
Nearest Neighbor Sampling for Better Defect Prediction
Gary D. Boetticher

University of Houston – Clear Lake
2700 Bay Area Boulevard

Houston, Texas 77059
1 281.283.3805

Boetticher@cl.uh.edu

ABSTRACT
An important step in building effective predictive models applies
one or more sampling techniques. Traditional sampling
techniques include random, stratified, systemic, and clustered.
The problem with these techniques is that they focus on the class
attribute, rather than the non-class attributes. For example, if a
test instance’s nearest neighbor is from the opposite class of the
training set, then it seems doomed to misclassification. To
illustrate this problem, this paper conducts 20 experiments on five
different NASA defect datasets (CM1, JM1, KC1, KC2, PC1)
using two different learners (J48 and Naï ve Bayes). Each data set
is divided into 3 groups, a training set, and “nice/nasty” neighbor
test sets. Using a nearest neighbor approach, “Nice neighbors”
consist of those test instances closest to class training instances.
“Nasty neighbors” are closest to opposite class training instances.
The “Nice” experiments average 94 percent accuracy and the
“Nasty” experiments average 20 percent accuracy. Based on these
results a new nearest neighbor sampling technique is proposed.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.8 [Software
Engineering]: Testing and Debugging; I.2.6 [Artificial
Intelligence]: Learning---Knowledge Acquisition

General Terms
Measurement, Experimentation

Keywords
Empirical Software Engineering, Defect Prediction, Nearest
Neighbor analysis, Decision Trees, NASA Data Repository

1. INTRODUCTION
Defect Prediction in Empirical-based Software Engineering seeks
to build accurate, reliable data-driven models that will be
embraced by project managers. To this end, public data
repositories [10] and commercial quality public domain tools [1,

13] are readily available.

As researchers build models, their results serve as benchmarks for
comparing/contrasting ideas and theories on tool usage, metric
selection, and process definition. The lack of process
standardization dampens repeatability in terms of results. A
common example is the multiple ways of defining effort: Pred(X),
MMRE, #Correct/TotalInstances. Even when two researchers use
the same indicator (e.g. Pred(X), they both might assume different
values for X (25 or 30 percent).

Another overlooked step in Empirical-based Software
Engineering is the sampling process. Traditional approaches such
as random, stratified, systemic, or clustered are widely accepted.
Most of these approaches (random is the exception) assess a class
(or dependent) variable in determining how to partition tuples into
training/test sets. The problem is that non-class (independent)
variables contain a lot of vital information which needs to be
considered when partitioning tuples.

To demonstrate how non-class attributes dramatically impact the
modeling process, a series of experiments are conducted against
five NASA defect data sets. The experiments fall into two
categories. The “Nice” experiments use a test set where the non-
class attributes of the test data have nearest-neighbors in the
training set and the same class value. The “Nasty” experiments
use a test set where the non-class attributes of the test data have
nearest-neighbors in the training set with an opposite class value.
Experimental results for the “Nice” experiments are 97, 94, 91,
88, and 98 percent respectively. The “Nasty” experiments achieve
accuracy rates of 6, 16, 23, 42, and 19 percent. These experiments
are described and discussed in sections 2 through 5.

Based on these experiments and the corresponding discussion,
section 6 describes two different nearest neighbor sampling
approaches which could be incorporated into the data mining
process. Benefits of using such a technique would be better data
representation, better models, and higher probability that project
managers will embrace Empirical Software Engineering practices.

Finally, sections 7 and 8 present conclusions and future
directions.

2. NASA DATA SETS
All experiments use five public domain defect datasets from the
NASA Metrics Data Program (MDP) and PROMISE repository
[10]. These five data sets, referred to as CM1, JM1, KC1, KC2,
and PC1, contain static code measures (e.g. Halstead, McCabe,
LOC) along with defect rates. Table 1 provides a project
description for each of these data sets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Table 1. Project Description for Each Data Set

Project
Source
Code Description

CM1 C NASA spacecraft instrument
KC1 C++ Storage management for

receiving/processing ground data
KC2 C++ Science data processing. No software

overlap with KC1.
JM1 C Real-time predictive ground system
PC1 C Flight software for earth orbiting satellite

Each data set contains twenty-one software product metrics based
on the product’s size, complexity and vocabulary. The size
metrics include total lines of code, executable lines of code, lines
of comments, blank lines, number of lines containing both code
and comments, and branch count. Another three metrics are based
on the product’s complexity. These include cyclomatic
complexity, essential complexity, and module design complexity.
The other twelve metrics are vocabulary metrics. The vocabulary
metrics include Halstead length, Halstead volume, Halstead level,
Halstead difficulty, Halstead intelligent content, Halstead
programming effort, Halstead error estimate, Halstead
programming time, number of unique operators, number of
unique operands, total operators, and total operands.

The class attribute for each data set refers to propensity for
defects. The original MDP data set contains numeric values for
the defects, while the PROMISE data sets convert the numeric
values to Boolean values where TRUE means a component has 1
or more defects and FALSE equates to zero defects. The reason
for the conversion is that the numeric distribution displayed signs
of an implicitly data-starved domain (many data instances, but few
of interest) where less than 1 percent of the data has more than 5
defects [5].

3. DATA PREPROCESSING
Data pre-processing removes all duplicate tuples from each data
set along with those tuples that have questionable values (e.g.
LOC equal to 1.1). Table 2 shows the general demographics of
each of the data sets after pre-processing.

Table 2. Data Pre-Processing Demographics

Project
Original

Size
Size w/ No Bad,

No Dups
0

Defects
1+

Defects
%

Defects

CM1 498 441 393 48 10.9%

JM1 10,885 8911 6904 2007 22.5%

KC1 2109 1211 896 315 26.0%

KC2 522 374 269 105 28.1%

PC1 1109 953 883 70 7.3%

4. EXPERIMENTS
4.1 Training and Test Set Formulation
To assess the impact of nearest-neighbor sampling upon the
experimental process twenty experiments are conducted on each
of the five data sets.

For each experiment, a training set is constructed by extracting 40
percent of data from a given data set. Selecting the 40 percent

uses stratified sampling, in that it maintains the ratio between
Defect/Non-defect data. As an example, JM1 has 8911 records,
2007 of which, or 22.5 percent, have 1 or more defects. An
corresponding training set for the JM1 project contains 3564
records, 803 (or 22.5 percent) of which are classified as having 1
or more defects (TRUE).

It could be argued that a greater percentage (more than 40
percent) of the data could be committed to the training set. There
are several reasons for choosing only 40 percent. First, Menzies
claims that only a small portion of the data is needed to build a
model [5]. Second, since the data is essentially a two-class
problem, there was no concern about whether each class would
receive sufficient representation. Finally, it is necessary to insure
that there is sufficient amount of test data for assessing the results.

Once a training set is established, the remaining 60 percent of the
data is partitioned into two test groups. Prior to splitting the test
data, all of the non-class attributes are normalized by dividing
each value by the Difference (Maximumk - Minimumk for each
column k). This guarantees that each column receives equal
weighting. The next step loops through all the test records. Each
test record is compared with every training record to determine
the minimum Euclidean Distance for all of the non-class
attributes. If the training and test tuples with the smallest
Euclidean Distance share the same class values (TRUE/TRUE or
FALSE/FALSE), then add the test record to the Nice Neighbor
test set, otherwise add it to the Nasty Neighbor test set. Figure 1
shows the corresponding algorithm.

Essentially, this is the K-Nearest Neighbor algorithm that
determines a test tuples closest match in the training set. Nearest
neighbors from the same class are considered “Nice,” otherwise
they are classified as “Nasty.”

Figure 1: Nice/Nasty Neighbor Algorithm

All experiments use the training data to build a model between the
non-class attributes (e.g. size, complexity, vocabulary) and the
class attribute defect (which is either True or False).

For j=1 to test.record_count
minimumDistance = 9999999
For i=1 to train.record_count
 Dist = 0
For k=1 to train.column_count - 1
 Dist = Dist + (trainik – testjk)

2

end k
 if (abs(Dist) < abs(minimumDistance))

then if Traini.defect = Testj.defect
 then minimumDistance = Dist
 else minimumDistance = -Dist

end i;
if minimumDistance > 0
 then Add_To_Nice_Neighbors
if minimumDistance < 0
 else Add_To_Nasty_Neighbors
if minimumDistance = 0

then if Traini.defect = Testj.defect
then Add_To_Nice_Neighbors
else Add_To_Nasty_Neighbors

end j;

After constructing 150 data sets (1 training, 2 sets per trial; 20
trials per software project; 5 software projects), attention focuses
on data mining tool selection.

4.2 Data Mining Tool Selection
Since the data contains 20-plus attributes and only two class
values (TRUE/FALSE), the most reasonable choice of data
mining tools is a decision tree learner. A decision tree selects an
attribute which best divides the data into two homogenous groups
(based on class value). The split selection continues recursively
on the two (and sometimes more) subtrees until all children of a
split are totally homogenous (or the bin dips below a prescribed
threshold). Decision tree learners are described as greedy in that
they do not look ahead (2 or more subtree levels) due to the
associated computational complexity.

One of the most popular Public Domain Data Mining tools is the
Waikato Environment for Knowledge Analysis (WEKA) tool
[13]. WEKA is an open-source machine learning workbench,
implemented in Java, it incorporates many popular machine
learners and is widely used for practical work in machine learning.
According to an a recent KDD poll [3], Weka was rated number
two in terms of preferred usage as compared to other commercial
and public domain tools.

Within WEKA, there are many learners available. The
experiments specifically use the Naï ve Bayes and J48 learners for
analysis. The primary reason for adopting these tools is previous
success achieved by Menzies et al. [6] in their analysis of the
NASA defect repositories.

A Naï ve Bayes classifier uses a probabilistic approach to assign
the most likely class for a particular instance. For a given instance
x, a naï ve Bayes classifier computes the conditional probability

P (C = ci | x) = P(C = ci | A1 = ai1,…An = ain) (1)

for all classes ci and tries to predict the class which has the highest
probability. The classifier is considered naï ve [9] since it
assumes that the frequencies of the different attributes are
independent.

A second learner, J48, is based on Quinlan’s C4.5 [8].

4.3 Assessment Criteria
The assessment criterion uses three metrics in all experiments to
describe the results. They are:

• PD, which is the probability of detection. This is the
probability of identifying a module with a fault divided by
the total number of modules with faults.

• PF, which is the probability of a false alarm, This is defined
as the probability of incorrectly identifying a module with a
fault divided by the total number of modules with no faults.

• Acc, which is the accuracy. This is the probability of
correctly identifying faulty and non-faulty modules divided
by the total number of modules under consideration.

Each of these metrics is based on simple equations constructed
from WEKA’s confusion matrix as illustrate by Table 3.

Table 3. Definition of Accuracy

A Defect is
Detected.

A Defect is not
Detected.

A Defect is
Present.

A = 50
Predicted=TRUE
Actual= TRUE

B = 200
Predicted=

FALSE
Actual= TRUE

A Defect is not
Present.

C = 100
Predicted= TRUE
Actual=FALSE

D = 900
Predicted=

FALSE
Actual= FALSE

PD is defined as:

PD = A / (A+B) (2)

PF is defined as:

PF = C / (C + D) (3)

and Acc is defined as:

Acc = (A + D) / (A + B + C + D) (4)

Based on the example in Table 3, the corresponding values would
be:

PD = 50 / (50 + 200) = 20% (5)

PF = 100 / (100 + 900) = 10% (6)

Acc = (50 + 900) / (50 + 100 + 200 + 900) = 76% (7)

4.4 Results
Table 4 shows the accuracy results of the 20 experiments per
project. As might be expected, the “Nice” test set did very well for
all five projects for both machine learners averaging about 94
percent accuracy. Its counterpart, the “Nasty” test set, did not fare
very well, averaging about 20 accuracy.

It is interesting to note that the JM1 data set, with 7 to 20 times
more tuples than any of the other projects, is above the overall
average for the “Nice” data sets, and below the overall average on
the “Nasty” data sets. Considering the large number of tuples in
this data set, it would seem that a nearest neighbor approach
would be diluted by the large number of tuples.

Table 4. Accuracy Results from All the Experiments

Nice Test Set Nasty Test Set

J48
Naïve
Bayes J48

Naïve
Bayes

CM1 97.4% 88.3% 6.2% 37.4%
JM1 94.6% 94.8% 16.3% 17.7%
KC1 90.9% 87.5% 22.8% 30.9%
KC2 88.3% 94.1% 42.3% 36.0%
PC1 97.8% 91.9% 19.8% 35.8%

Overall
Average 94.4% 93.6% 18.7% 21.2%

Regarding PD, the results as expressed in Table 5 for the “Nice”
test set are superior to the “Nasty” test set for the learners. An
overall weighted average is preferred over a regular average in
order not to bias the results towards those experiments with very
few defect samples.

The results in Table 5 can be misleading. 76 of the 100 “Nice”
test sets contained zero defect tuples. Of the remaining 24 “Nice”
test sets, only 2 of these 24 had 20 or more samples with defects.

Table 5. Probability of Detection Results

Nice Test Set Nasty Test Set

J48
Naïve
Bayes J48

Naïve
Bayes

CM1 0.0% 0.0% 5.9% 37.4%
JM1 71.9% 92.9% 14.9% 16.4%
KC1 45.8% 87.5% 22.7% 31.0%
KC2 100.0% 100.0% 42.2% 36.0%
PC1 11.7% 75.0% 10.9% 30.8%

Overall
Weighted
Average

45.6% 60.8% 16.8% 20.0%

The “Nice” test set did very well at handling false alarms as
depicted in Table 6. The “Nasty” test set triggered alarms about
18 to 37 percent of the time depending upon learner. Overall, the
sample size is small for the “Nasty” test sets. 90 percent (from the
100 experiments) of the “Nasty” test sets contain zero instances of
non-defective data. For the remaining 10 “Nasty” data sets, only 3
contain 10 or more instances of non-defective modules.

Table 6. Probability of False Alarms Results
Nice Test Set Nasty Test Set

J48
Naïve
Bayes J48

Naïve
Bayes

CM1 2.6% 11.7% 0.0% 50.0%
JM1 5.1% 5.0% 61.7% 66.1%
KC1 9.0% 12.5% 46.4% 91.7%
KC2 11.8% 5.9% 0.0% 50.0%
PC1 1.7% 7.9% 1.9% 70.6%

Overall
Weighted
Average

5.4% 6.3% 18.5% 37.1%

To better understand these results, consider Tables 7 and 8. These
tables show the weighted averages (rounded) of all confusion
matrices for all 100 experiments (20 per test group). In the “Nice”
test data, 99.6 percent are defined as having no defects (FALSE).
Less than 1 percent of the tuples actually contain defects.
Although the “Nice” test sets fared better than the “Nasty” test
sets regarding defect detection, the relatively few samples defect
samples in the “Nice” test sets discount the results.

Analyzing the “Nasty” data sets in Tables 7 and 8 reveal that 97.2
percent (e.g. (50 + 249)/(50+249+2+7)) of the data contains 1 or
more defects.

Table 7. Confusion Matrix, Nice Test Set (Rounded)

J48 Naïve Bayes

2 3 3 2

58 1021 68 1011

Table 8. Confusion Matrix, Nasty Test Set (Rounded)

J48 Naïve Bayes

50 249 60 241

2 7 3 5

Referring back to the right-most column of Table 2, the
percentage of defects to total number of modules ranged from 7.3
to 28.1 percent. Considering that all training sets maintained their
respective project ratio of defects to total components, it is quite
surprising that the “Nice” and “Nasty” data sets would average
such high proportions of non-defective and defective components
respectively.

To better understand these results, two additional experiments are
conducted using the KC1 data set. The first experiment randomly
allocates 60 percent of the data to the training set, while the
second allocates 50 percent of the data. Both experiments
maintain a defect/non-defective ratio of 26 percent (see Table 2).
For both experiments the test data is divided into 8 groups using a
3-nearest neighbor approach. For each test vector, its 3 closest
neighbors from the training set are determined. These neighbors
are ranked based on first, second, to third closest neighbor. A “P”
means that there is a positive match (same class), and an “N”
means there is a negative match (opposite class). Thus, a “PPN”
means that the first and second closest matches are from the same
class and the third closest match is from the opposite class. Thus,
the best case would be a “PPP” where the 3 closest training
vectors are all from the same class.

Tables 9 and 10 show the results from these experiments. It is
interesting to note that all 8 bins contain homogenous (all TRUEs,
or all FALSEs) data. There is a general trend for the bin
configuration to change from all non-defective tuples (all
FALSEs) to all defective tuples (TRUEs) as the neighbor status
changes from all positives (PPP) to all negatives (NNN). Also, the
accuracy seems positively correlated to the nearest neighbor
classifications.

Table 9. KC1 Data, KNN=3, 60 Percent of Training Data

Accuracy

Neighbor
Description # of TRUEs # of FALSEs J48

Naïve
Bayes

PPP None None NA NA

PPN 0 354 88 90

PNP 0 5 40 20

NPP None None NA NA

PNN 3 0 100 0

NPN 13 0 31 100

NNP 110 0 25 28

NNN None None NA NA

Table 10. KC1 Data, KNN=3, 50 Percent of Training Data

Accuracy

Neighbor
Description # of TRUEs # of FALSEs J48

Naïve
Bayes

PPP 0 19 89 84

PPN 0 417 91 91

PNP 0 13 23 0

NPP None None NA NA

PNN None None NA NA

NPN 18 0 100 100

NNP 132 0 20 20

NNN 7 0 0 29

These last two experiments confirm the results achieved in tables
7 and 8.

5. DISCUSSION
In general, project managers are reluctant to embrace empirical-
based models in their decision-making process. Jurgenson [2]
estimates more than 80 percent of all effort estimation is human-
based and less than 4 percent is machine learning based. If
predictive model builders in Software Engineering are going to
have any hope of gaining favor with project managers, then it is
critical that the modeling process be understood very well.

Using an n-nearest neighbor modeling approach provides an
opportunity to do an in-depth study of why test vectors are
misclassified. For example, normally Table 10 would be merged
into one test set. The corresponding confusion matrices would be:

Table 11: KC1 Data, Percent of Training Data

J48 Naïve Bayes

44 113 46 111

51 398 52 397

At this level of granularity, the modeler would be unable to
recognize that 18 of the test vectors are classified with 100
percent accuracy even though the first and third closest neighbors
are from the opposite class (row NPN in Table 10) and proceed to
conduct further research.

6. NEAREST NEIGHBOR-BASED SAMPLING
It is evident that nearest neighbor test data distribution
dramatically impacts upon experimental results. The question is
How does a modeler incorporate nearest neighbor sampling to
generate realistic models?

There are at least two possible solutions. One of which adapts to
an organization’s current data mining process; the second solution
offers an alternative process.

In the first approach a data miner determines the nearest neighbor
for each of the tuple in the test set (based on non-class attributes),
relative to the training set. If the test tuple’s nearest neighbor in

the training set shares the same class instance value, then add 1 to
a variable called Matches. Define a metric called Experimental
Difficulty (Exp_Difficulty) as follows:

Exp_Difficulty = 1 - Matches / Total_Test_Instances (8)

The Experimental Difficulty provides a qualitative assessment of
the ease/difficulty a data miner encounters for a given experiment.
Synthesizing this metric with an accuracy metric would offer a
more realistic assessment of results. For example, a
“Exp_Difficulty * Accuracy” would give a more complete picture
regarding the goodness of a model leading to better model
selection and more credible models.

A second approach starts with the whole data set prior to
partitioning into training and test sets. For each tuple in the data
set its nearest neighbor (with respect to the non-class attributes) is
determined. Add 1 to the Match variable if a tuple’s nearest
neighbor is from the same class. Modifying equation 8, results in
the following equation:

Overall_Difficulty = 1 - Matches / Total_Data_Instances (9)

This gives an idea of the overall difficulty of the data set. The data
modeler may partition the data in order to increase (or decrease)
Experimental_Difficulty. In the context of industrial-based
benchmarks, a data modeler might also choose to partition the
data so that the Experimental_Difficulty coincides to a value
adopted by another researcher. This lends greater credibility to
comparing experimental results.

7. CONCLUSIONS
There has been significant amount of research in the area of
machine learners in defect prediction [4, 7, 11, and 12]. What
distinguishes this work from prior efforts is the demonstrating of
nearest-neighbor analysis for gaining a deeper understanding of
how data relates to each other, and thus the need for developing
more representative models.

The experiments also demonstrate that a biased data distribution
dramatically impacts test results. Ignoring the data distribution
discounts the results achieved by a learner and reducing the
chances that industry will embrace empirical-based Software
Engineering.

Based upon the experiments, two nearest-neighbor sampling
approaches are presented in terms of how they may be
incorporated into a data mining process.

8. FUTURE DIRECTIONS
This work could be extended to examine data sets that contain
more than 2 classes (e.g. actual defect counts). For example, the
NASA data sets may be divided into four classes, (0, 1, 2, 3+
defects).

Also, additional research could be conducted using the 3-Nearest
Neighbor, 5-Nearest Neighbor. The last two experiments
produced some interesting results worthy of additional study.

9. REFERENCES
[1] Boetticher, G., Data Mining Software Tools (2005),

CSCI5833 Data Mining Tools and Techniques, Department
of Computer Science, University of Houston – Clear Lake,
Houston, Texas. Available at:

http://nas.cl.uh.edu/boetticher/CSCI5931%20Data%20Minin
g.html

[2] Jorgensen, M., “A review of studies on Expert Estimation of
Software Development Effort,” Journal of Systems and
Software, 70 (1-2), Pp. 37-60, 2004.

[3] KDD Nuggets Website, Polls: Data Mining Tools You
Regularly Use, Knowledge Discovery and Data Mining Poll,
http://www.kdnuggets.com/polls/data_mining_tools_2002_ju
ne2.htm

[4] Khoshgoftaar, T.M., and E.B. Allen, “Model software quality
with classification trees,” in Recent Advances in Reliability
and Quality Engineering, H. Pham, Ed. 2001, pp. 247–270,
World Scientific.

[5] Menzies, Tim, Personal Conversation, February 2, 2005.

[6] Menzies, T., Raffo D., Setamanit, S., DiStefano, J.,
Chapman, R., Why Mine Repositories, Submitted to:
Transactions on Software Engineering, 2005.

[7] Porter, A.A., and R.W. Selby, “Empirically guided software
development using metric-based classification trees,” IEEE
Software, pp. 46–54, March 1990.

[8] Quinlin, J.R., C4.5: Programs for machine learning.
California: Morgan Kaufmann, 1992.

[9] Rish, I., An empirical study of the naive Bayes classifier, T.J.
Watson Center, IJCAI-01 Workshop on Empirical Methods
in Artificial Intelligence, Seattle, 2001.

[10] Shirabad, J.S., and Menzies, T.J. (2005) The PROMISE
Repository of Software Engineering Databases School of
Information Technology and Engineering, University of
Ottawa, Canada . Available:
http://promise.site.uottawa.ca/SERepository

[11] Srinivasan, K., and D. Fisher, “Machine learning approaches
to estimating software development effort,” IEEE Trans.
Soft. Eng., pp. 126–137, February 1995.

[12] Tian, J., and M.V. Zelkowitz, “Complexity measure
evaluation and selection,” IEEE Transaction on Software
Engineering, vol. 21, no. 8, pp. 641–649, Aug. 1995.

[13] Witten, Ian, Eibe Franks, “Data Mining: Practical machine
learning tools with Java implementations,” Morgan
Kaufmann, San Francisco, 2000.

