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ata mining is an application-driven field
where research questions tend to be
motivated by real-world data sets. In
this context, a broad spectrum of for-
malisms and techniques has been pro-
posed by researchers in a large number
of applications. Organizing them is

inherently rather difficult; that’s why we
highlight the central role played by the different types
of data motivating the current research. 

We begin with what is perhaps the best-known data
type in traditional data analysis, namely, d-dimen-
sional vectors x of measurements on N objects or indi-
viduals, or N objects where for each object we have d
measurements or attributes. Such data is often referred
to as multivariate data and can be thought of as an N
� d data matrix. Classical problems in data analysis
involving multivariate data include: classification
(learning a functional mapping from a vector x to y,
where y is a categorical, or scalar, target variable of
interest); regression (same as classification, except y,
which takes real values); clustering (learning a function
that maps x into a set of categories, where the cate-
gories are unknown a priori); and density estimation
(estimating the probability density function, or PDF,
for x, p(x)).

The dimensionality d of the vectors x plays a signif-
icant role in multivariate modeling. In problems like

text classification and clustering of gene expression
data, d can be as large as 103 or 104 dimensions. Den-
sity estimation theory shows that the amount of data
needed to reliably estimate a density function scales
exponentially in d (the so-called “curse of dimensional-
ity”). Fortunately, many predictive problems, including
classification and regression, do not need a full d-
dimensional estimate of the PDF p(x), relying instead
on the simpler problem of determining a conditional
probability density function p(y|x), where y is the vari-
able whose value the data miner wants to predict.

Traditional modeling methods from statistics and
machine learning, including linear regression, logistic
regression, discriminant analysis, and Naive Bayes
models, are often the first tools used to model multi-
variate data. Newer predictive models, including addi-
tive regression, decision trees, neural networks,
support vector machines, and Bayesian networks, have
attracted attention in data mining research and appli-
cations, as modern computing power has allowed data
miners to explore more complex models. These pre-
dictive models often sacrifice interpretability for
increased flexibility in the functional forms they
accommodate. The trade-off between flexibility and
interpretability often drives the choice of method
applied to a particular multivariate data set.

Recent research has shown that combining different
models can be effective in reducing the instability that
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results from predictions using a single model fit to a
single set of data. A variety of model-combining tech-
niques (with exotic names like bagging, boosting, and
stacking) combine massive computational search
methods with variance-reduction ideas from statistics;
the result is relatively powerful automated schemas for
building multivariate predictive models.

As the data miner’s multivariate toolbox expands, a
significant part of the art of data mining is the practi-
cal intuition of the tools themselves [8].

Transaction Data
A common form of data in data mining in many busi-
ness contexts is records of individuals conducting
“transactions”; examples include consumers purchas-
ing groceries in a store (each record describes a “mar-
ket basket”) and individuals surfing a Web site (each
record describes the pages requested during a particu-
lar session). Employing the multivariate viewpoint, we
can conceptually view this data as a very sparse N � d
matrix of counts, where each of the N rows corre-
sponds to an individual basket or session, each of the
d columns corresponds to a particular item, and entry
(i, j) is 1 if item j was purchased or requested as part of
session i and is 0 otherwise.

Both N and d can be very large in practice. For
example, a large retail chain or e-commerce Web site
might record on the order of N = 106 baskets per week
and have d = 105 different items in its stores available
for purchase or downloading. These numbers pose sig-
nificant challenges from both the point of view of
being computationally tractable and being amenable
to traditional statistical modeling. For example, in a
store with 105 different items and 106 baskets per
week, simply computing a pairwise correlation matrix
requires O(Nd2) time and O(d2) memory, resulting in
numbers of 1016 for time and 1010 for memory.

However, data miners routinely take advantage of
the fact that transaction data is typically sparse; for
example, since the average grocery basket might con-
tain only 10 items, having only a few items in a basket
means that only 10/50,000, or 0.02%, of the entries
in the N � d transaction matrix are nonzero. A sub-
stantial body of work in data mining research focuses

on the idea of using subsets of items represented in
each market basket, the so-called itemsets I, as “infor-
mation nuggets” in large high-dimensional transaction
data sets; an example of an itemset is the combination
of products bread, wine, and cheese in baskets
in a grocery store. Several variants of efficient algo-
rithms are available to find all frequent itemsets from
a sparse set of transaction data, work originating with
[1]; more recent developments are summarized in [7].
Frequent itemsets are itemsets I such that fI > T, where
the frequency fI is the number of rows in which all the
items in I were purchased and T is some preselected
count threshold, such as T = 0.001 � N.

Another strand of research takes a more statistical
view of market basket data as a density estimation
problem rather than a search problem. A methodology
for finding statistically significant itemsets, that is,
itemsets I whose empirical frequency varies signifi-
cantly from the frequency expected by a baseline
model (see illustrative visualizations at www.ics.
uci.edu/~smyth/cacm02/). Determining statistical sig-
nificance in this context is a subtle problem. A
Bayesian approach can uncover complex multi-item
associations ignored by more traditional hypothesis-
testing techniques. It has been used by the U.S. Food
and Drug Administration to search large post-market
surveillance databases for significant but relatively rare
adverse reactions—a good example of the marriage of
computationally oriented data mining ideas with more
traditional inferential theories from statistics. Increas-
ingly, much of the research work in data mining occurs
at this interface of computational and inferential
approaches.

Frequent itemsets can also be viewed as constraints
on the set of all possible high-order probability models
for the data [11]. The technique of maximum entropy
estimation provides theoretical framework for estimat-
ing joint and conditional probability distributions
from the frequent itemsets that can then be used for
forecasting and answering queries. Unfortunately, the
maximum entropy approach scales exponentially in
the number of variables as to model (in both time and
memory), limiting the technique in practice to rela-
tively short queries or low-dimensional models.  
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Viewing transaction data as a sparse N � d matrix
is a gross oversimplification of the true situation of the
true structure of the data in most applications. Typi-
cally, real transaction data has significant additional
structure at various levels of detail; for example, retail
items are usually arranged in product hierarchies, and
Web pages can be related to each other (through
hyperlinks) or can be instances of a more general data-
base schema. Thus, the columns of a data matrix, such
as products and Web pages, can themselves have attrib-
utes (such as price and content), as well as implicit
inter-item relationships. Similarly, the rows in a trans-
action data set can also have significant structure man-
ifested by hourly, weekly, and seasonal temporal
patterns.1 While some of these techniques explicitly
exploit this structure, many open research challenges
remain. Clear, however, is that techniques exploiting
special structure in the data are likely to produce much
more valuable insights and predictions than techniques
that choose to ignore this structure.

Data Streams
The term “data stream” pertains to data arriving over
time, in a nearly continuous fashion. In such applica-
tions, the data is often available for mining only once,
as it flows by. Some transaction data can be viewed this
way, such as Web logs that continue to grow as brows-
ing activities occur over time. In many of these appli-
cations, the data miner’s interest often centers on the
evolution of user activity; instead of focusing on the
relationships of items (columns), the data miner
focuses on modeling individuals or objects (rows).

Data streams have prompted several challenging
research problems, including how to compute aggre-
gate counts and summary statistics from such data [6].
A related problem is that of incremental learning,
whereby a global model is assumed for the data stream,
and the model is estimated incrementally as data
arrives. A good example of this approach for online
adaptation of classification tree models uses analytical
probabilistic bounds to guide the degree to which the
model needs to be updated over time.

Another aspect of data stream research involves scal-
ing traditional ideas in statistical data analysis to mas-
sive, heterogeneous, nonstationary environments.
Using large streams of call-record data in, for example,
the telecommunications industry, statistical models
(called signatures) can be built for individual telephone
customers [9]. Note that the collection of customer

signatures resulting from this methodology can be
viewed in a database context as a statistical view of the
underlying transaction data. Thus, the derived data
can help provide approximate (in the statistical sense)
answers to queries. Numerous applications of these
techniques tackle problems in forecasting, fraud detec-
tion, personalization, and change detection.

Graph- and Text-based Data
The possibility of discovering patterns in large graphs
also motivates data mining interest. We can think of
representing N objects as nodes in a graph, with edges
representing relationships among objects. Such “data
graphs” appear in multiple settings; for example, the
Web can be viewed as a graph where nodes are pages
and hypertext links are edges. Similarly, user browsing
behavior can be viewed as a bipartite graph where
nodes are either users or Web pages, and the edges are
pages users have visited. An inevitable question arising
from a graphical view of the Web is: What kind of
structure can be automatically discovered from its
topology? Research suggests, for example, the graph
structure underlying the Web is distinctly nonrandom
and possesses many interesting properties.

Graphs can be represented by an adjacency matrix
conveying the nodes as row/column labels and edges as
cell entries. Such matrices are indeed large, and fortu-
nately, sparse. That is, all nodes in a real graph are not
created equal; some have an extremely high degree, or
outgoing or incoming edges, while the vast majority
barely have degree 1. If the nodes are sorted according
to their degree, the result is often “laws” of the form

degree � 1/ranka

where a is often termed the “degree” exponent [4].
The matrix representation of a graph suggests that

many classical methods in linear algebra are likely to be
extremely useful for analyzing the properties of graphs.
Indeed, the singular value decomposition is the engine
behind many powerful tools, including latent seman-
tic indexing, the “hubs and authorities” algorithm, and
Google’s PageRank algorithm. Reflecting what can be
discovered from connectivity information alone,
PageRank uses a recursive system of equations, defin-
ing the importance of each page in terms of the impor-
tance of the pages pointing to it. The importance (or
page rank) of each page can then be determined by
solving this set of linear equations. Once again, sparse-
ness is important from a computational point of view.
Since the number of outlinks per page is on average
extremely low relative to the total number of pages on
the Web, this system of linear equations is sparse, and
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an iterative algorithm typically converges on a solution
rather quickly.

Hyperlink connectivity represents only one type of
Web data. The navigation patterns of Web surfers,
obtained from Web logs, also represent opportunities
for prediction, clustering, personalization, and related
techniques, often referred to as “Web mining” [10].

Web content, including text documents, is another
vast and readily available data source for data mining
[2]. Considerable progress in text classification and
clustering has been made by representing text as “term
vectors” (a vector where component j is 1 if the docu-
ment contains term j and 0 otherwise). Nevertheless,
modeling documents at a richer semantic level is
clearly worthwhile for, say, trying to identify the rela-
tions among sets of objects, such as documents [5].

Scientific Data
While many data mining applications focus on
commercial applications, such as credit scoring,
fraud detection, and Web personalization, data min-
ing as a tool for scientific discovery also motivates
research interest. For example, data in the form of
DNA and protein sequences, microarray-based gene
expression measurements, and biological images has
revolutionized the fields of biology and medicine.
Biologists often spend more time looking at data
than through a microscope. Since much biological
research is data-rich and relatively theory-poor, data
mining research promises significant opportunities
for assisting biologists pursuing new scientific dis-
coveries. Rather than viewing the field of computa-
tional biology as just applications, data miners find
themselves confronted with interesting and funda-
mental research challenges from a number of per-
spectives, including modeling, inference, and
algorithmic. For example, the discovery of “motifs”
in DNA sequences is an example of a biologically
motivated data mining problem. Motif discovery
can involve prior knowledge as to the number of
motifs (such as one per sequence) and their exact or
expected lengths. However, little knowledge is typi-
cally available as to where the motifs occur in each
sequence or what symbols they contain. Related
research is driven by development of both score

functions for patterns (to be interesting, a pattern
must differ from the background in a systematic
way) and efficient search techniques to locate the
likely candidates from the combinatorially large
space of possible patterns in a set of sequences. Ideas
from systematic search, heuristic search, and sto-
chastic search have all proved useful in this context.
Several publicly available algorithms are used in
computational biology for motif-discovery, each
combining basic statistical models with massive
search capabilities [12].

Scientists in other disciplines also have an increased
awareness of the importance of data mining; for exam-
ple, in astronomy, the Sloan Digital Sky Survey gener-
ates 5TB of data annually, leading to significant data
engineering challenges (see www.sdss.org). An impor-
tant research topic concerning such data is how to
develop efficient algorithms to perform common data
analysis tasks, including clustering and density estima-
tion, on massive data sets. Multiresolution kd-trees, or
a flexible data structure for indexing data in multiple
dimensions, can provide orders of magnitude speed-
ups in the density estimation of astronomical data
using mixture models [3].

One research area conspicuous by its absence in
data mining research, yet tremendously important in
practically any scientific context, is human-computer
interaction for discovery; for example, how can the
algorithm designer and the scientist represent prior
knowledge so the data mining algorithm does not just
rediscover what is already known? and How can scien-
tists “get inside” and “steer” the direction of a data
mining algorithm? While some research on these top-
ics has been pursued in a number of areas, including
artificial intelligence and statistics, it has had relatively
little effect on data mining in general.

Conclusion
The data mining innovations being implemented
worldwide often involve collaborations among
domain experts, computer scientists, and statisticians.
We expect these application-driven developments will
continue to proliferate as data owners seek new and
better ways to gain insight into their data. We can
hope that a more synergistic view of data mining,
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combining ideas from computer science and statistics,
will gradually emerge to provide a unifying theoretical
framework for many of these efforts.  
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