
for
d,
t’s
s
e
es,

he
pon
se,
nel
and
of
 are
he
nt
 a
in
r
eal
ce
as

’s

to

ng

he
he
ve

n
ill
on

-
uld
that
f
rks
he

An Assessment of Metric Contribution in the Construction of a

Neural Network-Based Effort Estimator

Gary D. Boetticher
Department of Software Engineering

University of Houston Clear Lake
2700 Bay Area Boulevard
Houston, TX 77058 USA

+1 281 283 3805
boetticher@uhcl.cl.uh.edu
Abstract

The research literature contains various models for
estimating programming effort. Traditional, well
understood, mature approaches include Putnam’s SLIM
[15], Albrect’s function point method of estimation [2], as
well as COCOMO [3] and COCOMO II [1, 4]. Besides these
traditional approaches, various machine learning
techniques, including neural networks, [16, 17, 12] have
evolved. At the foundation of these models is a set of cost
drivers based upon process (e.g. process maturity), project
(e.g., reuse, platform), personnel (e.g. team cohesion,
personnel experience), and/or product measures (e.g. size
and interface). Historically, SLOC (Source Lines of Code)
metric is the most popular product metric used in the
formulation of the various models. It is simple to calculate
and provides a quick answer. However, it is an
oversimplification of the product measure contribution to
what characterizes programming effort. Using only SLOC
ignores the contribution of other internal product metrics,
such as complexity and vocabulary, in determining
programming effort. What is needed is a more representative
product metric which is both simple to calculate and
provides a quick answer. This paper describes a neural
network approach for characterizing programming effort
based on internal product measures. Over thirty-three
thousand different neural network experiments were
performed upon data derived from a corporate repository.
Four different simple metrics (size, vocabulary, complexity,
and object) are assessed in terms of their individual
contribution to programming effort. Afterwards these simple
metrics are combined and assessed to determine the
synergistic impact of each of the combinations. Finally, a
cross-validation is performed on a second corporate
repository.

Keywords
Metrics, measurement, empirical analysis, effort estimation,
neural networks

1. Introduction

The research literature contains various models
estimating programming effort. Traditional, well understoo
mature approaches include Putnam’s SLIM [15], Albrec
function point method of estimation [2], as well a
COCOMO [3] and COCOMO II [1, 4]. Besides thes
traditional approaches, various machine learning techniqu
including neural networks, [16, 17, 12] have evolved. At t
foundation of these models is a set of cost drivers based u
process (e.g. process maturity), project (e.g., reu
platform), personnel (e.g. team cohesion, person
experience), and/or product measures (e.g. size
interface). Effort estimation models include some or all
these types of measures. However, product-based metrics
the most prevalent in effort estimation models. Since t
inception of software metrics in the 1970s, the predomina
product metric used in measuring programming effort is
Source Lines of Code (SLOC) metric. The appeal lies
SLOC’s ability to provide a quick and simple answe
applicable at both the developer or project level. The app
of simplicity is also one of the shortcomings of SLOC sin
it ignores other common code characteristics such
McCabe’s cyclomatic complexity [14] and Halstead
vocabulary [11] metrics.

One of the goals of all effort estimation models is
accurately and reliably predict programming effort. Creating
a highly accurate and reliable model is a challengi
endeavor. One of the more accurate research models predicts
effort estimates of 25% more than 75% of the time [17]. T
difficulty is determining which are the answers outside t
25% accuracy. A natural research direction is to impro
upon the accuracy and reliability of the models produced.

Regarding product metrics, this raises an important question,
“How do various product metrics contribute to the formatio
of an effort estimator?” Understanding this question w
lead to the improvement in the creation of effort estimati
models.

In [5] and [6] it was demonstrated for simple well
understood metrics that a neural network approach co
generate a network that produces results comparable to
of a traditional polynomial formulation. This validation o
the neural network approach against known benchma
(McCabe and Halstead) show the technique is sound. T

put

ic
ut

ic
ten
ral
ne

The
gst
ting
rity

r
se
oid

10
al
ral
he
per
m
of
initial research was extended in a commercial setting by
employing neural networks to predict areas likely to receive
frequent reuses[7]. Identifying highly-reusable objects
allows an organization to focus their testing efforts.
Collectively all previous works demonstrate that neural
networks can be applied to software metric problems in both
research and commercial environments. Furthermore,
comparative studies [9, 10, 13] show neural networks as a
reasonable option for formulating an effort estimation
model.

This paper builds upon this previous research and describes a
process of applying a neural network approach to the
developing of an effort estimating metric. Using data from a
company which specializes in business-to-business
petrochemical-industry software, over 33,000 experiments
were conducted varying test suites, neural network
architectures, and input parameters. Different product-based
metric combinations are assessed in terms of their
contribution to the formulation of an effort estimating tool.
The approach cross-validated against data collected from a
second corporation’s software repository.

2. General framework

The measures for building the various neural network
models were extracted from a software project which allows
petrochemical-based corporations to conduct complete
procurement life-cycle processes over the Internet.

All data derived from the programming units were based on
sole-authorship allowing for very precise measurement of
effort and minimizes the noise resulting from assessing
different programming abilities.

The data suite contains 104 different units. Each unit
corresponds to a program written in Delphi and may contain
object, variable, type, and constant definitions along with
programming logic in the form of functions or procedures. In
neural network terminology, each program is considered to
be a vector.

For each vector, nine input measures are collected reflecting
a program’s size, vocabulary, number of objects, and
complexity. The output is the effort, in hours, needed to
create the unit.

Size. The size category includes two metrics. The SLOC
metric is defined as any line of code which is neither blank
nor a comment, and a count of the total number of
procedures and functions within the unit.

Vocabulary. The vocabulary category includes the four
initial metrics defined by Halstead [11], total operands, total
operators, unique operands and unique operators.

Objects. The object category includes two metrics, the total
number and the unique number of objects in a unit.

Complexity. Complexity refers to the total complexity
within a unit. It is based on McCabe’s [14] definition of
complexity.

Figure 1 shows the general layout of the input and out
parameters for a neural network model.

Figure 1: General layout for a Neural Network

By using a powerset combination of the input metr
categories it is possible to create 15 different inp
configurations. These categories are:

• Size,
• Vocabulary,
• Objects,
• Complexity,
• Size and Vocabulary,
• Size and Objects,
• Size and Complexity,
• Vocabulary and Objects,
• Vocabulary and Complexity,
• Objects and Complexity,
• Size, Vocabulary, and Objects,
• Size, Vocabulary, and Complexity,
• Size, Objects, and Complexity,
• Vocabulary, Objects, and Complexity, and
• Size, Vocabulary, Objects and Complexity.

Besides grouping individual vectors into specific metr
categories, 100 of the 104 vectors are distributed into
distinct groups of ten vectors each. For a given neu
network architecture and a given number of inputs, each o
of the ten groups acts as a neural network test set.
vectors were sorted by effort and evenly distributed amon
the groups with the intent of creating balanced sets. Set
up different testing scenarios serves to validate the integ
of the modeling process.

The remaining four vectors contain minimum and/o
maximum values for some of the inputs or output. The
vectors always remained in the training set in order to av
extrapolation problems.

The cross-product of the 15 input categories with the
groups yields 150 combinations for building a neur
network model. The next question is what type of neu
network architectures to apply. It is possible to vary t
number of hidden layers along with the number of nodes
hidden layer. A decision was made to limit the maximu
number of hidden layers to 3 and to limit the number

an
am

rk
lude
m,
al;
 is

and
are

itial
ing
in
red
 to
d
an
en
ce
d.

ral
of
are
ry
e
:

t

o

the

,
30
ual

a

hidden nodes per hidden layer to twice the number of inputs.
One method to speed the modeling process was to increase
node additions by two. To illustrate these concepts, consider
a neural network with 3 inputs and 1 output. The following
neural network architectures are some of the possible
architectures that can be used to build various models: 3-1
(three inputs, no hidden, one output); 3-1-1 (three inputs, one
hidden, one output); 3-3-1 (three inputs, three hidden, one
output); 3-5-1 (three inputs, five hidden, one output); 3-1-1-1
(three inputs, one node on first hidden layer, one node on the
second hidden layer, one output); 3-3-1-1; 3-5-1-1; 3-1-3-1;
3-3-3-1; 3-5-3-1; 3-1-5-1; 3-3-5-1; 3-5-5-1; 3-1-1-1-1 (three
inputs, three hidden layers of one node each, one output); 3-
3-1-1-1; ... ; 3-3-5-5-1; and 3-5-5-5-1.

For N inputs, the number of neural network architecture
permutations equals: 1 + N + N2 + N3 where

 1 means there is only one neural network architecture with
zero hidden layers,

N is the number of ways of creating a neural network
architecture with one layer,

N2 is the number of ways of creating a neural network
architecture with two layers, and

N3is the number of ways of creating a neural network
architecture with three layers.

Table 1 shows the total number of permutations of neural
network architectures, metric categories, and group
configurations.

In order to build and train 33,190 neural networks,
automated neural network program was used. This progr
is based on Fahlman’s [8] quickprop algorithm.

In order to reduce variations between neural netwo
models, several parameters remain constant. These inc
alpha, the learning rate, which is one; mu, the momentu
which also remains at one; unit type is always asymmetric
and tolerance which is set to 30 percent. Tolerance
Magnitude of Relative Error, or MRE. It is typically written
as pred(30).

As data is read, it is normalized to values between zero
one for processing. For reporting purposes, all results
mapped back to the original ranges of a specific network.

As a way to speed up the experimentation process, the in
approach limits every neural network to 1000 epochs. Us
this constraint allows all training to be completed with
weeks, rather than months or years. The only unanswe
question is whether this would provide enough epochs
sufficiently train the neural network. Experience in [6] an
[7] has shown that most neural networks train in less th
1000 epochs, so using a longer training period is oft
fruitless. In the event that all the neural networks produ
low correlation results, then more training will be performe

There are many ways of measuring “successful” neu
network training. Rather than commit to only one method
measuring success, several different forms of “success”
described. For every group within every metric catego
over all the different neural network architectures, th
following seven types of “success” measures are captured

Training RMS error. This is lowest error value with respec
to training.

Test RMS error. This is lowest error value with respect t
testing.

Training Correlation. This is the highest correlation value
between the calculated and actual training outputs.

Test Correlation. This is the highest correlation value
between the calculated and actual test outputs.

Combined Training and Test correlation. This case adds
the training and test correlations and keeps track of
highest combined total.

Total train correct. This is the number of training vectors
out of a maximum of 94, that produce a value within the
percent threshold range, written as pred(30), of the act
training output.

Total test correct. This is the number of test vectors, out of

Table 1: Total number of Neural Network Models

Metric Category
Number
of Inputs

Number of
Neural

Network
Architectures

Size 2 15

Vocabulary 4 85

Objects 2 15

Complexity 1 4

Size and Vocabulary 6 259

Size and Objects 4 85

Size and Complexity 3 40

Vocabulary and Objects 6 259

Vocabulary and Complexity 5 156

Objects and Complexity 3 40

Size, Vocabulary and Objects 8 585

Size, Vocabulary and Complexity 7 400

Size, Objects and Complexity 5 156

Vocabulary, Objects and
Complexity

7 400

All metrics 9 820

Total number of neural network
architectures:

 3319

Total number of groups per
architecture:

 10

Total number of neural
networks:

33,190

Table 1: Total number of Neural Network Models

gs
roup
maximum of 10, that produce a value within the threshold
range, pred(30), of the actual test output.

In order to illuminate the neural network modeling process, a
pseudocode representation follows. This code shows all the
key loops for building all of the neural network models.

(* Pseudocode algorithm of the process *)
Alpha := 1.0;
Momentum := 1.0;
UnitType := Asym.;
Tolerance := 30%;
MaximumEpochs := 1000;
Loop through all 15 possible metric configurations

Loop through all 10 groups (* ’A’ to ’J’ *)
(* Loop through neural net architectures *)

 HiddenLayers = 0 to 3
NodesPerLayer = 1 to 2*NumberOfInputs (in net)

(* Initialize Best Cases *)
(* This following inner loop will be *)
(* executed over 33,000 times. *)
For Epochs := 1 to MaximumEpochs do begin

Train One Epoch;
Test One Epoch;
Update best case values if necessary.

End Loop;
Save Best Case and statistical information

NEXT NodesPerLayer
NEXT HiddenLayers

End Loop (* for all 10 groups *)
End Loop (* for Metric Configurations *)

This code serves as the foundation for the actual modeling
program. Running the program in batch mode generates 150
different files (15 different input configurations times the 10
different groups). Each file contains results of the 7 best
cases.

3. Results: general assessment

The statistical results from analyzing a test suite are of more
interest and value than from assessing training data. The test
suite results provide a benchmark of how well a neural
network model performs on novel data. Therefore, all the
results in this section focus on the test results.

Table 2 shows the average of all 15 input configurations for
each data group. The average correlation exceeds 0.9500 for
7 of the 10 groups. The average correct, pred(30), exceeds
50% for 5 of the 10 groups. A typical group, based upon
median results, would have an RMS error around 0.0045, a
Test Correlation around 0.9742, and an accuracy of 48%.

Ranking each group by column and adding up the rankin
shows that groups C, H, and J had the best results and g
B the poorest.

Group B had median values for RMS Error, Test Correlation,
and Accuracy of 0.000209, 0.9130 and 40% respectively.

Group C had median values for RMS Error, Test Correlation,
and Accuracy of 0.00015, 0.9254 and 60% respectively.

Table 2: Test Set Results by Group

Data
Group

Ave. Test
RMS Error

Ave. Test
Correlation

Ave.
Accuracy
pred(30)

A 0.00251 0.9504 43%

B 0.00380 0.8960 38%

C 0.00249 0.9028 59%

D 0.00194 0.9192 45%

E 0.00252 0.9734 41%

F 0.01052 0.9873 43%

G 0.00524 0.9750 52%

H 0.00556 0.9935 51%

I 0.00802 0.9763 51%

J 0.00784 0.9901 57%

Table 3: Group B

Metric Category
Test RMS

Error
Test
Corr.

Test
Accuracy
pred(30)

Size 0.000195 0.8288 30%

Objects 0.001240 0.8387 50%

Complexity 0.051631 0.8337 10%

Vocabulary 0.000445 0.9359 30%

Size, Object 0.000180 0.8965 40%

Size, Complexity 0.000194 0.8346 30%

Size, Vocabulary 0.000209 0.9575 40%

Object, Complexity 0.000955 0.8740 50%

Object, Vocabulary 0.000376 0.9237 40%

Complexity, Vocabulary 0.000450 0.9322 30%

Size, Object, Complexity 0.000178 0.9075 50%

Size, Object, Vocabulary 0.000184 0.9198 50%

Size, Complexity, Vocab. 0.000178 0.9130 40%

Object, Complexity, Vocab. 0.000360 0.9297 40%

All 0.000177 0.9141 50%

Table 4: Group C

Metric Category
Test RMS

Error
Test
Corr.

Test
Accuracy
pred(30)

Size 0.000169 0.7559 60%

Objects 0.000448 0.8974 60%

Complexity 0.034829 0.7458 00%

Table 2: Test Set Results by Group

Data
Group

Ave. Test
RMS Error

Ave. Test
Correlation

Ave.
Accuracy
pred(30)

ed
he
 to
65
for

ax
he
ed

est
 of
ad
Group H had median values for RMS Error, Test Correlation,
and Accuracy of 0.0000025, 0.9962 and 50% respectively.

Group J had median values for RMS Error, Test Correlation,

and Accuracy of 0.000025, 0.9956 and 60% respectively.

It is interesting to note that Group B, the lowest rank
group, did not produce the lowest individual values. T
range of values for each result ranged from 0.000014
0.11563 (Group J) for the Test RMS Error, 0.7458 to 0.97
for the Test Correlation (Group C), and 0 to 80 percent
the Test Accuracy (Groups H and J).

4. Metric contribution to effort

This section describes the contribution of various synt
metrics to effort. Each of the 10 groups mentioned in t
previous section were sorted by Test RMS Error then rank
from 1 to 15. This process was repeated for the T
Correlation along with Test Accuracy. As a consequence
this process each of the 15 inputs (metric configurations) h
3 ratings for each of the 10 groups. Averaging the 30 ratings
produced the following results presented in table 7.

Vocabulary 0.000225 0.8872 50%

Size, Object 0.000104 0.9765 60%

Size, Complexity 0.000150 0.7983 60%

Size, Vocabulary 0.000113 0.9344 70%

Object, Complexity 0.000453 0.9220 60%

Object, Vocabulary 0.000157 0.9254 70%

Complexity, Vocabulary 0.000227 0.9191 50%

Size, Object, Complexity 0.000065 0.9633 60%

Size, Object, Vocabulary 0.000085 0.9620 70%

Size, Complexity, Vocab. 0.000130 0.9576 70%

Object, Complexity, Vocab. 0.000127 0.9344 70%

All 0.000075 0.9627 70%

Table 5: Group H

Metric Category
Test RMS

Error
Test
Corr.

Test
Accuracy
pred(30)

Size 0.000092 0.9729 40%

Objects 0.001152 0.9751 40%

Complexity 0.081708 0.9962 00%

Vocabulary 0.000025 0.9952 40%

Size, Object 0.000069 0.9960 50%

Size, Complexity 0.000061 0.9962 40%

Size, Vocabulary 0.000018 0.9953 70%

Object, Complexity 0.000185 0.9963 50%

Object, Vocabulary 0.000024 0.9963 50%

Complexity, Vocabulary 0.000024 0.9959 50%

Size, Object, Complexity 0.000021 0.9983 60%

Size, Object, Vocabulary 0.000010 0.9982 80%

Size, Complexity, Vocab. 0.000015 0.9962 70%

Object, Complexity, Vocab. 0.000033 0.9967 50%

All 0.000013 0.9984 80%

Table 4: Group C

Metric Category
Test RMS

Error
Test
Corr.

Test
Accuracy
pred(30)

Table 6: Group J

Metric Category
Test RMS

Error
Test
Corr.

Test
Accuracy
pred(30)

Size 0.000046 0.9848 50%

Objects 0.001128 0.9496 40%

Complexity 0.115630 0.9833 00%

Vocabulary 0.000025 0.9956 50%

Size, Object 0.000038 0.9987 60%

Size, Complexity 0.000046 0.9848 50%

Size, Vocabulary 0.000020 0.9942 70%

Object, Complexity 0.000521 0.9818 60%

Object, Vocabulary 0.000025 0.9961 70%

Complexity, Vocabulary 0.000025 0.9960 50%

Size, Object, Complexity 0.000033 0.9986 50%

Size, Object, Vocabulary 0.000014 0.9974 80%

Size, Complexity, Vocab. 0.000015 0.9953 70%

Object, Complexity, Vocab. 0.000025 0.9960 80%

All 0.000016 0.9988 80%

Table 7: Metric Contribution (3 Categories)

Metric Configuration Average Rating

All 2.37

Size, Object, Vocabulary 2.47

Size, Complexity, Vocabulary 4.70

Object, Complexity, Vocabulary 4.70

ts
his
ely
.
ing

the
ent
s to
nce,
ata

his
el’s
 of
lts

the

put
ork
ns
he
ork

rk-
s a

 a
rt,
ed
els
are
nd

f
al
the
as

t
es
than

ble

an
n

ffort
Table 7 shows that using all the syntax metrics and the Size,
Object, and Vocabulary produce the best ratings for the Test
data. The individual metrics did not fare as well as any
combination of metrics. The general pattern suggests a very
good synergy among syntax metrics for estimating effort.
Ironically Complexity, as an individual metric, did not fare
well at estimating effort. However, when added to any other
combination it improved the average rating.

Focusing on the accuracy results only, the two best input
configurations are all the metrics and Size, Object, and
Vocabulary. Once again the individual metrics were not as
accurate as compound metrics. Table 8 shows the summary
for the accuracy ratings.

5. Cross validation

A natural question is how well the neural network predic
for a new software development project. To address t
issue, 433 observations were collected from a complet
different project from a completely different corporation
These observations serve as the test data for the follow
neural network experiments.

The input set consisted of all the syntax metrics used in
experiments described in the previous sections. Ten differ
neural network models are constructed. Each correspond
the training data used in the previous sections. In esse
each training set consists of nine of the ten groups of d
along with the permanent data items.

Each model is trained using the 10 different datasets. T
validation approach provides a true measure of the mod
predictive abilities. This test yields an average PRED(.30)
73.26% indicating than on average, the validation resu
produce estimates within 30% of the actuals 73.26% of
time.

Furthermore, there were extrapolation issues for every in
and the effort output. As a consequence, the neural netw
could not accurately predict effort for those observatio
outside of the bounds of the training data. Even with t
extrapolation issues, it is concluded that the neural netw
model has reasonably good predictive qualities.

6. Conclusions

This work describes a process of building a neural netwo
based model for measuring software effort. It demonstrate
process for extracting a set of software metrics from
program, associating the metrics with a program’s effo
then constructing a neural network model. An automat
process creates over 33,000 different neural network mod
and collects data for the “best” cases. Product metrics
grouped into four categories: size, vocabulary, objects, a
complexity, then analyzed for training and test cases.

Compound metrics, in the form of combinations o
individual measures, generally outperformed individu
measures. The results from all the experiments justify
inclusion of other product-based measures, such
cyclomatic complexity and vocabulary, into the formation of
an effort estimation equation. Overall, the inpu
configuration which included all the syntax measur
produced the most accurate model against the test data
any subset combination.

The cross-validation experiments generated reasona
results and warrant further research in this area.

Using a neural network-based approach to formulate
effort estimation model allows for automated constructio
and assessment of effort estimation models. The actual e

Size, Vocabulary 5.03

Object, Vocabulary 5.20

Size, Object, Complexity 5.27

Size, Object 6.23

Size, Complexity 8.63

Complexity, Vocabulary 8.93

Object, Complexity 9.20

Vocabulary 9.83

Size 10.43

Objects 11.63

Complexity 14.17

Table 8: Metric Contribution (Accuracy Only)

Metric Configuration
Average

Accuracy Rating
All 1.50

Size, Object, Vocabulary 1.50

Object, Vocabulary 2.30

Size, Vocabulary 2.60

Size, Complexity, Vocabulary 2.60

Object, Complexity, Vocabulary 2.80
Object, Complexity 4.60

Size, Object, Complexity 5.10

Size, Object 5.80

Size, Complexity 7.20

Objects 7.30

Size 8.30

Complexity, Vocabulary 9.60

Vocabulary 10.20

Complexity 15.00

Table 7: Metric Contribution (3 Categories)

Metric Configuration Average Rating

le

t-

ge

or

or

-
e

f
ith
els,”

s
n

t

g

o

on
e

rt
y,
metric is embedded within the neural network architecture.
At present, there is no mechanism for interpreting the
architecture of the neural network. This may be perceived as
a weakness of a neural network approach. The trend in
Software Engineering is towards more sophisticated
software processes. This implies that effort estimation
models, which mirror these processes, will naturally become
more complicated. As a consequence, it will be harder to
create and interpret a “white-box” effort estimation model.

7. Future directions

This work focused upon product metric contribution to the
formation of an effort estimation model. It raises several
questions which spawn further research.

The tendency for adding more product metrics to improve
results suggests adding more product metrics to the
experimentation process. This could include coupling and
cohesion metrics.

This research focused only on product metrics in the
formulation of an effort estimation model. This research
could be extended by adding process, project, and personnel
type metrics. A synthesis with another model, e.g.
COCOMO II, might be a logical step.

Neural network modeling is only one of several approaches
for constructing an effort estimation model. Applying
different modeling approaches, e.g. Case-Based Reasoning,
might provide more accurate models.

8. References

[1] Abts, C., Clark, B., Devnani-Chulani, S., Horowitz, E.,
Madachy, R., Reifer, D., Selby, R., and Steece, B., “COCOMO II
Model Definition Manual,” Center for Software Engineering,
University of Southern California, 1998.

[2] Albrect, A.J., Gaffney, J.E. Jr., “Software Function, Source
Lines of Code and DevelopmentEffort Prediction: A Software
Science Validation,” IEEE Transactions on Software Engineering, 2
4, 1978, pp. 345-361.

[3] Boehm, B., Software Engineering Economics, Englewood
Cliffs, NJ, Prentice-Hall, 1981.

[4] Boehm, B., et al., “Cost Models for Future Software Life Cyc
Process: COCOMO 2,” Annals of Software Engineering, 1995.

[5] Boetticher, G., K. Srinivas and D. Eichmann, “A Neural Ne
Based Approach to Software Metrics,” Proceedings of the 5th
International Conference on Software Engineering and Knowled
Engineering, June 1993, pp. 271-274.

[6] Boetticher, G. and D. Eichmann, “A Neural Net Paradigm f
Characterizing Reusable Software,” Proceedings of the First
Australian Conference on Software Metrics, November 1993, pp.
41-49.

[7] Boetticher, G., “Characterizing Object-Oriented Software f
Reusability in a Commercial Environment,” Reuse ’95 Making
Reuse Happen – Factors for Success, Morgantown, WV, August
1995.

[8] Fahlman, S.E., An Empirical Study of Learning Speed in Back
Propagation Networks, Tech Report CMU-CS-88-162, Carnegi
Mellon University, September 1988.

[9] Finnie, G.R., Wittig, G.E., Desharnais, J-M, “A Comparison o
Software Effort Estimation Techniques: Using Function Points w
Neural Networks, Case-Base Reasoning and Regression Mod
Journal of Systems Software, 1997, pp. 281-289.

[10]Gray, A.R., MacDonnell, S.G., “A Comparison of technique
for developing predictive models of software metrics,” Informatio
and Software Technology, 1997, pp. 425-437.

[11]Halstead, M.H., Elements of Software Science, Elsevier, NY,
1977.

[12]Hodgkinson, A.C., Garratt, P.W., “A Neurofuzzy Cos
Estimator,” Proc. 3rd International Conf. Software Engineering
and Applications (SAE), 1999, pp. 401-406.

[13]Krishnamoorthy, S., Fisher, D., “Machine Learnin
Approaches to Estimating Software Development Effort,” IEEE
Transactions on Software Engineering, 21 2, 1995, pp. 126-137.

[14]McCabe, T.J., “A Complexity Measure,” IEEE Transactions on
Software Engineering, 2 4, December 1976, pp. 308-320.

[15]Putnam, L.H., “A General Empirical Solution to the Macr
Software Sizing and Estimating Problem,” IEEE Transactions on
Software Engineering, 2 4, 1978, pp. 345-361.

[16]Samson, B., Ellison, D., Dugard, P., “Software Cost Estimati
Using an Albus Perceptron,” Information and Softwar
Technology, 1997, pp. 55-60.

[17]Wittig, G., Finnie, G., “Estimating software development effo
with connectionist models,” Information and Software Technolog
1997, pp. 469-476.

	Abstract
	Keywords
	Figure 1: General layout for a Neural Network

	Metric Category
	Number
	of Inputs
	Number of Neural
	Network Architectures
	Size
	2
	15
	Vocabulary
	4
	85
	Objects
	2
	15
	Complexity
	1
	4
	Size and Vocabulary
	6
	259
	Size and Objects
	4
	85
	Size and Complexity
	3
	40
	Vocabulary and Objects
	6
	259
	Vocabulary and Complexity
	5
	156
	Objects and Complexity
	3
	40
	Size, Vocabulary and Objects
	8
	585
	Size, Vocabulary and Complexity
	7
	400
	Size, Objects and Complexity
	5
	156
	Vocabulary, Objects and Complexity
	7
	400
	All metrics
	9
	820
	Total number of neural network architectures:
	3319
	Total number of groups per architecture:
	10
	Total number of neural networks:
	33,190
	A
	0.00251
	0.9504
	43%
	B
	0.00380
	0.8960
	38%
	C
	0.00249
	0.9028
	59%
	D
	0.00194
	0.9192
	45%
	E
	0.00252
	0.9734
	41%
	F
	0.01052
	0.9873
	43%
	G
	0.00524
	0.9750
	52%
	H
	0.00556
	0.9935
	51%
	I
	0.00802
	0.9763
	51%
	J
	0.00784
	0.9901
	57%
	Size
	0.000195
	0.8288
	30%
	Objects
	0.001240
	0.8387
	50%
	Complexity
	0.051631
	0.8337
	10%
	Vocabulary
	0.000445
	0.9359
	30%
	Size, Object
	0.000180
	0.8965
	40%
	Size, Complexity
	0.000194
	0.8346
	30%
	Size, Vocabulary
	0.000209
	0.9575
	40%
	Object, Complexity
	0.000955
	0.8740
	50%
	Object, Vocabulary
	0.000376
	0.9237
	40%
	Complexity, Vocabulary
	0.000450
	0.9322
	30%
	Size, Object, Complexity
	0.000178
	0.9075
	50%
	Size, Object, Vocabulary
	0.000184
	0.9198
	50%
	Size, Complexity, Vocab.
	0.000178
	0.9130
	40%
	Object, Complexity, Vocab.
	0.000360
	0.9297
	40%
	All
	0.000177
	0.9141
	50%
	Size
	0.000169
	0.7559
	60%
	Objects
	0.000448
	0.8974
	60%
	Complexity
	0.034829
	0.7458
	00%
	Vocabulary
	0.000225
	0.8872
	50%
	Size, Object
	0.000104
	0.9765
	60%
	Size, Complexity
	0.000150
	0.7983
	60%
	Size, Vocabulary
	0.000113
	0.9344
	70%
	Object, Complexity
	0.000453
	0.9220
	60%
	Object, Vocabulary
	0.000157
	0.9254
	70%
	Complexity, Vocabulary
	0.000227
	0.9191
	50%
	Size, Object, Complexity
	0.000065
	0.9633
	60%
	Size, Object, Vocabulary
	0.000085
	0.9620
	70%
	Size, Complexity, Vocab.
	0.000130
	0.9576
	70%
	Object, Complexity, Vocab.
	0.000127
	0.9344
	70%
	All
	0.000075
	0.9627
	70%
	Size
	0.000092
	0.9729
	40%
	Objects
	0.001152
	0.9751
	40%
	Complexity
	0.081708
	0.9962
	00%
	Vocabulary
	0.000025
	0.9952
	40%
	Size, Object
	0.000069
	0.9960
	50%
	Size, Complexity
	0.000061
	0.9962
	40%
	Size, Vocabulary
	0.000018
	0.9953
	70%
	Object, Complexity
	0.000185
	0.9963
	50%
	Object, Vocabulary
	0.000024
	0.9963
	50%
	Complexity, Vocabulary
	0.000024
	0.9959
	50%
	Size, Object, Complexity
	0.000021
	0.9983
	60%
	Size, Object, Vocabulary
	0.000010
	0.9982
	80%
	Size, Complexity, Vocab.
	0.000015
	0.9962
	70%
	Object, Complexity, Vocab.
	0.000033
	0.9967
	50%
	All
	0.000013
	0.9984
	80%
	Size
	0.000046
	0.9848
	50%
	Objects
	0.001128
	0.9496
	40%
	Complexity
	0.115630
	0.9833
	00%
	Vocabulary
	0.000025
	0.9956
	50%
	Size, Object
	0.000038
	0.9987
	60%
	Size, Complexity
	0.000046
	0.9848
	50%
	Size, Vocabulary
	0.000020
	0.9942
	70%
	Object, Complexity
	0.000521
	0.9818
	60%
	Object, Vocabulary
	0.000025
	0.9961
	70%
	Complexity, Vocabulary
	0.000025
	0.9960
	50%
	Size, Object, Complexity
	0.000033
	0.9986
	50%
	Size, Object, Vocabulary
	0.000014
	0.9974
	80%
	Size, Complexity, Vocab.
	0.000015
	0.9953
	70%
	Object, Complexity, Vocab.
	0.000025
	0.9960
	80%
	All
	0.000016
	0.9988
	80%
	All
	2.37
	Size, Object, Vocabulary
	2.47
	Size, Complexity, Vocabulary
	4.70
	Object, Complexity, Vocabulary
	4.70
	Size, Vocabulary
	5.03
	Object, Vocabulary
	5.20
	Size, Object, Complexity
	5.27
	Size, Object
	6.23
	Size, Complexity
	8.63
	Complexity, Vocabulary
	8.93
	Object, Complexity
	9.20
	Vocabulary
	9.83
	Size
	10.43
	Objects
	11.63
	Complexity
	14.17
	All
	1.50
	Size, Object, Vocabulary
	1.50
	Object, Vocabulary
	2.30
	Size, Vocabulary
	2.60
	Size, Complexity, Vocabulary
	2.60
	Object, Complexity, Vocabulary
	2.80
	Object, Complexity
	4.60
	Size, Object, Complexity
	5.10
	Size, Object
	5.80
	Size, Complexity
	7.20
	Objects
	7.30
	Size
	8.30
	Complexity, Vocabulary
	9.60
	Vocabulary
	10.20
	Complexity
	15.00
	An Assessment of Metric Contribution in the Construction of a
	Neural Network-Based Effort Estimator
	Gary D. Boetticher
	Department of Software Engineering
	Houston, TX 77058 USA

	+1 281 283 3805
	boetticher@uhcl.cl.uh.edu

