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Abstract

The ideal situation for a Data Mining or Knowledge Discov-
ery system would be for the user to be able to pose a query
of the form “Give me something interesting that could be
useful” and for the system to discover some useful knowl-
edge for the user. But such a system would be unrealistic

as databases in the real world are very large and so it would
be too inefficient to be workable. So the role of the hu-
man within the discovery process is essential. Moreover, the
measure of what is meant by “interesting to the user” is de-
pendent on the user as well as the domain within which the

Data Mining system is being used.
In this paper we discuss the use of domain knowledge

within Data Mining. We define three classes of domain
knowledge: Hierarchical Generalization Trees ( HG-Trees),
Attribute Relationship Rules (AR-rules) and Environment-
Based Constraints (EBC). We discuss how each one of these

types of domain knowledge is incorporated into the dis-
covery process within the EDM (Evidential Data Mining)
framework for Data Mining proposed earlier by the authors
[ANAN94], and in particular within the STRIP (Strong Rule
Induction in Parallel) algorithm [ANAN95] implemented within
the EDM framework. We highlight the advantages of using
domain knowledge within the discovery process by provid-
ing results from the application of the STRIP algorithm in
the actuarial domain.
Keywords: Data Mining, Knowledge Discovery in Databases,
Domain Knowledge, Evidence-based discovery

1 Introduction

Data stored in computers is growing in volume very rapidly

indeed with data being collected in scientific as well as busi-
ness domains. Though the collection and generation of data
is on the increase (e.g. from the Human Genome Project
[FASM94]), techniques for using the data in beneficial ways
are slow to develop. Most of the data being collected is
never analyzed and ends up on archive files, which are per-

haps never to be re-opened. The realization that hidden
within these masses of data is useful knowledge which can
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Figure 1: A Model for Data Mining or Knowledge Discovery
in Databases

be of great use within the domain in which the data was col-
lected lead to a great amount of effort and resources being
channeled into Knowledge Discovery in Databases or Data
Mining [FRAW91, PIAT91, PIAT93].

The ideal situation for knowledge discovery would be
where the discovery process is not biased by the user in any
way as this would lead to a pure form of discovery where the
user isn ‘t reallv aware of what mav be discovered. But such

a discovery system is not a viable option as the amount of
knowledge that can be discovered from a data set far exceeds

the amount of data. In fact this would effectively entail the
use of another tool to discover knowledge, this time from
the large amounts of knowledge discovered by a Data Min-
ing tool. A more realistic discovery tool has within it a role

for the human. Figure 1 shows our model for a Data Mining
tool.

The user provides two kinds of information:
1. Domain Knowledge
2. Bias Information
Domain Knowledge consists of information about the

data that is already available either through some other

discovery process or from a domain expert. We can claa-
sify domain knowledge into three classes: Hierarchical Gen-
eralization Trees ( HG-Trees ), Attribute Relationship Rules
(AR-rules) and Environment Based Constraints (EBC). HG-
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Trees rer.mesent generalizations of attribute values that may
be of in~erest to-the user, e.g. a date field can be generaf_-
ized into decades. This has two advantages: firstly, patterns
involving these fields may be more visible when using the
generalized attribute vafues, and secondly they may be more
useful to the user. For example, in the actuarial domain a

rule of the kind
if man is born on the 1st of October, 1956

has policy wJ1 lapse

is less useful than a rule of the type
if man is in his late 30’s then has pol~cy wdl lapse.

AR-rules can clearly take many forms. A good example is
that of integrity constraints defined within the design of the
database or information already known with high certainty
to the user. Such information can be used to constrain the
search space of the discovery process [B ELL93]. EBCS are
constraints put on the discovery process by the discovery
environment. For example, in a database of spatial informa-

tion one of the images may have been recorded with a very
skew angle on the object. When processing the database the
dk.covery process must take this information into account.
Another EBC may be a method for meamring the interest-
ingness of a rule discovered. We discuss these three types of
domain knowledge in greater detail in section 3 and describe
how each type of domain knowledge can be incorporated into
the discovery process within the EDM framework for Data
Mining proposed earlier by the authors [ANAN94].

Bias Information provided by the user consists of infor-
mation like the attributes of interest within the data, which
attributes are of interest as antecedents and which as con-
sequent and support and uncertainty bounds requirements

for rules discovered. These are refered to by Agrawal et. al.
as Syntactic and Support constraints [AGRA93].

The rest of the paper is organised as follows: In section 2
we define the Evidential Data Mining (EDM) framework for
Data Mining proposed earlier by the authors. In section 3 we

discuss the three kinds of domain knowledge and describe,
via examples, how they are incorporated into the discovery
process within EDM. In section 4 we discuss different tech-
niques, including domain knowledge, used by the STRIP
(Strong Rule Induction in Parallel) algorithm for pruning
the search and rule space, and section 5 illustrates how the
incorporation of domain knowledge affected the knowledge

discovered within an actuarial application using the STRIP
Algorithm implemented within EDM.

2 EDM: The Evidential Data Mining Framework

EDM is a framework for Data Mining based on Evidence
Theory. EDM consists of two main parts: a data and knowl-
edge representation part and the discovery operators. Data
stored in databases is considered to be evidence supporting

difference pieces of knowledge. This data is represented in
the form of mass functions as defined below:

.>AI ~ ~A2 x ...2An --+ [0, 1]m;.

where the A,s are the frames of discernment ] of each of the
attributes in the table e.g. the tuple

< Morrwon, 14, IndzaSt., Belfast, NULL >

is represented as

1A frame of discernment here IS a mutually exclusive and exhaus-

tive set of propositions of Interest (although ]t can be general]sed to

any boolean algebra)

m < {Morrtson}, {14}, {lndza St.}, {BeJfast}, As >= s,

where s, is the ratio of the number of occurrences of the
tuple to the total number of tuples.

The example mass function above highlights one of the
advantages of using an Evidence Theory approach to Data
Mining. Evidence Theory allows an expression of ignorance
which is an intuitive way of treating NULL or missing values

in databases. In the above example the missing value for the
fifth attribute in the tuple is represented as the whole frame
of discernment for the attribute i.e. As. By this ignorance
representation mechanism, Evidence Theory provides an ac-
curate representation of the data stored in databases. As
more evidence is collected the discovery process transfers its
present belief associated with ignorance to rules supporLed
by the evidence. For a discussion of the advantages of using

Evidence Theory for Data Mining the reader in referred to
IANAN941
L A rule’ discovered within the framework has three val-
ues associated with it - representing the uncertainty, sup
port and interestingness, using a generalization of Piatetsky -
Shapio’s measure for interestingness [PIAT91a], of the rule.
These values allow the pruning of the rule space thereby
protecting the user from being inundated with rules.

Rules are represented in the form of rule mass functions
defined below:

M:2AX2C +[O,l]X [0,1] X[–1,1]

satisfying
1. M(< Y, O>)= (0,0,0), VY CA

2. ~xcc M[l](< Y,x >) = 1, VY ~ A

XY;,4,XCC M21(< y, X >) = 1

0< EXC-C A4[3](< Y,.% >) < n(Y)/n

where, A is ~he frame of discernment of Antecedents
and C is the frame of discernment of Consequent
and n(Y) ]s the number of tuples satisfying the antecedent
and n is the number of tuples in the data from which the
rule has been discovered
and M[l], M[2] and M[3] represent the uncertainty, support
and interestingness associated with the rule, respectively,

that are the components of the 3-tuple that M maps rules
to.

The M[l] component corresponds directly with the def-
inition of the mass function within DemPster-Shafer Evi-
dence Theory.

The discovery process within EDM consists of a series
of operators on the mass functions and rule mass functions

defined above. The operators are classified into: Combi-
nation, Domain, Induction, Statistical and Updating oper-
ators depending on the function performed by each oper-
ator. The Induction operator collates evidence supporting
diflerent rules from an individual sample. The Combination
operators combine evidence supporting different rules col-
lected (using Induction operators) from different samples of
the database to give an overall belief in each of the rules sup
ported by the database. The domain operators are the topic
of our discussion in this paper. Each Domain operator incor-
porates a different type of domain knowledge as we will see
in section 3 below. These include the conventional Evidence
Theory operators: Coarsening and Discounting. The Coars-
ening operator incorporates H G-Trees type knowledge, a
new operator called the ar-fz~ter operator incorporates AR-

rules and the Discounting operator incorporates EBC knowl-
edge. The role of the LTpdate operators is to keep the discov-
ered knowledge and the data consistent after updates have

38



been made to the data. The Statistical operators provide
statistical functionality required within the discovery pro-
cess.

3 Domain Knowledge in EDM

Domain Knowledge is a useful way of constraining or prun-
ing the search space for a discovery process, enhancing the
performance of the system. In Data Mining users are often
not aware of what they are looking for, and therefore it is
important for a Data Mining system to be able to function
independently of any help from the user. However, if the
user does have some background information, i.e Domain
Knowledge, the discovery system should be able to use it.

The Domain Operators in EDM aflow the incorporation
of Domain Knowledge into the discovery process. Within
EDM, at present, we use three types of Domain Knowledge:

1. Attribute Relationship (AR) rules
2. Hierarchical Generalization ( HG ) trees
3. Environment-Based Constraints (EBC)
Domain Knowledge works in two ways within a discovery

system. Firstly, domain knowledge can be used to constrain
the search space and the rule space of the discovery process
e.g. AR-rules (discussed in further detail in section 3.1).
Secondly, domain knowledge can make patterns in the data
more visible [H AN94] e.g. using HG-Trees we can generalize
the data thus bringing out patterns that were not visible at
less coarse grained data levels (see section 3.2).

Mallen et. al. [MALL95] use two types of Domain
Knowledge in their Knowledge Discovery system, CUPID:
Generalization Trees (that correspond to our HG Trees) and
Intentional or Constructed Attributes. In EDM Intentional
Attributes are assumed to be defined in the virtual data
view [MAG195] and are not considered as part of Domain
Knowledge.

In this section we discuss what we consider as constitut-
ing Domain Knowledge and how we incorporate it into the
discovery process.

3.1 Attribute Relationships Rules (AR-ruies)

This type of domain knowledge consists of rules, referred to
as AR-rules, that the domain expert provides about the data

or rules that have been discovered using another discovery
techniques. Within databases we already have some AR-
rules in the form of intemitv constraints that were defined at
the design stage of the ~at~base. These can be incorporated
within the discovery process using techniques discussed in

this section. AR-rules are also available from a number of

other sources. For example, in a personnel database the
domain expert may provide the following domain knowledge

if (income > 45000) then

job = {Manager, Managing Dmector, Ezecatzue Dtrec-

tor}

or

:f (Car.Allowance = Yes) then
job = {Salesman, Branch Darector}

or

job = {System Analyst, Programmer, IT Manager}

The first AR-rule specifies that the job specification for
anyone with an income of more than 45000 pounds per an-
num is either a Manager, Managing Director or Executive
Director. It may be possible that there are people with other
job specifications that receive a salary of over 45OOO but they
are not of interest and are pruned off using the ar_filter

operator as shown below. The second AR-rule states that

if a person is receiving a car allowance then his/ her job
specification must be either Salesman or Branch Manager.
Both these rules specify a subset of the domain of the at-
tribute job that is of interest whenever the Antecedent of

the rule is true. The third AR-rule specifies a subset of the
domain of attribute job which is of interest no matter what

the Antecedent may be. This last AR-rule is a generaliza-
tion of the Syntactic Constraint suggested by Agrawal et. af.
[AGRA93] as not only can we specify attributes of interest
but also subsets of the domain of the attribute of interest.

Such Domain Knowledge can be represented in the form
of rule mass functions (see section 2) as follows:

ml (<{zncome > 45000}>,<{ Manager, Monagmg Direc-
tor, Execut:we Dwector}>) = (1, O, O)

and

mz(< {Car. Allowance = Yes} >,<{ Salesman, Branch Di-
rector }>) = (1, O, O)

and

ms (<>, <{System Analyst, Programmer, IT Manager}

= (1, o, o)

We now discuss how AR-rules of the kind described above
can be incorporated within the discovery process. A new do
main operator known as the ar_filter operator, b~ (m is a
rule mass function representing the AR-rules to be incor-

porated into the discovery process), is used to incorporate
AR-rules into the discovery process. The ar_fdter opera-
tor is a unary operator on a mass function and takes as its
parameter a rule mass function representation of the AR-
rules. For all components of the mass function being oper-
ated upon, the ar.fdter operator intersects the consequent

fields with the corresponding fields in the mass function com-
ponent with the same antecedent field values.

Let us consider a relation in a Housing database R(Name,

Age, Rent, St.address, Post_ Code, No-oj.Bedrooms, No_of_

Inhabitants).

Suppose an expert in the local housing agency provides
the following domain information:

tjpost-code = BT7 then Noaf_Bedrooms = 3, 4 or s

afpost-code = BT9 then No_of_Bedrooms = 1 or .2

tf no-o f_2nhabatants >6 then No~f-Bedrooms = 4, 5,
6or7

Post-Codes of Interest are BT7, BT9, BT1l and BT1

This domain information can be stored in the form of

rule mass functions as follows:
ml(< {BT7} >,< {3,4,5} >) = (1,0,0)

ml(< {~~9} >,<, {1,2} >) =(1,0,0)

mz(< {~l(z > 6 A z C @No.~!-fnhatntants )} >,<{4, 5, 6,
7}>) = (1, o, o)

ms(<>, < {BT7, BT9, B7’11, BT1} >) = (1,0,0)
Given an Antecedent Set a rule mass function is defined

as described in section 2. [n the domain knowledge above
the first two rules have the same Antecedent set and, there-
fore, form components of the same rule mass function. The
third and fourth pieces of domain knowledge do not have the
same Antecedent specification and therefore form separate
rule mass functions. Based on the three rule mass func-
tions defined above we can define three ar.filter operators

~ml, ~m2, Jm3.

Now suppose we have the following mass function from
the Housing database:

m({Morrts}, {34}, {250}, {4 Canterbury Street}, {BT7},

eNo_of-Be.rooms , {7}) = .2
m({Harvard} ,{5’6}, {150},{ 15 Durham Street}, {BT3},

{3}, {4}) = .2
m({O’Ma//ey}, {22}, {100}, {6 Falls Road}, {BTII},

@No-of -Bdw_wu , { ~}) = .2
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m({f?eid}, {45}, {175}, {4 Newtownards Road}, {BT9},

{4}, {8}) = .2
m({Croft}, {78}, {.900}, {14 Cairo Street}, {BT6}, {4},

{6}) = ..2

Applying the ar.~iiter operator Jml, the new mass func-

tion has the 1st component changed to

~~, rn({A40rri.s}, {94}, {250}, {~ Canterbury Street},

{BZ’7}, {3,4,5}, {7}) = .2

Now applying Jm2 we get2
6~2J~, m({Morris}, {34}, {250}, {4 Canterbarv

Street}, {BT7}, {4,5}, {7}/ = .2

&,&l m({ O’Ma/ley}, {22}, { 100}, {6 Falls Road},

{BZVI}, {J,5,6,7}, {7}) = .2

The other components remain unchanged. Thus, using

AR-rules the search space is pruned from all possible values
of the No-of .Bedrooms attribute to the values {4, 5} and

{4, 5,6, 7} for the 1st and 3rd components, respectively, of

the mass function. Notice that a transition has taken place

from total ignorance, @jVo.-oJ_B.~wOrnS , to some knowledge
{4, 5} and {4,5,6,7} respectively.

Now applying 15~, we get
J~3J~,15~, m({A40rris}, {34}, {250}, {~ Canterbury

Street}, {BT7}, {4,5}, {7}) = .2

J~,&,15~1 m({Harvard}, {36}, {150}, {15 Durham

Street}, 0, {3}, {4}) = .2
J~,15~,6~, m({ O’Mafley}, {22}, { 100}, {6 Falls Road},

{BZVI}, {~,5,6,7}, {7}) = .2
J~,J~,6~, m({Reid}, {45}, { 175}, {4 Nerutoumards

Road}, {BT9}, {4}, {8}) = .2

&,&,4~1 m({ Croft}, {78}, {300}, {14 Cairo Street},

0, {4}, {6}) = 2
The ar.filter operator is commutative as the set oper-

ation of intersection is commutative. However, AR-rules of
the type represented by ms must be applied after all AR-
Rules with a specific Antecedent specification have been ap-
plied.

Now the mass function can be used as evidence to dis-
cover rules by the STRIP algorithm.

3.2 Hierarchical Generalization Trees (HG- Trees)

Very often data stored in databases needs to be generalized
in order to get meaningful or useful information [HA N94].
For example, finding rules that associate the date of birth of

a customer with the car he drives is less useful than finding
rules that associate an age bracket with a car type.

An HG-Tree can have a number of levels of coarseness
(each represented as a different level in the HG-Tree). Figure
2 shows an example HG-Tree.

Such Domain Knowledge is stored and incorporated into
the discovery process by using evidential coarsening opera-
tors. A Coarsening operator [GUAN91, GLJAN92] is defined
as the mapping below:

coar : 2° ---+ 2n

where ~ is the frame of discernment at a lower level of the
HG-Tree and fl is the frame of discernment at a higher level
of the HG-Tree

Thus for the example in Figure 2 one level of the coars-
ening operator would be as shown below:

coar({BT3, BT4, BT5, BT6}) = East

coar({BT9, BTIO}) = A4alone

‘Notice the fact that the (1,0,0) mass simplifies our i}lustratlon

here In general, for AR-rules, the mass (x,O,O) can be associated
with rules, where x lies in the Interval [0,1].

NorOiem held

Self8sl Co. Amrim co. 00wrl

K “K ‘“~dK“””efi
BT? BT4 BT5 BT6 BT9 BTIO

BT96AG BT970X

BT18 BY-19 BTzo ST34 BT35

/A
BT19 2QT BT204JP BT204S

92 93
Lwkm Rd. ““’”” Lidmm Rd

Figure 2: Example HG-Tree

coar({BT7, BT8}) = Orrneau

coar({BT14, BT15}) = North

For each pair of levels of coarseness a coarsening operator
can be defined as above but care must be taken during the

generalization process not to over-generalize, as this causes
unacceptable loss of information. Thus, the construction of

HG-Trees is a very important part of the discovery process.
Han et. al. have shown how HG-Trees can be generated
dynamically [HAN94a].

The coarsening operator is a unary operator on mass
functions. It replaces the data values from a lower level
of the HG-Tree, appearing in the mass function, with the

corresponding value at a higher level of the HG-Tree.

3.3 Environment-Based Constraints (EBC)

When combining evidence from different sources a user might
want to bias the result towards one of the pieces of evidence,
perhaps due to the user having greater faith in its source.
This could be due to information available to the domain
expert that is not available from the data. For example,

in a Spatial Database application when combining evidence
of the existence of volcanoes on Mars it would clearly be

desirable to discount the evidence collected from images of
lower resolution or images taken from a more skew angle
[BELL94].

The Discounting operator [G UAN93] allows you to spec-
ify degrees of confidence in the different sources of evidence
and incorporates it into the reasoning framework. Given
a degree of confidence, a, the Discounting operator trans-
fers some of the belief in each of the propositions within
the mass function to ignorance. The new mass function ob-
tained is defined on the same frame of discernment as the
first mass function - the only difference is that the new mass
function associates a certain amount of belief with ignorance

and its belief in each of the propositions supported by the

earlier mass function is reduced by a factor determined by

the degree of confidence, a. The sources of evidence may

be different domain experts or different geographically dis-
tributed, heterogeneous databases. The common knowledge
representation used within EDM for evidence from differ-
ent sources means that we can deal with such evidence in a
uniform way.

For example, let us consider a geographically distributed
database from which knowledge is being discovered. Infor-
mation that the data in the database at location 1 is not
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Figure 3: Classification of Search Space Pruning Techniques

as reliable as the data stored at location 2 needs to be in-
corporated into the discovery process to get correct results.
Now suppose we can quantify the reliability of the data at
location 1 as being 80~0 as reliable as the data at location

2, the degree of confidence in the rule mass function from
location 1 can be set to 0.8 and the rule mass function can
be discounted based on that degree of confidence. After
discounting the rule mass functions from location 1 the dis-
counted rule mass function can be combined with the rule

mass function from location 2.

Such factors are referred to as Environment-Based Con-
straints (EBC) within EDM. While AR-rufes and HG-Trees
are useful in pruning the search space and rule space, EBCS
are used to discover more accurate knowledge.

4 Pruning Strategies in the STRIP Algorithm

[n a Data Mining system there are two different kinds of
pruning:

1. Pruning of the Search Space
2. Pruning of the Rule Space

4.1 Pruning the Search Space

Figure 3 shows our classification of methods for pruning

the search space. There are two main classes of methods
for pruning the search space: Static Pruning and Dynamic

Pruning. Static Pruning reduces the search space before
the discovery algorithm is applied on the data. The static
pruning techniques include incorporation of Domain Knowl-
edge - AR-rules and HG-Trees and Syntactic Constraints
[AGRA93]. We have already discussed in the previous sec-
tion how Domain Knowledge can be used to prune the search
space. Defining syntactic constraints reduces the dimension-
ality of the search space by selecting a subset of attributes
of interest from the set of all attributes. This is very im-

portant as most discovery algorithms can achieve a linear
scalability with respect to number of tuples but are non-
linear with respect to the number of attributes in the data
set. Dynamic Pruning takes place during the execution of
the discovery algorithm. As knowledge is discovered, based
on the discovered knowledge parts of the search space that
have been covered or already disregarded by the algorithm
are pruned.

4.2 Pruning the Rule Space

The rule space is constrained by associating different mea-
sures with a rule and then setting minimum acceptable val-
ues for them. In section 2 we specified three different nlea-
sures that are commonly associated with rules. These were

the uncertainty, support and interest ingness or utility of the
rule. Minimum and maximum limits on uncertainty, sup

port and interestingness can be specified and used to prune
the rule space. Also specifying AR-rules and antecedent at-
tributes of interest reduces the rule space.

5 The Effect of Domain Knowledge on STRIP

in this section we discuss the effect of using domain knowl-
edge in a Data Mining application in the actuariaf domain.
The data set had 28 attributes of which we picked 9 at-
tributes that were of particular interest. Table 1 shows the
attributes of interest along with the number of distinct val-
ues for each of the attributes.

Attribute# Attribute Name No. of Distinct Values
8 Ren.ind 2

11 Cover 3
14 Car.group 22

15 Car-age 33

16 Age.of.driver 85

17 Sex 2
18 Driver 6

21 Installments 2
22 Ncdren 10

Table 1: Attributes of Interest

Three of the attributes - Age of the driver, Age of the
car and Car group - had HG-Tree type domain knowledge
available. Table 2 shows the domain knowledge used by
STRIP for the particular application.

Age-of-driver tJser_interval
START
gt 16 le 25 young
gt25le513 Mjddle

gt 50 le 7S old

gt 75 le 100 grand

END

Car-age User-interval

START

ge O le 5 New

gt 5 Ie 10 Middle

gt 10 le 35 Old

END

Car-group User_interval

START

gt O le 7 Small

gt 7 le 14 Medium

gt 14 le Z? Large

END

Table 2: Domain Knowledge

Apart from the domain knowledge, the Support Con-
straint was specified at 0.1

As mentioned earlier, domain knowledge is useful in the
discovery process in two ways. Firstly, domain knowledge
of the HG-Tree type can be useful in generalizing attribute
values and bringing out patterns that were not visible other-

wise, Secondly, domain knowledge can be used to constrain
the search space as well as the rule space. We first show how

using HG-Tree type domain knowledge can make patterns

more visible.
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The first run of the STRIP algorithm was without using
any domain knowledge, and with discovered rules being con-
strained to those with antecedent attributes Attibute# 11,
Attribute#Il and 17, Attribute#ll,17 and 18 and Attribute#
11, 17, 18, 21. We found the following results:

5 rules were discovered with Ren.ind in the consequent
O rules were discovered with Age..of.driver in the conse-

quent
0 rules were discovered with Car-age in the consequent
O rules were discovered with Car.group in the consequent

2 rules were discovered with Ncdren in the consequent
The domain knowledge pertaining to the Car-age at-

tribute (see Table 2) was then applied and we found that

now there was 1 rule discovered with attribute Carage in the

Consequent. On using domain knowledge for the Age-of-driver

and Car-group 2 rules with Car-group in the Consequent

and 3 rules with Age-of.driver in the Consequent were dis-
covered. Table 3 shows some example rules found bv the
STRIP algorithm.

if Cover = 1 and Sex = 7’9 then mta = ’78 and Car-group

= Medium and Age-o f_driver = middle and Installments

= 78 and Ncdren = 5 and proten = 78 and ncdold = 5

and prevprem = O with uncertainty = 1.000000 support
. 0.001000 :nterestingnew = 0,000999

if Cover = 9 and Sex = 70 and Dr~ver = 83 then currsur

= O and Age-o f.driver = mtddle andproten = 78 andpre-

vsur = O and prevprem = O with uncertainty = 1.000000

support = 0.004500 interestangness = 0.004306

if Cover = 1 and Sex = 70 and Driver = 78 then mta

= 89 and currsur = O and Car_group = Small and

Age-oj-dr:ver = middle and proten = 78 and prevsur = O

and prevprem = O with uncertainty = 1.000000 support

= 0.002500 intere$t:ngness = 0,00.2491

if Cover = 1 and Sex = 70 and Driver = 69 then Ren.znd

= 82 and prevprem = O with uncertainty = 1.000000 sup-

port = 0.002500 intere9t:ngness = 0.002494

Table 3: Examples of Rules Discovered by STRIP using
Domain Knowledge

HG-Tree type domain knowledge can also be used to

constrain the rule space. The domain knowledge shown in
Table 2 can be used to reduce the number of riles discov-
ered. We used the same data and domain knowledge in the
above dkcovery by STRIP but changed the syntactic con-
straint to Antecedent attributes Age-of-driver, Car~roup
and Car-age. This reduced the number of possible rules to
be discovered from 67251 rules to 79 rules. An example rule
is given in Table 4. Without using domain knowledge we
would be swamped with rules with a small support.

if Car-group = Small and Car-age = New and

Age-of-driver = young then age-o f-pol = 1 and Ren-and

= 76 and currsur = O and Installments = 78 and p.o-

ten = 78 and prevprem = O wzth uncertainty = 1.000000

support = 0,002500 mtereshngness = 0.002493

Table 4: Constraining the Rule Space using Domain

Knowledge

The rule and search space can be constrained by using
domain knowledge in the form of AR-rules as discussed in
section 3.1.

6 Conclusions

In thk paper we have discussed the importance of the role
of the human in the discovery process. In particular we have
discussed the advantage of using domain knowledge within
the discovery process. We classified domain knowledge into
Hierarchical Generalization Trees (HG-Trees), Attribute Re-

lationship Rules (AR-rules) and Environment Based Con-
straints (EBC). Domain Knowledge can affect the discovery

process within a Data Mining system in two ways. Firstly, it
can make patterns more visible by generalizing the attribute
values, and secondly, it can constrain the search space as well
as the rule space.

We have discussed how each class of domain knowledge
is incorporated into the discovery process within Evidential
Data Mining (EDM) framework using different domain op-
erators. We have also discussed the techniques other than
domain knowledge used by the STRIP algorithm to prune
the search space and the rule space.

Using an illustrative example in an actuarial domain, we
showed how knowledge discovered by the application of the
STRIP algorithm was aflected by the use of domain knowl-
edge provided in the form of HG-Trees. We also indicated

how the use of AR-rules could further constrain the search
space as well as the rule space.
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