned components.
These SLOC estimates serve as input to a trained neural
network. The calculated results could be summated to
generate a project programming effort (PPE).

Once the PPE is determine it needs to be scaled to account
for extrapolation. This is accomplished by dividing the
largest SLOC estimate by the largest SLOC value found in
the training set. We denoted the scaled PPE as SPPE.

There are two potential problems with generating the
SPPE. A poor estimate in terms of the largest component
will directly impact the calculated SPPE. The scaling
approach assumes a linear relationship. Answering these
questions will require further research.

This SPPE could then be multiplied additional factors
including testing effort, programming language, and
administrative overhead in order to determine project
effort.

Additionally, the PPE could also be integrated into the
COCOMO II Cost Model. In this case, the PPE would
replace the SIZE parameter in the COCOMO II Cost Model
equation.

Neither project (Electronic Commerce, Fleet Management)
was developed in an SEI level 3 environment. Most likely
each environment would be characterized as an SEI level 1
organization. The experiments show that it is possible to
construct reasonable project programming estimates in the
context of a poorly defined process.

5. CONCLUSIONS

Adopting a bottom-up approach for estimating project
effort is quite feasible. It is evident that poor product results
do not necessarily imply poor project results.

Using empirical data gathered from two separate
corporations and applying a neural network approach
produced average project effort estimates of 13 and 10
percent for each set of experiments. The experiments also
produced 90% and 100% accuracy for pred(25).

 Scaling the data, based on maximum SLOC values, helps
to compensate for extrapolation issues. Results improved
from an average accuracy of 42 to within 10 percent of
actual values.

This approach offers very good potential for those life
cycle methodologies which incorporate prototyping early in
the life cycle.

6. FUTURE DIRECTIONS

The process of adjusting results to account for extrapolation
issues is easy to implement. However, more analysis needs
to occur in order to refine the scaling of the PPE.

This approach focused on neural networks. A logical step

would be to apply other ML algorithms and to formulate a
hybrid model.

Another extension of this work would be to incorporate
additional metrics into the experiments. Possible candidates
include total number of modules, total number of objects,
and unique number of objects. All three are available early
in the software life cycle.

Experiments could be benchmarked against the COCOMO
II Cost model. Integrating this approach with COCOMO II
could explore the impact of programming languages,
process level, and reuse within a development environment.

Finally, running more experiments with additional data sets
would further validate these results.

7. ACKNOWLEDGMENTS

The author would like to thank Tim Menzies for his
insights and suggestions in the preparation of this paper.

REFERENCES

1. Abts, C., Clark, B., Devnani-Chulani, S., Horowitz, E.,
Madachy, R., Reifer, D., Selby, R., and Steece, B.,
“COCOMO II Model Definition Manual,” Center for
Software Engineering, University of Southern
California, 1998.

2. Albrect, A.J., Gaffney, J.E. Jr., “Software Function,
Source Lines of Code and DevelopmentEffort
Prediction: A Software Science Validation,” IEEE
Transactions on Software Engineering, 2 4, 1978, pp.
345-361.

3. Barker S., Sheppard, M., M. Aylett, “The Analytic
Hierarchy Process and Data-less Prediction,”
Proceedings 10th European Software Control and
Metrics Conference, Herstmonceux, Sussex, England,
1999.

4. Berger, Charles, Oracle9i Data Mining, June 2001, Pp.
1 – 16. Available at www.oracle.com.

5. Bisio, R., F. Malabocchia, “Cost Estimation of
Software Projects Through Case-Base Reasoning.”
Case-Based Reasoning Research and Development.
First International Conference, ICCBR-95
Proceedings, 1995, Pp.11-22.

6. Boehm, B., Software Engineering Economics,
Englewood Cliffs, NJ, Prentice-Hall, 1981.

7. Boehm, B., et al., “Cost Models for Future Software
Life Cycle Process: COCOMO 2,” Annals of Software
Engineering, 1995.

8. Boetticher, G., K. Srinivas and D. Eichmann, “A
Neural Net-Based Approach to Software Metrics,”
Proceedings of the 5th International Conference on
Software Engineering and Knowledge Engineering,

June 1993, Pp. 271-274. Available from
http://nas.cl.uh.edu/boetticher/publications.html

9. Boetticher, G. and D. Eichmann, “A Neural Net
Paradigm for Characterizing Reusable Software,”
Proceedings of the First Australian Conf. on Software
Metrics, November 1993, Pp. 41-49. Available from
http://nas.cl.uh.edu/boetticher/publications.html

10. Boetticher, G., “Characterizing Object-Oriented
Software for Reusability in a Commercial
Environment,” Reuse ’95 Making Reuse Happen –
Factors for Success, Morgantown, WV, August 1995.
Available from
http://nas.cl.uh.edu/boetticher/publications.html

11. Boetticher, G., “An Assessment of Metric Contribution
in the Construction of a Neural Network-Based Effort
Estimator,” Second Int. Workshop on Soft Computing
Applied to Soft. Engineering, 2001. Available from
http://nas.cl.uh.edu/boetticher/publications.html

12. Briand, Lionel C., Victor R. Basili, and William
Thomas. A Pattern Recognition Approach for Software
Engineering Data Analysis. IEEE Trans. on Soft. Eng.,
November 1992, Pp. 93-942.

13. Campbell, R.L., S.D. Conte and M.K. Rathi, “Early
Predictions of Software Size and Effort,” Technical
Report SERCTR10P, Software Engineering
Research Center, Purdue University, 1988.

14. Canegie Mellon Software Engineering Institute, The
Capability Maturity Model: Guidelines for Improving
Software Process, Addison-Wesley, Reading, Mass.,
1995.

15. Chulani, S., and Boehm, B., and B. Steece, “Bayesian
Analysis of Empirical Software Engineering Cost
Models”, IEEE Transaction on Software Engineering,
25 4, July/August, 1999.

16. Cordero, R., M. Costramagna, and E. Paschetta. “A
Genetic Algorithm Approach for the Calibration of
COCOMO-like Models,” 12th COCOMO Forum,
1997.

17. Curtis, B., Personal Conversation, International
Conference on Software Engineering, Baltimore,
Maryland, May, 1993.

18. Delany, S.J., P. Cunningham, “The Application of
Case-Based Reasoning to Early Project Cost
Estimation and Risk Assessment,” Department of
Computer Science, Trinity College Dublin, TDS-CS-
2000-10, 2000.

19. Fahlman, S.E., An Empirical Study of Learning Speed
in Back-Propagation Networks, Tech Report CMU-
CS-88-162, Carnegie Mellon University, September
1988.

20. Fenton, N.E., and Neil M, “Software Metrics:
Roadmap", The Future of Software Engineering (Ed.
Anthony Finkelstein) 22nd International Conference
on Software Engineering, ACM Press ISBN 1-58113-
253-0, 2000, Pp 357-370.

21. Finnie, G.,R., Wittig, G.,E., J.M. Desharnais,
“Estimating software development effort with case-
based reasoning,” Proceedings of International
Conference on Case-Based Reasoning, D. Leake, E.
Plaza, (Eds), 1997, Pp.13-22.

22. Halstead, M.H., Elements of Software Science,
Elsevier, NY, 1977.

23. Heemstra, F. “Software Cost Estimation,” Information
and Software Technology, October 1992, Pp. 627-639.

24. Hertz, J., Krogh A., R.G. Palmer., Introduction to the
Theory of Neural Computation, Addison Wesley, New
York, 1991.

25. Hihn, J., H. Habib-Agahi, “Cost Estimation of
Software Intensive Projects: A Survey of Current
Practices,” Proceed-ings of the International Conference on
Software Engineering, 1991, Pages 276-287.

26. Hinton, G.E., “How Neural Networks Learn from
Experience,” Scientific American, September, 1992,
Pp. 144-151.

27. Hodgkinson, A.C., Garratt, P.W., “A Neurofuzzy Cost
Estimator,” Proc. 3rd International Conf. Software
Engineering and Applications (SAE), 1999, pp. 401-
406.

28. Kadoda, G., Cartwright, M., Chen, L. and Shepperd,
M., “Experiences Using Case-Based Reasoning to
Predict Software Project Effort,” Empirical Software
Engineering Research Group Technical Report,
Bournemouth University, January 27 2000.

29. Kumar, S., Krishna, B. A., Satsangi, P.J., "Fuzzy
Systems and Neural Networks in Software Engineering
Project Management," Journal of Applied Intelligence,
4, 1994, Pp. 31 - 52.

30. McCabe, T.J., “A Complexity Measure,” IEEE
Transactions on Software Engineering, 2 4, December
1976, pp. 308-320.

31. Mendonca, M, and N.L. Sunderhaft, “Mining
Software Engineering Data: A Survey,” Data &
Analysis Center for Software, 1999.

32. Menzies, T., “Practical Machine Learning for Software
Engineering and Knowledge Engineering,” Handbook
of Software Engineering and Knowledge Engineering,
2001. Available from
http://tim.menzies.com/pdf/00ml.pdf.

33. Menzies, T. and J.D. Kiper, “Machine Learning for
Requirements Engineering,” Submitted to KCAP-
2001, 2001.

34. Mukhopadhyay, Tridas, and Sunder Kekre, “Software
effort models for early estimation of process control
applications,” IEEE Transactions on Software
Engineering, 18 (10 October), 1992, Pp. 915-924.

35. Paulk, M.C., and B. Curtis and M.B. Chrissis and C.V.
Weber, “Capability Maturity Model, Version 1.1,”
IEEE Software, 10 4, July, 1993, Pp. 18-27.

36. Porter, A.A., and R.W. Selby, “Empirically Guided
Software Development Using Metric-Based
Classification Trees,” IEEE Software, March, 1990,
Pp. 46-54.

37. Prietula, M., S. Vicinanza, T. Mukhopadhyay,
“Software effort estimation with a case-based
reasoner,” Journal of Experimental and Theoretical
Artificial Intelligence, 8(3-4), 1996, Pp. 341-363.

38. Putnam, L.H., “A General Empirical Solution to the
Macro Software Sizing and Estimating Problem,”
IEEE Transactions on Software Engineering, 2 4,
1978, pp. 345-361.

39. Quinlan, R., C4.5: Programs for Machine Learning,
Morgan Kaufman, 1992.

40. Samson, B., Ellison, D., Dugard, P., “Software Cost
Estimation Using an Albus Perceptron,” Information
and Software Technology, 1997, pp. 55-60.

41. Seidman, C., Data Mining with Microsoft SQL®
Server™ 2000, Microsoft Press, 2001.

42. Shavlik, J.W., Mooney, R.L., and G.G. Towell,
Symbolic and Neural Learning Algorithms: An
Experimental Comparison, Machine Learning", 1991,
Pp. 111-143.

43. Sheppard, M., M. Cartwright, “Predicting with Sparse
Data,” 7th IEEE Intl. Metrics Symp., London, UK,
April 4-6, 2001

44. Srinivasan, K., and D. Fisher, “Machine Learning
Approaches to Estimating Software Development
Effort,” IEEE Trans. Software Engineering, February,
1995, Pp. 126-137.

45. The Standish Group, CHAOS Chronicles, Standish
Group Internal Report, 1995.

46. Strike, K., El-Emam, K., Madhavji, N.. Software Cost
Estimation with Incomplete Data. NRC/ERB-1071: 50
pages. January 2000.

47. Wittig, G., Finnie, G., “Estimating software
development effort with connectionist models,”
Information and Software Technology, 1997, pp. 469-
476.

