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Abstract – There has been extensive research in the area of
data mining over the last decade, but relatively little research in
algorithmic mining. Some researchers shun the idea of
incorporating explicit knowledge with a Genetic Program
environment. At best, very domain specific knowledge is hard
wired into the GP modeling process. This work proposes a new
approach called the Genetically Engineerable Evolvable Program
(GEEP). In this approach, explicit knowledge is made available to
the GP. It is considered breadth-based, in that all pieces of
knowledge are independent of each other. Several experiments
are performed on a NASA-based data set using established
equations from other researchers in order to predict software
defects. All results are statistically validated.

I.  INTRODUCTION

Genetic Programming (GP) supports automatic
programming by genetically breeding a population of
computer programs using the principles of Darwinian natural
selection and biologically inspired operations. They have
demonstrated some of their potential by evolving programs for
medical signal filters [1], modeling complex chemical
reactions [2], performing optical character recognition [3],
target identification [4], and routing of analog electrical
circuits [5].

Historically, incorporating explicit knowledge within a GP
is not an accepted practice. Gero and Kasakov [6] claim that
genetic programs are “knowledge lean machines; they make no
use of knowledge in their execution” where this approach
supposedly gives GP “robustness and breadth of applicability.”
Angeline [7] discourages the use of explicit knowledge, and
argues that it should be used as “a last resort.” He [7] claims,
“including explicit knowledge for a particular problem
removes the opportunity for contradictory knowledge to
emerge.” Thus, the historical approach forces all genetic
programs to reinvent many existing algorithms.

Considering the decades worth of legacy data, the decades
worth of software repositories, and the current rate of data
propagation (2 exabytes per year), the GP modeling process
would benefit immensely through the use of explicit
knowledge in the form of algorithms. Lately, GP modeling has
recognized the importance of explicit knowledge in GP

modeling. The research literature contains examples of GP
modeling using financial domain knowledge in GP modeling
[8, 9, 10].

These successes demonstrate the importance of explicit
domain knowledge with GP modeling. However, they tend to
bundle the domain knowledge within the GP model. As a
consequence, it is difficult to create dynamic GP models.

An alternative approach is to provide explicit (domain)
knowledge, which is not bundled to the genetic programs,
producing “knowledge-wise machines.” This new technique is
referred to as a Genetically Engineerable Evolvable
Program (GEEP). Unbundling the explicit domain
knowledge from the GP model enables the examination of the
relationship between domain knowledge and GP model
formation.

Predicting software defects is one of the most significant
research areas in the Software Engineering community. It
enables software practitioners to detect, track and resolve
product anomalies that might affect human safety and lives.
Additionally, defect prediction allows changes to be made
earlier in the life-cycle process, thus lowering software costs
and improving customer satisfaction.

Considering these benefits, many organizations tend to
under-appropriate resources to their software quality group.
Many theories could be postulated regarding the reasons for
this situation.

This paper extends previous research in the area of defect
prediction in two ways. It explores potential enhancements to
previous defect models proposed by incorporated algorithms
developed by various researchers in the Software Engineering
community. Also, this paper explores potential synergy
amongst these algorithms. Since the proposed algorithms are
independent of each other it is viewed as breadth-based
knowledge. Depth-based knowledge means that one algorithm
is dependent upon a second algorithm.

This paper is organized as follows: section 2 provides an
overview regarding the research in using machine learners to
predict software defects; section 3 describes a NASA data set
that will be used for performing the experiments; section 4
presents legacy defect prediction algorithms; section 5



explains the GEEP approach. Based upon the groundwork set
in sections 3 through 5, section 6 describes a series of
experiments using explicit breadth-based knowledge along
with the corresponding results; section 7 discusses these
experiments. Finally, sections 8 and 9 offer implications and
future directions.

II.  RELATED RESEARCH

The literature abounds with defect prediction models.
Despite the efforts of various researchers, there seems to be
little consensus regarding what to measure when formulating
defect prediction models [11].

One approach to address this problem is the application of
expert systems and machine learners [11…16] in formulating a
predictor. Such an approach is plausible since expert systems
and machine learners handle noisy data and uncertainty rather
well.

Fenton [11] develops a Bayesian Belief Network tool
called AID, (Assess, Improve, Decide). He tests AID on 28
software projects from the Philips Software Centre. The results
of this study are promising, however a great deal of data is
required to train the network [17].

The application of Neural Networks to the problem of
defect detection has received a great deal of attention.
Hochmann extends the use of Neural Networks to software
defects [14]. Thirty classification models are built with an
equal distribution of fault-prone and non-fault-prone software
modules. He compares an Evolutionary Neural Network,
(ENN) to Discriminate Analysis. The experimental findings
indicate that the error rates for the ENNs are statistically much
lower than for the Discriminate Analysis [14].

Cohen and Devanbu [12] apply different Inductive
Learning Programs (FOIL, FLIPPER, RIPPER) in predicting
fault density for 122 C++ program examples. The authors use
coupling metrics to formulate their models. They deploy
various modeling strategies including suppression of negative
clauses (monotonic information only) along with the
implementation of aggregate operators. The experiments
generate error rates ranging from 19.7 through 35.4 percent.

Evett et al. [13] apply Genetic Programs against
several industrial-level repositories in predicting software
faults. Their operator set includes add, subtract, multiply,
divide, sine, cosine, exponentiation, and logarithms. The
operands consist of various product metrics including
Halstead’s vocabulary, McCabe’s cyclomatic complexity, and
Lines of Code (LOC). The author’s assess their GP models by
ranking data sets according to defect counts and comparing the
top n percent of actual and predicted models where n ranges
from 75 to 90 percent.

III.   NASA’S PROJECT DATA

The data for the machine learning experiments originate
from a NASA project, which will be referred to as “KC2.”
KC2 is a collection of C++ program containing over 3000 “c”
functions. The analysis focuses only on those functions created
by NASA developers.  This means COTS-based metrics are

pruned from the data set. After eliminating redundant data, the
final tally consists of metrics from 379 “c” functions.

The KC2 data set contains twenty-one software product
metrics based on the product’s size, complexity and
vocabulary. The size metrics include total lines of code,
executable lines of code, lines of comments, blank lines,
number of lines containing both code and comments, and
branch count. Another three metrics are based on the
product’s complexity. These include cyclomatic complexity,
essential complexity, and module design complexity. The other
twelve metrics are vocabulary metrics. The vocabulary metrics
include Halstead length, Halstead volume, Halstead level,
Halstead difficulty, Halstead intelligent content, Halstead
programming effort, Halstead error estimate, Halstead
programming time, number of unique operators, number of
unique operands, total operators, and total operands.

The KC2 data set also contains the defect count for each
module. The majority of the defect values range from 0 to 2.
There are 272 instances of zero defects in the modules, 56
instances of one defect, and 25 instances of two defects. Of the
remaining 24 module instances, nine have three defects, four
have four defects, five have five defects, two have six defects,
one has eight defects, one has ten defects, one has eleven
defects, and one has thirteen defects. Thus, ninety percent of
the defect data is concentrated in 27 percent of the defect value
points. The defect distribution is illustrated in Fig. 1.

Defect Count

Fig. 1 Defect Frequency Distribution for KC2 Data Set

IV.   DOMAIN KNOWLEDGE: DEFECT PREDICTION EQUATIONS

The domain knowledge for the GP experiments consists of
algorithms, in the form of equations, developed by researchers
over the last several decades. This section describes several of
these algorithms. For a critique of these algorithms, see [11].

Akiyama [18] provides one of the earliest studies in
predicting software defects. In this study, two regression
models (1) and (2) are formulated. Equation (1) uses lines of
code, L, to predict defects.

D = 4.86 + 0.018 * L (1)
Akiyama’s second equation, as depicted in (2), utilizes a

complexity metric, C, to predict defects.
D = 0.12 * C – 0.84 (2)
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Halstead [19] proposes a defect prediction model using a
combination of vocabulary metrics. Equation (3) depicts his
formula.

D = Volume / 3,000 (3)
The Volume metric is based on the number of operators

and operands within a program module. Volume corresponds
to N*log2(n), where N is the total number of operators and
operands in a module and n is the unique number of operands
and operands in a module.

Lipow [20] formulates an equation (4) based on
Halstead’s theory.

D/L = A0 +  A1*ln*L + A2*ln2*L (4)
Each Ai depends on the average number of operands and

operators per lines of code for a particular programming
language. L represents lines of code.

Lipow provides a table with the values for Ai if the
average number of operators and operands are known for the
programming language. The average number of operators and
operands for C++ is unknown. Therefore, for the purposes of
this study, the number of operands and operators was
calculated from the KC2 data set. KC2 also lists the number of
lines of code. The number of operators and operands for this
data set is 48,424. The total lines of code equal 18,556.
Therefore, the average number of operators and operands for
this data set is 2.61. The closest value Lipow provides is 2.5,
so this is the index used to obtain the values for Ai. Therefore
the equation used for the fourth experiment will be (5):

D = L * (0.000844 + (0.0007842)lnL + (0.00001546)ln2L)(5)

Gaffney [21] claims that the relationship between D and L
are not language dependent. He proposes the following
equation (6):

D = 4.2 + 0.0015*(L)4/3 (6)
Based on the same premise, Compton [22] derives the

following equation (7):
D = 0.069 + 0.00156*L  + 0.00000047*L2 (7)

V.  A GENETICALLY ENGINEERABLE EVOLVABLE PROGRAM

(GEEP)

Genetic Programs represent solutions, called
chromosomes, as tree structures of variable length. Normally
these tree structures consist of a set of simple mathematical
operators and corresponding operands.

Some of the more advanced GP models may include
additional functions and/or procedures in the tree structure.
However, these GP models are designed for a specific domain
and the functions/procedures are “hard wired” into the GP.

The GEEP extends the traditional GP approach by
supporting the use of functions and/or procedures which are
not bundled with the GP. These functions/procedures may be
domain specific or domain independent. Fig. 2 illustrates the
usage of domain specific knowledge, in this case
Trigonometry, in developing a GEEP-based solution.

Fig. 2 Using Domain Specific Knowledge to Build Models

This proposed research holds the promise of producing a
more sophisticated and accurate solution in less time by
exploiting what is already known.

What distinguishes the GEEP approach from tradition GP
modeling is the ability to seamlessly incorporate domain
knowledge, in the form of procedures and functions, from
various domains into the modeling process. This allows a
GEEP to leverage existing domain knowledge and build more
sophisticated models. As this research matures, it will spawn
further research regarding domain analysis within GP. It may
be possible to have a user direct which domain knowledge to
include/exclude in the modeling process. Fig. 3 depicts a
future architecture scenario for the GEEP model.

Thus there may be a vast repository of algorithmic
knowledge, collected from multiple domains, available for the
GEEP. The GEEP will be capable of building very
sophisticated solutions. One potential benefit is the ability to
reuse algorithms in domains in which they were not intended.
Furthermore, as additional optimization techniques are added
to the process, it will be possible to reduce solutions to their
simplest form. This will promote better human-readable
solutions.

Fig. 3 GEEP Solution = DKR + GP + Data

Pythagorean Eq. Cosine Function

GEEP-based Solution

Domain Knowledge Repository (DKR)
Domain1   . . Domainn

Data
GEEP



VI.   THE GEEP EXPERIMENTS

The goals of the GEEP experiments is to determine
whether using explicit algorithmic knowledge improves upon
the software defect prediction models produced and
conversely, whether it is possible to improve upon one or more
of the defined legacy algorithms.

A. Equation Utility Against the NASA Data Set

Using explicit knowledge in building a GP implies a
certain “goodness” regarding the actual equations. In order to
evaluate the usefulness of integrating knowledge into the
Genetic Program, the utility of each of the equations must be
applied to the data set. This is accomplished by determining
the average error over the KC2 data set for each equation.
Akiyama’s first equation (1) generates an error rate of 474
percent. The second equation by Akiyama (2) produces an
error rate of 53.33 percent.  The error rate for Halstead’s (3)
equation is 24.83 percent. Lipow’s equation (5) results in an
error rate of 24.62 percent. Gaffney’s (6) equation generates
an error rate of 376 percent. Finally, Compton’s (7) error rate
is 25.79 percent. From these error rates, it may be deduced that
Akiyama and Gaffney’s equation may not add much value to
the Genetic Program, while Halstead, Lipow and Compton’s
equations have the potential to improve performance.

B.   General Experimental Settings

The GEEP experiments run for a maximum of 128
generations with an initial maximum tree height of six. The
fitness function is equal to 1 minus the standard error. Each
generation contains 512 chromosomes. Six experiments are
performed consisting of thirty trials each. The first five
experiments compare a vanilla-based Genetic Program, using
simple mathematical operators against the KC2 data against a
GEEP that is enhanced with equations from Akiyama,
Halstead, Lipow, Gaffney, and Compton respectively. The last
experiment extends the GEEP with all the algorithms
simultaneously.

C.   Experiments

The first experiment compares a GP using simple
mathematical operators against a GEEP which includes
Akiyama’s equations (1) and (2). Table I shows an
improvement in the GP enriched with the Akiyama equations.
The one-tail t-Test result is under the alpha value of 0.05,
indicating that the difference is statistically significant.

TABLE I
AKIYAMA T-TEST ON FITNESS VALUES

Basic Akiyama
Mean 0.7523 0.7583
Variance 0.0001 7.9410E-05
Observations 30 30
Pearson Correlation -0.0179
df 29
t Stat -2.2255
P (T <= t) one-tail 0.0169

The second experiment compares a GP with a GEEP
enhanced with Halstead’s equation. Table II shows the results
of this experiment. The basic operators produce an average
fitness value of 75.23 percent and the models that utilize the
Halstead equation produce an average fitness value of 76.33
percent. A one-tailed t-Test, where alpha is 0.05, indicates that
the results are statistically significant.

TABLE II
HALSTEAD T-TEST ON FITNESS VALUES

Basic Halstead
Mean 0.7523 0.7633
Variance 0.0001 0.0001
Observations 30 30
Pearson Correlation -0.1079
df 29
t Stat -3.5531
P (T <= t) one-tail 0.0006

The third experiment assesses the GEEP enhanced with
Lipow’s equation (5) against a basic GP model. Table III
shows an improvement in the GP enriched with the Lipow
equation versus the basic GP model. The basic operators
produced an average fitness value of 75.23 percent and the
trials using the Lipow equation produce an average fitness
value of 76.45 percent. The one-tail t-Test result is under the
alpha value of 0.05, indicating that the difference is
statistically significant.

TABLE III
LIPOW T-TEST ON FITNESS VALUES

Basic Lipow
Mean 0.7523 0.7645
Variance 0.0001 1.3967E-05
Observations 30 30
Pearson Correlation -0.1718
df 29
t Stat -5.1647
P (T <= t) one-tail 8.0230E-06

The fourth experiment assesses the GEEP enhanced with
Gaffney’s equation (6). Table IV shows an improvement in the
GEEP enriched with the Gaffney equation versus the basic GP.
The basic operators produce an average fitness value of 75.23
percent while the Gaffney-based GEEP produce an average
fitness value of 75.73 percent. The one-tail t-Test result is



under the alpha value of 0.05, once again indicating that the
difference is statistically significant.

TABLE IV
GAFFNEY T-TEST ON FITNESS VALUES

Basic Gaffney
Mean 0.7523 0.7573
Variance 0.0001 0.0001
Observations 30 30
Pearson Correlation 0.2641
df 29
t Stat -2.0514
P (T <= t) one-tail 0.0246

The fifth experiment compares the basic GP against a
GEEP that is enhanced with the Compton equation (7). The
GP with the basic operators achieve an average fitness value of
75.23 percent and the GEEP enhanced with the Compton
equation produces an average fitness value of 75.87 percent.
The t-Test shows that the difference is statistically significant
as shown in Table V.

TABLE V
COMPTON T-TEST ON FITNESS VALUES

Basic Compton
Mean 0.7523 0.7587
Variance 0.0001 0.0001
Observations 30 30
Pearson Correlation 0.8546
Df 29
t Stat -5.7176
P (T <= t) one-tail 1.733E-06

The last experiment compares a GP with basic
mathematical operators against a GEEP that includes equations
(1) through (3) and (5) through (7). The GP with the basic
operators produce an average fitness value of 75.23 percent
while the GEEP enhanced all the explicit knowledge generates
an average fitness value of 76.60 percent. The t-Test shows
that the difference is statistically significant as shown in Table
VI.

TABLE VI
ALL KNOWLEDGE  T-TEST ON FITNESS VALUES

Basic All Knowledge
Mean 0.7523 0.7660
Variance 0.0001 5.4933E-05
Observations 30 30
Pearson Correlation -0.0656
df 29
t Stat -5.2278
P (T <= t) one-tail 6.7335E-06

VII.   DISCUSSION

In all experiments the GEEP with the addition of
explicit breadth-based knowledge produces statistically

superior results than those models without access to any
explicit knowledge.

It is interesting to note that the initial error rates generated
for each equation against the KC2 data are inversely correlated
with the average GEEP fitness values produced for each
algorithm. As mentioned earlier, the fitness value equals 1
minus the standard error rate. Table VII confirms this finding.
Perhaps calculating the initial error rate is a potential predictor
of the utility of using a particular algorithm.

TABLE VII
RESULTS OF EXPERIMENTS IN DESCENDING ORDER BY ERROR RATE

Researcher’
s Algorithm

Equation
Error Rate

Average GEEP
Fitness Results

Lipow 24.62 0.7645
Halstead 24.83 0.7633
Compton 25.79 0.7587
Akiyama 53.33 0.7583
Gaffney 376.00 0.7573

The last experiment uses all the algorithms from the
different researchers. These experiments produce the highest
average fitness values of 0.7660. Applying a t-Test to the
results from the model containing all the algorithms and the
results from each individual algorithm, the “all algorithms”
model was statistically superior to the Compton, Akiyama, and
also Gaffney models, respectively. This certainly supports the
argument of using explicit knowledge in the GP modeling
process.

Equation 8 shows the model that generated the best result
(fitness = 0.7744) using all the algorithms. Definitions of the
operand terms are available from [23]. Although (8) is in
human readable form, it is not necessarily human-
understandable form.

((((Lipow((Compton((9 + 8)  ^ ( iv(g) - 9))  +  d  ))  +
(AkiyamaLoc((Compton(Gaffney(Lipow(9)  ^ lOBlank ))  ^ Lipow(b)  ^
Lipow(((6 * AkiyamaLoc ((Gaffney((6 * AkiyamaLoc((Lipow(9))  +
Lipow((Compton(AkiyamaComp((( Halstead((Compton(( Halstead(Lipow(9)
+ AkiyamaLoc( AkiyamaLoc(l))  - Halstead(AkiyamaComp( iv(g)  )  *
Halstead(Compton( AkiyamaComp( AkiyamaLoc(Compton(3))  ^
AkiyamaLoc(Halstead( AkiyamaComp( iv(g)  )  ^ Gaffney((lOComment ^
(Gaffney(Lipow(2))  ^ (Compton(6)  ^ AkiyamaLoc((6 - 10))  +
Compton(Gaffney(9)  * Compton(Lipow(iv(g)))  ^ Lipow(((6 *
AkiyamaLoc((Gaffney(Lipow(((6 * AkiyamaLoc((Gaffney( Lipow((Compton(
AkiyamaComp(AkiyamaLoc(Compton(AkiyamaLoc(l) ^
Gaffney(((Halstead((
AkiyamaLoc(AkiyamaLoc((3 ^ lOBlank)) - 7))  * Halstead(AkiyamaComp(
iv(g))^ (Gaffney(Lipow(2))  ^ (Compton(6)  ^ AkiyamaLoc((6 - 10))  +
Compton(3)  ^ Gaffney(10)))  + Compton(l)  * Compton(l )))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))) (8)

VIII.   IMPLICATIONS

The aforementioned experiments demonstrate the
feasibility of leveraging explicit knowledge in building a GP
model. Considering the decade’s worth of algorithms residing
in repositories, it seems reasonable to place greater emphasis
on algorithm mining within the data mining process.



This could lead to greater reuse of legacy algorithms in
domains in which they were not intended; more accurate
solutions; and the discovery of potential synergistic
relationships among different domains.

IX.   FUTURE DIRECTIONS

Future directions for this research include the following
activities: apply the GEEP solutions against other data sets
available from NASA. This would validate the models
produced and give further credibility to this approach.

At times, the experimentation process would take several
hours to complete 30 trials. A performance enhancement
would be to build the GEEP using distributed processing
environment.

Finally, equation (8) shows that potential solutions can be
somewhat cumbersome. To make solutions more human-
understandable, it is anticipated that an equation optimizer will
be included in the modeling process.
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