
A Neural Net-Based Approach to Software Metrics

G. Boetticher, K. Srinivas, D. Eichmann
Software Reuse Repository Lab

Department of Statistics and Computer Science
West Virginia University

Abstract
Software metrics provide effective methods for

characterizing software. Metrics have traditionally been
composed through the definition of an equation, but this
approach is limited by the fact that all the
interrelationships among all the parameters be fully
understood. Derivation of a polynomial providing the
desired characteristics is a substantial challenge. This
paper explores an alternative, neural network approach to
generating metrics. Experiments performed on two widely
known metrics, McCabe and Halstead, indicate that the
approach is sound, thus serving as the groundwork for
further exploration into the analysis and design of software
metrics.

1. Introduction

As software engineering matures into a true engineering
discipline, there is an increasing need for a corresponding
maturity in repeatability, assessment, and measurement —
both of the processes and of the artifacts associated with
software. Repeatability of process is inherent to a true engi-
neering discipline. Repeatability of artifact takes natural
form in the notion of software reuse, whether of code or of
some other artifact resulting from a development or main-
tenance process.

Accurate assessment of a component’s quality and reus-
ability are critical to a successful reuse effort. Components
must be easily comprehensible, easily incorporated into
new systems, and behave as anticipated in those new sys-
tems. Unfortunately, no consensus currently exists on how
to go about measuring a component’s reusability. One rea-
son for this is a less than complete understanding of
software reuse, yet obviously it is useful to measure some-
thing that is not completely understood. The number of
potential parameters involved in a reusability metric
implies that the derivation of such a metric will be a signif-
icant challenge.

This paper describes a preliminary set of experiments to
determine whether neural networks can model known soft-
ware metrics. If they can, then neural networks can also
serve as a tool to create new metrics. Establishing a set of
measures raises questions of coverage (whether the metric
covers all features), weightings of the measures, accuracy

of the measures, and applicability over various application
domains. The appeal of a neural approach lies in a neural
network’s ability to model a function without the need to
have knowledge of that function, thereby providing an
opportunity to provide an assessment in some form, even if
it is as simple asthis component is reusable, andthat com-
ponent is not.

If all we seek is an assessment of a component, a properly
trained neural network produces results comparable to a
traditional algorithmic implementation of a multi-variable
polynomial. In fact, while much of the research in metrics
is concerned with the derivation of the polynomial, the
result of evaluating that polynomial is frequently the true
goal of the research. Our intent with this work was there-
fore not to show that we could model existing metrics just
to avoid evaluating a known polynomial. Our intent was
rather to show that our approach is capable of modeling
both the linearity of the McCabe metric and the more com-
plex Halstead measure with a reasonable amount of
accuracy, and hence applicable to metrics of unknown sim-
plicity or complexity, such as a reusability metric.
Validating our approach against known benchmarks
increases our assurance that the technique is sound and pro-
vides valuable feedback concerning the sensitivity to such
factors as the architecture of the neural network.

We begin in section 2 by describing the two software met-
rics used, McCabe and Halstead, and then in section 3
briefly discuss various neural network architectures and
their applicability. Section 4 presents our approach and sce-
tion 5 the actual experiment. We draw conclusions in
section 6, and present prospects for future work in section
7.

2. Software metrics

There are currently many different metrics for assessing
software. Metrics may focus on lines of code, complexity
[10, 11], volume[6], or cohesion [2, 3] to name a few.
Among the many metrics (and their variants) that exist, the
McCabe and Halstead metrics are probably the most
widely known, frequently appearing in introductory mate-
rial on the subject. More current and complete coverage of
this area appear in work such as [12].

Traditionally, software metrics are generated by extracting

values from a program and substituting them into an equa-
tion. In certain instances, equations may be merged
together using some weighted average scheme. This
approach works well for simple metrics, but as our models
become more sophisticated, deriving metrics with equa-
tions becomes harder. The traditional process requires the
developer to completely understand the relationship among
all the variables in the proposed metric. This demand on a
designer’s understanding of a problem limits metric
sophistication (i.e., complexity). One reason why it is so
hard to develop reuse metrics, for example, is that no one
completely understands “design for reuse” issues.

The goal then is to find alternative methods for generating
software metrics. Deriving a metric using a neural network
has several advantages. The developer need only to deter-
mine the endpoints (inputs and output) and can disregard
(to an extent) the path taken. Unlike the traditional
approach, where the developer is saddled with the burden
of relating terms, a neural network automatically creates
relationships among metric terms. Traditionalists might
argue that you must fully understand the nuances among
terms, but full understanding frequently takes a long time,
particularly when there are numerous variables involved.

3. Neural Networks
Neural networks by their very nature support modeling. In
particular, there are many applications of neural network
algorithms in solving classification problems, even where
the classification boundaries are not clearly defined and
where multiple boundaries exist and we desire the best
among the alternatives. It seems only natural then to use a
neural network in classifying software.

There were two principle criteria determining which neural
network to use for this experiment. First, we needed a
supervised neural network, since for this experiment the
answers are known. Second, the network needed to be able
to classify.

The back-propagation algorithm [9] meets both of these
criteria. It works by calculating a partial first derivative of
the overall error with respect to each weight, taking small
steps down a gradient [4]. However, a major problem with
the back-propagation algorithm is that it is exceedingly
slow to converge [7]. Fahlman developed the quickprop
algorithm as a way of using the higher-order derivatives in
order to take advantage of the curvature [4]. The quickprop
algorithm uses second order derivatives in a fashion similar
to Newton’s method. From previous experiments we found
the quickprop algorithm to clearly outperform a standard
back-propagation neural network.

While an argument could be made for employing other
types of neural models, due to the linear nature of several
metrics, we chose quickprop to ensure stability and conti-

nuity in our experiments when we moved to more complex
domains in future work.

4. Modeling Metrics with Neural Networks

As mentioned earlier, the goal of our research is to deter-
mine whether a neural network could be used as a tool to
generate a software metric. In order to determine whether
this is possible, the first step is determining whether a neu-
ral network can model existing metrics, in this case
McCabe and Halstead. These two were chosen not from a
belief that they are particularly good measures, but rather
because they are widely known, public domain programs
exist to generate the metric values, and the fact that the
McCabe and Halstead metrics are representative of major
metric domains (complexity and volume, respectively).

Since our long term goal is to determine whether a neural
network can be used to derive software reusability metrics,
Ada, with its support for reuse (generics, unconstrained
arrays, etc.) seemed a reasonable choice for our domain
language. Furthermore, the ample supply of public domain
Ada software available from repositories (e.g., [1]) pro-
vides a rich testbed from which to draw programs for
analysis.

Finally, programs from several distinct application
domains (e.g., abstract data types, program editors,
numeric utilities and system oriented programs) were
included in the test suite to ensure variety.

We ran three distinct experiments. The first experiment
modeled the McCabe metric on single procedures, effec-
tively fixing the unit variable at 1. The second experiment
extended the first to the full McCabe metric, including the
unit count in the input vector, and using complete packages
as test data. The third experiment used the same test data in
modeling the Halstead metric, but a different set of training
vectors. We present here only the results of the third exper-
iment.

5. A Neural Halstead Metric for Packages

Based upon the results of the first two experiments, we
assumed for this experiment that if the experiment worked
for packages, then it also worked for procedures, and fur-
ther, that the increasing the number of training set vectors
improves upon the results. Therefore, the focus of this
experiment was on varying neural network architectures
over a fixed-size training set.

The experiment ranged over seven different neural network
architectures broken into three groups: broad, shallow
architectures (4-5-3, 4-7-3, and 4-10-3), narrow, deep
architectures (4-7-7-3 and 4-7-7-7-3), and narrow, deep
architectures with hidden layers that connected to all previ-
ous layers (4+7-7-3 and 4+7+7-7-3). We formed these

three groups in order to discover whether there was any
connection between the complexity of an architecture and
its ability to model a metric.

Figures 1, 2, and 3 present the results for the Halstead vol-
ume for broad, deep, and connected architectures,

Figure 1. Volume Results, Broad Architectures

Figure 2. Volume Results, Deep Architectures

Figure 3. Volume Results, Connected Architectures

respectively. Note that both the broad and deep architec-
tures do moderately well at matching the actual Halstead
volume metric, but the connected architecture performs
significantly better. Furthermore, there is no significant
advantage for a five versus four layer connected architec-
ture, indicating that connecting multiple layers may be a
sufficient condition for adequately modeling the metric.

This pattern of performance also held for the Halstead
length metric and the Halstead effort metric, so we show
only the results for the connected architecture in Figure 4
and Figure 5, respectively.

6. Conclusions

The experimental results clearly indicate that a neural net-
work approach for modeling metrics is feasible. In all
experiments the results corresponded well with the actual
values calculated by traditional methods. Both the data set
and the neural network architecture reached performance
saturation points in the McCabe metric. In the Halstead
experiment, the fact that the results oscillated over the

Figure 4. Length Results, Connected Architectures

Figure 5. Effort Results, Connected Architectures

actual-calculated line indicate that the neural network was
attempting to model the desired values. Adding more train-
ing vectors, especially ones containing larger values,
would smooth out the oscillation.

7. Future work

Applying this work to other existing metrics is an obvious
extension, but we feel that the development of new metrics
by applying neural approaches is much more significant. In
particular, expanding this work to the development of a
reusability metric offers great promise. Effective reuse is
only possible with effective assessment and classification.
Since no easy algorithmic solutions currently exist, we’ve
turned to neural networks to support the derivation of reus-
ability metrics. Unsupervised learning provides interesting
possibilities for this domain, letting the algorithm create its
own clusters and avoiding the need for significant human
intervention.

Coverage and accuracy are important aspects of develop-
ing a neural network to derive a software reuse metric.
McCabe and Halstead metrics are interesting and useful,
but they do not provide coverage regarding reusability. We
need to expand the number of parameters in the data set in
order to provide adequate coverage with respect to reus-
ability of a component. We also would like to improve the
accuracy of answers by enlarging our data sets to include
possibly hundreds of training set vectors. This will need to
be a requirement when exploring more complex metric sce-
narios, and the cost of such extended training is easily
borne over the expected usage of the metric.

The possibility of extracting the function from a trained
neural network is still an open research issue for neural
researchers. The prospect is a very interesting one for us,
however, since it would allow the use of a neural network
in the generation and evolution of a metric, while still
allowing the metric user and creator to evaluate the nature
of the relationship of the metric inputs, as well as providing
more efficient evaluation in a production context.

Finally, it is possible to explore alternative neural network
models. For example, the cascade correlation model [5]
dynamically builds the neural network architecture, poten-
tially automating much of the process described here.

8. Acknowledgments

This work was supported in part by NASA as part of the
Repository Based Software Engineering project, coopera-
tive agreement NCC-9-16, project no. RICIS SE.43,
subcontract no. 089. David Eichmann’s current address is

Software Engineering Program, University of Houston –
Clear Lake, Houston, TX.

9. References
[1] Conn, R., “The Ada Software Repository and

Software Reusability,”Proc. of the Fifth Annual Joint
Conference on Ada Technology and Washington Ada
Symposium, 1987, pp. 45-53.

[2] Emerson, T. J., “A Discriminant Metric for Module
Cohesion,”Proc. 7th International Conference on
Software Engineering, Los Alamitos, California, IEEE
Computer Society, 1984, pp. 294-303.

[3] Emerson, T. J., “Program Testing, Path Coverage, and
the Cohesion Metric,”Proc. of the 8th Annual
Computer Software and Applications Conference,
IEEE Computer Society, pp. 421-431.

[4] Fahlman, S. E.,An Empirical Study of Learning Speed
in Back-Propagation Networks, Tech Report CMU-
CS-88-162, Carnegie Mellon University, September,
1988.

[5] Fahlman, S. E. and Lebiere, M.,The Cascade-
Correlation Learning Architecture, Tech Report
CMU-CS-90-100, Carnegie Mellon University,
August 1991.

[6] Halstead, M.H.,Elements of Software Science, North-
Holland (Elsevier Computer Science Library), New
York, 1977.

[7] Hertz, J., Krogh A., Palmer, R. G.,Introduction to the
Theory of Neural Computation, Addison Wesley, New
York, 1991.

[8] Li, H.F. and Cheung, W.K., “An Empirical Study of
Software Metrics,”IEEE Transactions on Software
Engineering, vol. 13, no. 6, pp. 697-708, June 1987.

[9] Lippmann, R. P. “An Introduction to Computing with
Neural Nets,”IEEE ASSP Magazine, pp. 4-22, April
1987.

[10] McCabe, T.J., “A complexity measure,”IEEE
Transactions on Software Engineering, vol. SE-2, no.
4, pp. 308-320, Dec. 1976.

[11] McCabe, T.J., “Design Complexity Measurement and
Testing,”Communications of the ACM, vol. 32, no. 12,
pp. 1415-1425, December 1989.

[12] Zuse, H.,Software Complexity: Measures and
Methods, Walter de Gruyter, Berlin, 1991.

