An Assessment of Metric Contribution in the Construction of a
Neural Network-Based Effort Estimator

Gary D. Boetticher
Department of Software Engineering
University of Houston Clear Lake
2700 Bay Area Boulevard
Houston, TX 77058 USA
+1 281 283 3805
boetticher@uhcl.cl.uh.edu

Abstract 1. Introduction

The research literature contains various models for
The research literature contains various models forestimating programming effort. Traditional, well understood,
estimating programming effort. Traditional, well mature approaches include Putnam’s SLIM [15], Albrect’s
understood, mature approaches include Putnam’s SLIMunction point method of estimation [2], as well as
[15], Albrect's function point method of estimation [2], as COCOMO [3] and COCOMO Il [1, 4]. Besides these
well as COCOMO [3] and COCOMO II [1, 4]. Besides thesetraditional approaches, various machine learning techniques,
traditional approaches, various machine learning including neural networks, [16, 17, 12] have evolved. At the
techniques, including neural networks, [16, 17, 12] havefoundation of these models is a set of cost drivers based upon
evolved. At the foundation of these models is a set of costocess (e.g. process maturity), project (e.g., reuse,
drivers based upon process (e.g. process maturity), projegilatform), personnel (e.g. team cohesion, personnel
(e.g., reuse, platform), personnel (e.g. team cohesiorexperience), and/or product measures (e.g. size and
personnel experience), and/or product measures (e.g. sizgterface). Effort estimation models include some or all of
and interface). Historically, SLOC (Source Lines of Code}hese types of measures. However, product-based metrics are
metric is the most popular product metric used in thethe most prevalent in effort estimation models. Since the
formulation of the various models. It is simple to calculateinception of software metrics in the 1970s, the predominant
and provides a quick answer. However, it is anproduct metric used in measuring programming effort is a
oversimplification of the product measure contribution toSource Lines of Code (SLOC) metric. The appeal lies in
what characterizes programming effort. Using only SLOCSLOC’s ability to provide a quick and simple answer
ignores the contribution of other internal product metrics,applicable at both the developer or project level. The appeal
such as complexity and vocabulary, in determiningof simplicity is also one of the shortcomings of SLOC since
programming effort. What is needed is a more representativie ignores other common code characteristics such as
product metric which is both simple to calculate andMcCabe's cyclomatic complexity [14] and Halstead's
provides a quick answer. This paper describes a neurajocabulary [11] metrics.
network approach for characterizing programming effort L .
based on internal product measures. Over thirty-thre2n€ Of the goals of all effort estimation models is to

thousand different neural network experiments weréccurately and reliably prediptogramming effort. Creating

performed upon data derived from a corporate repository® Nighly accurate and reliable model is a challenging

Four different simple metrics (size, vocabulary, complexity€ndeavor. One of the more accuretearch models predicts

and object) are assessed in terms of their individuaFﬁon estimates of 25% more than 75% of the time [17]. The

contribution to programming effort. Afterwards these simpledifficulty is determining which are the answers outside the
metrics are combined and assessed to determine tHe 70 accuracy. A natural research direction is to improve
synergistic impact of each of the combinations. Finally, a/P°n the accuracy and reliability of the models produced.

cross-validation is performed on a second corporateRegarding product metrics, this raises an imgrarguestion,
repository. “How do various product metrics contribute to the formation
of an effort estimator?” Understanding this question will
lead to the improvement in the creation of effort estimation
Keywords models.

Metrics, measurement, empirical analysis, effort estimation, . .
neural networks P y In [5] and [6] it was demonstrated for simple well-

understood metrics that a neural network approach could
generate a network that produces results comparable to that
of a traditional polynomial formulation. This validation of

the neural network approach against known benchmarks
(McCabe and Halstead) show the technique is sound. The

initial research was extended in a commercial setting b¥igure 1 shows the general layout of the input and output
employing neural networks to predict areas likely to receivgparameters for a neural network model.

frequent reuses[7]. Identifying highly-reusable objects
allows an organization to focus their testing efforts.

Collectively all previous works demonstrate that neural I
. ; : nput
networks can be applied to software metric problems in bot
research and commercial environments. Furthermore Shioh "'Q w,
comparative studies [9, 10, 13] show neural networks as L \ Output
reasonable option for formulating an effort estimation % Eunce ™ W, k. i
model. =
This paper builds upon this previous research and describes b

process of applying a neural network approach to thg - W
developing of an effort estimating metric. Usthata from a Complexity = 0 ik
company which specializes in business-to-busines

petrochemical-industry software, over 33,000 experimentj
were conducted varying test suites, neural networ
architectures, and input parameters. Different product-based
metric combinations are assessed in terms of their
contribution to the formulation of an effort estimating tool.

The approach cross-validated against data collected from a] o)]
second corporation’s software repository. By using a powerset combination of the input metric
categories it is possible to create 15 different input

configurations. These catejes are:

2. General framework + Size,

- . » Vocabulary,
The measures for building the various neural network Objects,

models were extracted from a software project which allows | Complexity
petrochemical-based corporations to conduct complete Size and Vécabulary
procurement life-cycle processes over the Internet. « Size and Objects '

All data derived from the programming units were based on * Size and Complexity,
sole-authorship allowing for very precise measurement of * Vocabulary and Objects,
effort and minimizes the noise resulting from assessing * Vocabulary and Complexity,

different programming abilities. * Objects and Complexity, -
. .) . .+ Size, Vocabulary, and Objects,
The data suite contains 104 different units. Each unit Size, Vocabulary, and Complexity,

corresponds to a program written in Delphi and may contain . sjze, Objects, and Complexity,

object, variable, type, and constant definitions along with . \capulary, Objects, and Complexity, and

programming logic in the form of functions or procedures. In Size, Vocabulary, Objects and Complexity.

neural network terminology, each program is considered t% . L . o .
esides grouping individual vectors into specific metric

be a vector. categories, 100 of the 104 vectors are distributed into ten
For each vector, nine input measures are collected reflectirgjstinct groups of ten vectors each. For a given neural

a program’s size, vocabulary, number of objects, ansetwork architecture and a given number of inputs, each one
complexity. The output is the effort, in hours, needed tmf the ten groups acts as a neural network test set. The
create the unit. vectors were sorted by effort and evenly distributed amongst

éhe groups with the intent of creating balanced sets. Setting
Up different testing scenarios serves to validate the integrity
f the modeling process.

Figure 1: General layout for a Neural Network

Size. The size category includes two metrics. The SLO
metric is defined as any line of code which is neither blan
nor a comment, and a count of the total number o
procedures and functions within the unit. The remaining four vectors contain minimum and/or
maximum values for some of the inputs or output. These
ectors always remained in the training set in order to avoid
xtrapolation problems.

Vocabulary. The vocabulary category includes the four
initial metrics defined by Halstead [11], total operands, tota?é
operators, unique operands and unique operators.

. . . . The cross-product of the 15 input categories with the 10
Objects. The object category includes two metrics, the total . L o
nurjnber and theJunique r?urr%/ber of objects in a unit. groups vyields 150 combinations for building a neural

network model. The next question is what type of neural
Complexity. Complexity refers to the total complexity network architectures to apply. It is possible to vary the
within a unit. It is based on McCabe’s [14] definition of number of hidden layers along with the number of nodes per
complexity. hidden layer. A decision was made to limit the maximum
number of hidden layers to 3 and to limit the number of

hidden nodes per hidden layer to twice the number of inputs. Table 1: Total number of Neural Network Models
One method to speed the modeling process was to increase
node additions by two. To illustrate thesmcepts, consider Total number of neural network 3319
a neural network with 3 inputs and 1 output. The following architectures:
neural network architectures are some of the possib Total number of groups per 10
architectures that can be used to build various models: 3 architecture:

e
t1

(three inputs, no hidden, one output); 3-1-1 (three inputs, Olg Total number of neural 33,190
1

hidden, one output); 3-3-1 (three inputs, three hidden, on)
output); 3-5-1 (three inputs, five hidden, one output); 3-1-1- networks:

three inputs, one node on first hidden layer, one node on the . .
gecond r?idden layer, one output); 3_3_1_{. 3.5-1-1: 3-1-3-1i" order to build and train 33,190 neural networks, an

3-3-3-1: 3-5-3-1: 3-1-5-1: 3-3-5-1: 3-5-5-1: 3-1-1-1-1 (threeéutomated neural ne’twork program was used. This program
inputs, three hidden layers of one node each, one output); 5 Pased on Fahiman's [8] quickprop algorithm.
3-1-1-1; ... ; 3-3-5-5-1; and 3-5-5-5-1. In order to reduce variations between neural network
For N inputs, the number of neural network architecturémodels, several parameters remain constant. These include
.) N+ N3 alpha, the learning rate, which is one; mu, the momentum,
permutations equald: + N + N°+ N" where which also remains at one; unit type is always asymmetrical;
1 means there is only one neural network architecture witend tolerance which is set to 30 percent. Tolerance is
zero hidden layers, Magnitude of Relative Error, or MRE. It is typically written

. , as pred(30).
N is the number of ways of creating a neural network _ . .
architecture with one layer, As data is read, it is normalized to values between zero and

one for processing. For reporting purposes, all results are
N2 is the number of ways of creating a neural networkmapped back to the original ranges of a specific network.

architecture with two layers, and . . I
y As a way to speed up the experimentation process, the initial

N3is the number of ways of creating a neural networkaPproach limits every neural network to 1000 epochs. Using
architecture with three layers. this constraint allows all training to be completed within

) weeks, rather than months or years. The only unanswered

Table 1 shows the total number of permutations of neurgjyestion is whether this would provide enough epochs to
network architectures, metric categories, and grouRyfficiently train the neural network. Experience in [6] and

configurations. [7] has shown that most neural networks train in less than
1000 epochs, so using a longer training period is often

fruitless. In the event that all the neural networks produce

Table 1: Total number of Neural Network Models low correlation results, then more training will be performed.
Number of There are many ways of measuring “successful” neural
Neural network training. Rather than commit to only one method of
Number Network measuring success, several different forms of “success” are
Metric Category of Inputs| Architectures described. For every group within every metric category
. over all the different neural network architectures, the
Size 2 15 . “ M
following seven types of “success” measures are captured:
Vocabulary 4 85 . o .
: Training RMS error. This is lowest error value with respect
Objects 2 15 to training.
Complexity L 4 Test RMS error. This is lowest error value with respect to
Size and Vocabulary 6 259 testing.
Size and Objects 4 85 Training Correlation. This is the highest correlation value
Size and Complexity 3 40 between the calculated and actual training outputs.

Vocabulary and Objects 6 259 Test Correlation. This is the highest correlation value
Vocabulary and Complexity 5 156 between the calculated andudttest outputs.

Objects and Complexity 3 40 Combined Training and Test correlation. This case adds
Size, Vocabulary and Objects 3 585 the training and test correlations and keeps track of the
: _ highest combined total.

Size, Vocabulary and Complexity 7 400] o o
Size Obiects and Complexit 5 156 Total train correct. This is the number of training vectors,
> 0 piexy out of a maximum of 94, that produce a value within the 30
Vocabulary, Objects and 7 400 percent threshold range, written as pred(30), of the actual
Complexity training output.
All metri ..
metrics 9 820 Total test correct. This is the number of test vectors, out of a

maximum of 10, that produce a value within the threshold

range, pred(30), of the actual test output.

In order to illuminate the neural network modeling process,

pseudocode representation follows. This code shows all th

key loops for building all of the neural network models.

(* Pseudocode algorithm of the process *)
Alpha := 1.0;
Momentum := 1.0;
UnitType := Asym.;
Tolerance := 30%;
MaximumEpochs := 1000;
Loop through all 15 possible metric configurations
Loop through all 10 groups (* 'A’ to 'J’ *)
(* Loop through neural net architectures *)
HiddenLayers =0 to 3
NodesPerLayer=1to 2*NumberOfinputs (in net)
(* Initialize Best Cases *)
(* This following inner loop will be *)
(* executed over 33,000 times. *)
For Epochs := 1 to MaximumEpochs do begin
Train One Epoch;
Test One Epoch;
Update best case values if necessary.
End Loop;
Save Best Case and statistical information
NEXT NodesPerLayer
NEXT HiddenLayers
End Loop (* for all 10 groups *)
End Loop (* for Metric Configurations *)

Table 2: Test Set Results by Group

 Data | Ave.Test | Ave.Test | V&
€Group | RMS Error | Correlation y
pred(30)
G 0.00524 0.9750 52%
H 0.00556 0.9935 51%
| 0.00802 0.9763 51%
J 0.00784 0.9901 57%

Ranking each group by column and adding up the rankings
shows that groups C, H, and J had the best results and group

B the poorest.

Group B had median values for RMS Error, Test Eation,
and Accuracy of 0.000209, 0.9130 and 40% respectively.

Table 3: Group B

This code serves as the foundation for the actual modelir

program. Running the program in batch mode generates 1

different files (15 different input configurations times the 10
different groups). Each file contains results of the 7 beg

cases.

3. Results: general assessment

The statistical results from analyzing a test suite are of mo
interest and value than from assessiagntng data. The test

suite results provide a benchmark of how well a neurg

network model performs on novel data. Therefore, all th
results in this section focus on the test results.

Table 2 shows the average of all 15 input configurations f

each data group. The average correlation exce889@ for
7 of the 10 groups. The average correct, pred(30), excee
50% for 5 of the 10 groups. A typical group, based upor

median results, would have an RMS error around 0.0045,

Test Correlation aroun@.9742,and an accuracy of 48%.

-
Metric Category Teé:rf::vls ggfrt Accﬁf;cy
" | pred(30)
Size 0.000195 0.8288 30%
Objects 0.001240 0.8387 50%
Complexity 0.051631] 0.8337 10%
Vocabulary 0.000445% 0.9359 30%
Size, Object 0.00018D 0.8965 40%
Size, Complexity 0.000194 0.8346 30%
Size, Vocabulary 0.0002090 0.95Y5 40%
®bject, Complexity 0.000955| 0.8740 50%
[Object, Vocabulary 0.000376 0.9287 40%
FComplexity, Vocabulary 0.00045p 0.9322 30%
vSize, Object, Complexity | 0.0001748 0.9075 50%
ISize, Obiject, Vocabulary 0.000184 0.9198 50%
dSize, Complexity, Vocab. | 0.000178 0.9130 40%
I((;?bject, Complexity, Vocah. 0.000360 0.9297 40%
All 0.000177| 0.9141 50%

Table 2: Test Set Results by Group

Group C had median values for RMS Error, Test €ation,

and Accuracy of 0.00015, 0.9254 and 60% respectively.
Ave.
Data Ave. Test Ave. Test
. Accuracy Table 4: Group C
Group | RMS Error| Correlation
pred(30)
Test RMS| Test Test
A 0.00251 0.9504 43% Metric Category E c Accuracy
B 0.00380 0.8960 38% fror O 1 ored(30)
c 0.00249 0.9028 59% Size 0.000169 0.7559 60%
D 0.00194 0.9192 45% - .
E 000252 09734 1% Objects 0.000448 0.8974 60%
= 0.01052 0.9873 43% Complexity 0.034829 0.7458 00%

Table 4: Group C and Accuracy of 0.000025, 0.9956 and 60% respectively.

Metric Category TestRMS - Test Acl—if;cy Teble ©: Group)
Error Corr.
pred(30) . TestRMS| Test |, 1ot
Metric Category Accuracy
Vocabulary 0.00022% 0.8872 50% Error Corr. pred(30)
Size, Object 0.000104+ 0.9765 60% Sive 0000046 09848 50%
Size, Complexity 0.00015p 0.7983 60% Objects 0001128 09496 40%
Size, Vocabulary 0.0001183 0.9344 70% Complexity 0115630 09833 00%
Object, Complexity 0.000453| 0.9220 60% Vocabulary 0.00002% 09956 50%
Object, Vocabulary 0.00015[7 0.9254 70% Size, Object 0000038 09987 609
Complexity, Vocabulary 0.00022]7 0.9191 50% Size, Complexity 0000046 0.9848 500
Size, Object, Complexity 0.000065 0.9633 60% Size, Vocabulary 0.000020 0.9942 70%
Size, Object, Vocabulary 0.000085 0.9620 70% Object, Complexity 00005211 0.9818 60%
Size, Complexity, Vocab. 0.000130 0.9576 70% Object, Vocabulary 0.000025 09961 70%
Object, Complexity, Vocab. 0.000127 0.9344 70% Complexity, Vocabulary 0000025 0.9960 50%
Al 0.000075] 0.962 70% Size, Object, Complexity 0.000033 0.9986 50%
Size, Object, Vocabulary 0.000014 0.9974 80%
Group H had median values for RMS Error, Test Correlation,Size, Complexity, Vocab. | 0.000035 0.9953 70%
and Accuracy of 0.0000025,9862 and 50% respectively. Object, Complexity, Vocah. 0.000025 0.9960 80%
Table 5: Group H All 0.000016| 0.99884 80%
TestRMS| Test Test It is interesting to note that Group B, the lowest ranked

Metric Category Accuracy| group, did not produce the lowest individual values. The

pred(30) range of values for each result ranged from 0.000014 to
0.11563 (Group J) for the Test RMS Error, 0.7458 to 0.9765

Error Corr.

Size 0.000092 0.9729 40% for the Test Correlation (Group C), and O to 80 percent for

Objects 0.001152 09781 40% the Test Accuracy (Groups H and J).

Complexity 0.081708 0.9962 00%

Vocabulary 0.000025 0.9992 40%| 4. Metric contribution to effort

Size, Object 0.000069 0.9960 50%

Size, Complexity 0.00006{ 0.9962 40% Thjs section describes the contribution of various syntax

Size, Vocabulary 0.000018 0.9953 709% metrics to effort. Each of the 10 groups mentioned in the
, - previous section were sorted by Test RMS Error then ranked

Object, Complexity 0.000185 0.9963 50% | fom 1 to 15. This process was repeated for the Test

Object, Vocabulary 0.000024 0.9963 50% Correlation along with Test Accuracy. As a consequence of

; C this process each of the 15 inputs (metric configurations) had
Complexity, Vocabulary 0.000024 0.99p9 S0% 3 ratings for each of the 10 groups. Aaging the 30 ratings
Size, Object, Complexity 0.000021 0.9983 60% produced the following results presented in table 7.

Size, Object, Vocabulary 0.000010 0.9982 80%
Size, Complexity, Vocab. 0.000015 0.9962 70%

Table 7: Metric Contribution (3 Categories)

Object, Complexity, Vocab, 0.000033 0.9967 50% Metric Configuration Average Rating
All 0.000013| 0.9984 80% All 2.37

Size, Object, Vocabulary 2.47

Size, Complexity, Vocabulary 4.70
Group J had median values for RMS Error, Test Correlation; Object, Complexity, Vocabulary 2.70

Table 7: Metric Contribution (3 Categories)

Metric Configuration Average Rating 2 Cross validation

Size, Vocabulary 5.03
Object, Vocabulary 5.20 A natural question is how well the neyral network predict_s

- . . for a new software development project. To address this
Size, Object, Complexity 5.27 issue, 433 observations were collected from a completely
Size, Object 6.23 different project. from a completely different corporation..

- . These observations serve as the test data for the following
Size, Complexity 8.63 neural network experiments.
Complexity, Vocabulary 8.93 The input set consisted of all the syntax metrics used in the
Object, Complexity 9.20 experiments described in the previous sections. Ten different
Vocabular 983 neural network models are constructed. Each corresponds to

ocabulary : the training data used in the previous sections. In essence,
Size 10.43 each training set consists of nine of the ten groups of data
Objects 11.63 along with the permanent data items.
Complexity 14.17 Ea_ch model is trained u§ing the 10 different datasets. Th!s

validation approach provides a true measure of the model's

redictive abilities. This test yields an average PRED(.30) of

Table 7 shows that using all the syntax metrics and the SiZ53.26% indicating than on average, the validation results
Object, anq chgbulary pr(_)duce_ the best ratings for the Te ?oduce estimates within 30% of the actuals 73.26% of the
data. The individual metrics did not fare as well as an i

combination of metrics. The general pattern suggests a very

good synergy among syntax metrics for estimating effortFurthermore, there were extrapolation issues for every input
Ironically Complexity, as an individual metric, did not fare and the effort output. As a consequence, the neural network
well at estimating effort. However, when added to any othecould not accurately predict effort for those observations
combination it improved thevarage rating. outside of the bounds of the training data. Even with the
xtrapolation issues, it is concluded that the neural network

Focusing on the accuracy results only, the two best inp odel has reasonably good predictive qualities.

configurations are all the metrics and Size, Object, an
Vocabulary. Once again the individual metrics were not as
accurate as compound metrics. Table 8 shows the summaéy lusi

for the accuracy ratings. - Conclusions

Table 8: Metric Contribution (Accuracy Only)
This work describes a process of building a neural network-

. . . Average based model for measuring software effort. It demonstrates a
Metric Configuration Accuracy Rating process for extracting a set of software metrics from a
program, associating the metrics with a program’s effort,
All 1.50 then constructing a neural network model. An automated
Size, Object, Vocabulary 1.50 process creates over 33,000 different neural network models
Object, Vocabulary 230 and coIIe_cts data for the _ bgst_ cases. Product metrics are
i grouped into four categories: size, vocabulary, objects, and
Size, Vocabulary 2.60 complexity, then analyzed for training and test cases.
SIZ.E’ Complexny., Vocabulary 2.60 Compound metrics, in the form of combinations of
Object, Complexity, Vocabulary 2.80 individual measures, generally outperformed individual
Object, Complexity 4.60 measures. The results from all the experiments justify the
Size, Object, Complexity 5.10 inclusion of other product-based measures, such as
Size, Object 580 cyclomatic complequ and vabu_lary, into the formauon. of
’ : an effort estimation equation. Overall, the input
Size, Complexity 7.20 configuration which included all the syntax measures
Objects 7.30 produced the most accurate model against the test data than
Size 8.30 any subset combination.
Complexity, Vocabulary 9.60 The cross-validation experiments generated reasonable
Vocabulary 10.20 results and warrant further research in this area.
Complexity 15.00 Using a neural network-based approach to formulate an

effort estimation model allows for automated construction
and assessment of effort estimation models. The actual effort

metric is embedded within the neural network architecturel3] Boehm, B., Software Engineering Economjcg&Englewood

At present, there is no mechanism for interpreting thé&liffs, NJ, Prentice-Hall, 1981.

architecture of the neural network. This may be perceived a@] Boehm, B., et al., “Cost Models for Future Software Life Cycle
a weakness of a neural network approach. The trend irocess: COCOMO 2,” Annals of Software Engineering, 1995.
Software Engineering is towards more sophisticateqs) Boetticher, G., K. Srinivas and D. Eichmann, “A Neural Net-
software processes. This implies that effort estimatiorBased Approach to Software MetricsProceedings of the 5th
models, which mirror these processes, will naturally becoménternational Conference on Software Engineering and Knowledge
more complicated. As a consequence, it will be harder t5"9""€ering June 1993, pp. 271-274.

create and interpret a “whitgox” effort esimation model. [6] Boetticher, G. and D. Eichmann, “A Neural Net Paradigm for
Characterizing Reusable SoftwareProceedings of the First
Australian Conference on Software Metriddovember 1993, pp.
41-49.

[7] Boetticher, G., “Characterizing Object-Oriented Software for
Reusability in a Commercial EnvironmentReuse '95 Making
Reuse Happen — Factors for Succ¢dgl®rgantown, WYV, August

This work focused upon product metric contribution to thel99°- B _ _

formation of an effort estimation model. It raises several8] Fahiman, S.E.An Empirical Study of Learning Speed in Back-

questions which spawn further research. Propagation NetworksTech Report CMU-CS-88-162, Carnegie
Mellon University, September 1988.

The tendency for adding more product metrics to improves) Finnie, G.R., Wittig, G.E., Desharnais, J-M, “A Comparison of
results suggests adding more product metrics to th8oftware Effort Estimation Techniques: Using Function Points with

experimentation process. This could include coupling andleural Networks, Case-Base Reasoning and Regression Models,
cohesion metrics. Journal of Systems Software, 1997, pp. 281-289.

7. Future directions

. . . 10]Gray, A.R., MacDonnell, S.G., “A Comparison of techniques
This research focused only on product metrics in theor developing predictive models of software metrics,” Information
formulation of an effort estimation model. This researchand Software Technology, 1997, pp. 425-437.

could be extended by adding process, project, and personng{jaistead, M.H.Elements of Software Sciendgisevier, NY,
type metrics. A synthesis with another model, e.g1977.

COCOMGO I, might be a logical step. [12]Hodgkinson, A.C., Garratt, P.W., “A Neurofuzzy Cost

N i stimator,” Proc. 3rd International Conf. Software Engineering
Neural network modeling is only one of several approaphegnd Applications (SAEL999, pp. 401-406,
for constructing an effort estimation model. Applying ' _ _ _
different modeling approaches, e.g. Case-Based Reasonirg3]lKrishnamoorthy, S., Fisher, D., “Machine Learning

. . proaches to Estimating Software Development EffofEEE
might provide more accurate models. Transactions on Software Engineeri 2, 1995, pp. 126-137.

[14]McCabe, T.J., “A Complexity MeasurdEEE Transactions on
Software Engineerin@® 4, December 1976, pp. 308-320.

[15]Putnam, L.H., “A General Empirical Solution to the Macro
Software Sizing and Estimating ProblenlZEE Transactions on
Software Engineerin@® 4, 1978, pp345-361.

[1] Abts, C., Clark, B. Devnani-Chulani, S., Horowitz, E., [16]Samson, B., Ellison, D., Dugard, P., “Software Cost Estimation
Madachy, R., Reifer, D., Selby, R., and Steece, B., “COCOMO liyging an Albus Perceptron,” Information and Software

Model Definition Manual,” Center for Software Engineering, -
University of Southern California, 1998. Technology, 1997, pp. 55-60.

8. References

[17]Wittig, G., Finnie, G., “Estimating software development effort

[2] Albrect, A.J., Gaffney, J.E. Jr., “Software Function, Sourceyin tionist models.” Inf i d Soft Technol
Lines of Code and DevelopmentEffort Prediction: A Software\ivéwcc;)npr?eﬂr%lgo_r}%.mo ©'s,” Information and software fechnology,

Science Validation,JEEE Transactions on Software Engineerig
4, 1978, pp. 345-361.

	Abstract
	Keywords
	Figure 1: General layout for a Neural Network

	Metric Category
	Number
	of Inputs
	Number of Neural
	Network Architectures
	Size
	2
	15
	Vocabulary
	4
	85
	Objects
	2
	15
	Complexity
	1
	4
	Size and Vocabulary
	6
	259
	Size and Objects
	4
	85
	Size and Complexity
	3
	40
	Vocabulary and Objects
	6
	259
	Vocabulary and Complexity
	5
	156
	Objects and Complexity
	3
	40
	Size, Vocabulary and Objects
	8
	585
	Size, Vocabulary and Complexity
	7
	400
	Size, Objects and Complexity
	5
	156
	Vocabulary, Objects and Complexity
	7
	400
	All metrics
	9
	820
	Total number of neural network architectures:
	3319
	Total number of groups per architecture:
	10
	Total number of neural networks:
	33,190
	A
	0.00251
	0.9504
	43%
	B
	0.00380
	0.8960
	38%
	C
	0.00249
	0.9028
	59%
	D
	0.00194
	0.9192
	45%
	E
	0.00252
	0.9734
	41%
	F
	0.01052
	0.9873
	43%
	G
	0.00524
	0.9750
	52%
	H
	0.00556
	0.9935
	51%
	I
	0.00802
	0.9763
	51%
	J
	0.00784
	0.9901
	57%
	Size
	0.000195
	0.8288
	30%
	Objects
	0.001240
	0.8387
	50%
	Complexity
	0.051631
	0.8337
	10%
	Vocabulary
	0.000445
	0.9359
	30%
	Size, Object
	0.000180
	0.8965
	40%
	Size, Complexity
	0.000194
	0.8346
	30%
	Size, Vocabulary
	0.000209
	0.9575
	40%
	Object, Complexity
	0.000955
	0.8740
	50%
	Object, Vocabulary
	0.000376
	0.9237
	40%
	Complexity, Vocabulary
	0.000450
	0.9322
	30%
	Size, Object, Complexity
	0.000178
	0.9075
	50%
	Size, Object, Vocabulary
	0.000184
	0.9198
	50%
	Size, Complexity, Vocab.
	0.000178
	0.9130
	40%
	Object, Complexity, Vocab.
	0.000360
	0.9297
	40%
	All
	0.000177
	0.9141
	50%
	Size
	0.000169
	0.7559
	60%
	Objects
	0.000448
	0.8974
	60%
	Complexity
	0.034829
	0.7458
	00%
	Vocabulary
	0.000225
	0.8872
	50%
	Size, Object
	0.000104
	0.9765
	60%
	Size, Complexity
	0.000150
	0.7983
	60%
	Size, Vocabulary
	0.000113
	0.9344
	70%
	Object, Complexity
	0.000453
	0.9220
	60%
	Object, Vocabulary
	0.000157
	0.9254
	70%
	Complexity, Vocabulary
	0.000227
	0.9191
	50%
	Size, Object, Complexity
	0.000065
	0.9633
	60%
	Size, Object, Vocabulary
	0.000085
	0.9620
	70%
	Size, Complexity, Vocab.
	0.000130
	0.9576
	70%
	Object, Complexity, Vocab.
	0.000127
	0.9344
	70%
	All
	0.000075
	0.9627
	70%
	Size
	0.000092
	0.9729
	40%
	Objects
	0.001152
	0.9751
	40%
	Complexity
	0.081708
	0.9962
	00%
	Vocabulary
	0.000025
	0.9952
	40%
	Size, Object
	0.000069
	0.9960
	50%
	Size, Complexity
	0.000061
	0.9962
	40%
	Size, Vocabulary
	0.000018
	0.9953
	70%
	Object, Complexity
	0.000185
	0.9963
	50%
	Object, Vocabulary
	0.000024
	0.9963
	50%
	Complexity, Vocabulary
	0.000024
	0.9959
	50%
	Size, Object, Complexity
	0.000021
	0.9983
	60%
	Size, Object, Vocabulary
	0.000010
	0.9982
	80%
	Size, Complexity, Vocab.
	0.000015
	0.9962
	70%
	Object, Complexity, Vocab.
	0.000033
	0.9967
	50%
	All
	0.000013
	0.9984
	80%
	Size
	0.000046
	0.9848
	50%
	Objects
	0.001128
	0.9496
	40%
	Complexity
	0.115630
	0.9833
	00%
	Vocabulary
	0.000025
	0.9956
	50%
	Size, Object
	0.000038
	0.9987
	60%
	Size, Complexity
	0.000046
	0.9848
	50%
	Size, Vocabulary
	0.000020
	0.9942
	70%
	Object, Complexity
	0.000521
	0.9818
	60%
	Object, Vocabulary
	0.000025
	0.9961
	70%
	Complexity, Vocabulary
	0.000025
	0.9960
	50%
	Size, Object, Complexity
	0.000033
	0.9986
	50%
	Size, Object, Vocabulary
	0.000014
	0.9974
	80%
	Size, Complexity, Vocab.
	0.000015
	0.9953
	70%
	Object, Complexity, Vocab.
	0.000025
	0.9960
	80%
	All
	0.000016
	0.9988
	80%
	All
	2.37
	Size, Object, Vocabulary
	2.47
	Size, Complexity, Vocabulary
	4.70
	Object, Complexity, Vocabulary
	4.70
	Size, Vocabulary
	5.03
	Object, Vocabulary
	5.20
	Size, Object, Complexity
	5.27
	Size, Object
	6.23
	Size, Complexity
	8.63
	Complexity, Vocabulary
	8.93
	Object, Complexity
	9.20
	Vocabulary
	9.83
	Size
	10.43
	Objects
	11.63
	Complexity
	14.17
	All
	1.50
	Size, Object, Vocabulary
	1.50
	Object, Vocabulary
	2.30
	Size, Vocabulary
	2.60
	Size, Complexity, Vocabulary
	2.60
	Object, Complexity, Vocabulary
	2.80
	Object, Complexity
	4.60
	Size, Object, Complexity
	5.10
	Size, Object
	5.80
	Size, Complexity
	7.20
	Objects
	7.30
	Size
	8.30
	Complexity, Vocabulary
	9.60
	Vocabulary
	10.20
	Complexity
	15.00
	An Assessment of Metric Contribution in the Construction of a
	Neural Network-Based Effort Estimator
	Gary D. Boetticher
	Department of Software Engineering
	Houston, TX 77058 USA

	+1 281 283 3805
	boetticher@uhcl.cl.uh.edu

