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SIAM J. NUMER. ANAL. 
Vol. 12, No. 6, December 1975 

THE USE OF BACK CORRECTIONS IN MULTISTEP 
METHODS OF NUMERICAL INTEGRATION* 

P. BEAUDETt AND T. FEAGINt 

Abstract. Generalized multistep methods for the numerical solution of nonlinear systems of 
ordinary differential equations are introduced which allow the correction of previously computed 
values of the solution at internal points of the grid. These methods are shown to possess enhanced 
numerical stability. Preliminary numerical results indicate that for some satellite orbit problems these 
methods also possess greater overall efficiency. A uniformly converging theory of error propagation is 
presented which is valid for nonasymptotic values of the step size. Experimental results are seen to 
conform with theory. 

1 Introduction. Among the most commonly used methods for solving 
nonlinear ordinary differential equations are the linear multistep methods [4] in 
which the numerical solution is generated stepwise at the points of an equally 
spaced grid. These methods are sometimes called predictor-corrector methods 
because, as the integration advances, the solution at a point of the grid is first 
predicted and then usually corrected. The multistep methods considered here are 
distinguished from the classical methods in that they allow the solution to be 
corrected at back points as the integration proceeds forward. It is shown that these 
methods possess enhanced stability and, as a consequence, greater efficiency is 
realized. The only processes addressed in this paper are constant step size 
processes; it is assumed that any desired change in time steps is accomplished by a 
time regularizing transformation. Processes are considered here for the solution 
of systems of first order ordinary differential equations (Class I), 

dY=f(y t) (1) 
~~~~~~~dt 

subject to the initial condition y(to) = yo and for the solution of systems of second 
order ordinary differential equations (Class II), 

d2y (2) dt= f(y, t) 

subject to the initial conditions, y(to) = yo, dy/dt(to) = *o. It should be noted that 
the solution of the second order equation when f = f(y, dy/dt, t) may be accom- 
plished by means of combining a process for solving a Class I problem with a 
process for solving a Class II problem. [1] 

In the next section, algorithms for numerical integration which use back 
corrections are introduced. The procedure for determining the coefficients is 
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described in ? 3, and the results are presented. Section 4 displays a unified 
approach to the theory of error propagation for these algorithms. A comparison is 
made with errors obtained from numerical experiments. Section 5 contains an 
analysis of the stability of the algorithms, and the predicted maximum stable 
step size is compared with that obtained by numerical experiments. Section 6 
includes the numerical results which are used to substantiate the conclusion that 
the higher order back-correction algorithms can lead to more efficient numerical 
integration because of an enhanced stability region. 

2. Description of the algorithms. In this section, back-correcting algorithms 
for obtaining approximate solutions of ordinary differential equations are 
described. The predictor-corrector formulas for the Class I back-correcting 
algorithms are: 

(a) Predictor 
k+1 

(3a) YN+1 = YN-m + h Z fj3(O)fN-j+l1 
j=1 

(b) Correctors 
k+1 

(3b) YN+2-1 YN-m+h h f3j(l)fN-j+2 for I = 1, 2, m + 1. 
j=1 

The formulas are used to propagate the state y from the Nth grid point to the 
(N?+ )st grid point. The correctors are applied to m + 1 grid points, the (N+ 1)st 
back through to the (N + 1 - m)th point corresponding to I = 1, 2, - - *, m + 1. The 
step size is denoted h so that the Nth grid point is associated with time t= Nh. 

The subscript N on y or f designates evaluation at time t = Nh; 8j3(l) is the 
ordinate form of the coefficients for the process. Quantity k + 1 is the order of the 
method in the step size, h. 

For Class II problems, the formulas are: 

(a) Predictor 
k+1 

(4a) YN+1 = (m + 2)YN-m - (m + 1)YN-m-1 + h2 Z Yj(O)fN-j+l, 
j=1 

(b) Correctors 
k+1 

YN+2-I = (m + 3l)YN-mn- (m + 2 I)YN-m-1 + h2 Z yj(l)fN-j+2 
(4b) j=1 

for l=1, 2, * I * +1 

where yj(l) denotes the jth coefficient (ordinate form) of the process. 
Many algorithms are possible using these formulas. The conventional nota- 

tions PE(CE)' or P(EC)n for classical methods can be augmented by using 
brackets ['f] to designate the application to back points. Thus the algorithm 
PECE[(CE)2]m would designate the sequence of operations: 

1. Predict the state at t = (N+ 1)h and evaluate the derivative. 
2. Correct the state at t = (N?+ 1)h and evaluate the derivative. 
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3. Correct the state at t = Nh and evaluate the derivative. 
4. Correct the state at t = Nh and evaluate the derivative a second time. 
5. Repeat steps 3 and 4 at the points t=(N-1)h, t=(N-2)h, ,t 

=(N+1 -m)h. 
In this paper, each operation will be designated as a stage of the algorithm. Two 
types of back-correction algorithms have been investigated. They are 
PECE[CE]' and PE[CE]m. Note that for m = 0, the classical PECE and PE 
methods are obtained. 

It often occurs in complicated systems [3] that the derivative f consists of two 
parts; f = f?+f,, where fl is a large component which is not too difficult to compute 
and f1 is a small perturbation requiring extensive calculation. For such systems the 
concept of a pseudoevaluate, hereafter denoted by E* [5], where only f0 is 
computed/recomputed, is particularly fascinating. Numerical stability of such 
systems is usually governed by the properties of f0, and stabilization at significantly 
reduced cost can be achieved by doing only a pseudo-evaluation after each back 
correction. The satellite ephemeris predication problem is an example of a system 
for which the concept of pseudoevaluation [7] has been used to improve the 
efficiency of computation. 

As a guide to the user, it was ascertained that the PECE[CE] algorithm for 
Class I and the PE[CE] algorithm for Class II gave about the most efficient 
computation for any given order, p = k + 1. These experiences are based upon the 
simple harmonic oscillator and satellite trajectory problems. 

3. The coefficients. The coefficients for both Class I and Class II methods can 
be determined in rational form by making use of the operator identity [6] 

I-E K 1LJ L (5) (VK) = h[{ -log (I V) EJ ED 

where VK is the backward difference operator (V -V1), L, K, and J are arbitrary 
integers and h is an arbitrary step size. 

VKfN = fN - fN-K, 

VfN =fN -fN-1 

E is the shifting operator 

E fN = fN+J- 

D is the differentiation operator and I is the identity. Methods exist [6] for 
expanding the operator in brackets in a power series of the backward difference 
operator so that 

(6) VLK= hL(X Ci(J, K, L)Vi)EJDL. 

A rational arithmetic computer program was written to obtain the Ci(J, K, L) 
in rational form. The application of this operational formula upon yN+2-1 with 
L=1, K=m+2-I yields the predictor (J=-1,1=1) and corrector (J=0) 
difference forms for Class I back-corrector algorithms. 
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k 

(7) YN+2-1 YN-m +h Z C (J, m + 2 -1, 1)VifN+l+J 
i=O 

It is noteworthy that the coefficients Ci(J, K, L) are given in rational form so that 
they find application on all computational facilities. 

Table 1 lists the coefficients for the difference form of all Class I back- 
correction algorithms with m 3. Table 2 gives the same coefficients for Class II 
methods. For any given order, p = k + 1, the f8 (y for Class II) ordinate form of the 
coefficients (as in (3) and (4)) may be computed from (see [6]) 

(8) k1? ((-1) i )c. 

All computational examples were performed using the ordinate form of the 
difference equations (i.e., (3) and (4)). 

4. Error analysis. Presented in this section is a theory of local error estima- 
tion for the back-correction algorithms. A computer program was written using 
these theoretical results in order to estimate the local truncation and roundoff 
errors for most of the algorithms of interest. The information thus obtained was 
used along with the results of the stability analysis (? 5) to select the most 
promising algorithms for extensive study and to formulate the conclusions pre- 
sented at the end of this section. A brief discussion of the contents of this section 
and the motivations leading to the developed theory is first presented. 

In the usual presentation of error analysis [2], an asymptotic theory (meaning 
valid in the limit h -- 0) is developed. For such a theory the errors committed at 
each step are assumed to emanate from the last stage of the algorithm (i.e., the 
corrector). Using a small but finite step size h, local errors committed at earlier 
stages of the algorithm are multiplied by h and are tacitly assumed to be 
negligible. However, this assumption cannot be made for the case of large 
step sizes and/or for the back-correction algorithms. The local errors committed 
in the early stages of the back-correction algorithm are much larger than those 
committed in the latter stages, and multiplication by h cannot guarantee that they 
are negligible. This is particularly true with the realistic step sizes used for efficient 
numerical integration. A nonasymptotic error analysis is therefore desirable and 
consequently is developed here for the back-correction algorithms. Because 
errors at the different stages of the algorithm combine coherently with errors from 
previous time steps to form the error at the final stage, it is difficult to isolate 
independent local errors associated with the algorithm. To ascribe equivalent 
independent local errors to the algorithm, it is necessary to compare an 
inhomogeneous differential equation for the error with the difference equations 
which describe the errors propagated by the algorithm. In this way, relationships 
are established between the inhomogeneous term of the error differential equa- 
tion, the local truncation and roundoff errors for each stage of the algorithm, and 
the intermediate state errors. The elimination of all intermediate state error 
variables leads to the desired relationship between the inhomogeneous driving 
term of the error differential equation and the various truncation and roundoff 
errors of the algorithm. However, this elimination of all intermediate state error 
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variables is not straightforward because corresponding state errors occur, 
evaluated at neighboring points on the grid. An approximate method must be 
established to propagate these corresponding neighboring errors to the same grid 
point prior to their elimination. 

To propagate the state errors from one grid point to another, the homogene- 
ous error differential equation is used in a manner consistent with other approxi- 
mations made in the theory. This method of propagating errors is called a 
"self-consistent approximation" because it is consistent with the error differential 
equation. 

It is well known [2] that if a numerical method is stable, the errors in the state 
will propagate with characteristics governed by the differential equation. The 
difference between the computed state y(n+l) and the exact state yN is the error, 

EN = (m+1) For errors erro 
YN For small errors EN, linearization of the error equation is permit- 

ted because terms of order EN 12 will be extremely small compared to local 
truncation and roundoff errors. 

Usually [2] an error equation of the form 

(9) ? E + 4 
ay 

is derived from the associated error difference equation in which the error driving 
term 1 is equal to the local sum of errors due to truncation and to round off of the 
final corrector formula. This equation is only asymptotically accurate and does not 
reflect higher order errors caused by the predictor formula. When practical 
step sizes (nonasymptotic values of h) are used, these higher order errors of the 
predictor often outweigh the corrector errors. The approach to error analysis 
which follows reflects error propagation at nonasymptotic values of the step size. 

With the knowledge that accumulated errors propagate via the homogeneous 
error equation (? = af/ay * E) in the absence of any further local errors, a self- 
consistent error driving term 4> is determined which properly reflects higher order 
errors introduced by the difference algorithm. The self-consistent approximation 
which is used involves the propagation of errors expressions over one integration 
step via use of the homogeneous error differential equation. 

Beginning with the error propagation differential equation (9), one can 
obtain a system of difference equations for the final and intermediate stage errors, 
FIN, via the same algorithm used for solving the original differential equation. 
From the PECE[CE]m back-correction algorithms (Equations (3) and (4)) for 

Class 

1 ~~~~0 
E 

N+2-1-i 0 {3 + m 1 - EN-. 
I-2 2 + EN-r-l 

k+1 e3fmi[jS 0 (1 0) k+h 
1 f 

|j *1 N-5+2_vlo 
e_)m1 

j=1 aY N-j+2-8i,o 

k+1 

+hc Z /j3(l)4'N-j+2-8io 
j=1 
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where c is the class (1 or 2) of the method and EN without a superscript denotes 
the error at the final stage, 1 = m + 1. The index 1 is 0 for the predictor and 
1, 2, * * *, m + 1 for the correctors. 8ij is the Kronecker delta function. 0,-j is the 
step function 

lO u -O.~ 

Minor modifications to equation (10) are required for the PE[CE]m type 
algorithms. In (10), EMN is interpreted as the lth stage estimate of the "ultimate" 
error eN in YN at the final stage of the numerical integration process. E?) is not the 
error ()= Y(- Y*inyat the lth stage; the ?'S always refer to some estimate of eN, 
the error at the final stage of the algorithm. e(l) satisfies a different system of 
difference equations which are derived from the difference equations (3) and (4) 
for the state. The procedure which will be followed is to compare (10) with the 
difference equations satisfied by e(l). A correspondence will then be made between 
the DN of (1 0) and the local truncation (and roundoff) errors T") of the 
predictor and correctors. The difference equations satisfied by e") are obtained by 
subtracting the exact state yN+2-1 from both sides of (3) and (4), expressing all terms 
on the right-hand side as errors e'N', setting the final stage error to eN and 
identifying the remaining terms as the truncation error. The resulting expression 
is: 

f 1 0 
eN+2-1-8,,{ (3 + m - -O) ) JN-m +(1 - m -2 + ,o } EN-m-l 

( 11) +hck+ eI pjl)eN-j+2lo)m 
j=1 ay N-j+2-81,O 

+ TXN1+2-1-S 10. 

In this expression terms of order Ie|2 have been assumed insignificant. TN+2-1-I,,O is 
the truncation and roundoff error of the predictor and corrector difference 
equations. 

In order to proceed any further with (10) and (1 1), it would be customary [4] 
to assume a constant Jacobian matrix af/ay, independent of time. The procedure 
which will be followed is tantamount to this. Global error propagation (error after 
many steps of integration) depends on the dynamic characteristics of the Jacobian 
matrix af/ay. Thus, to project errors accurately over long times, it is necessary to 
expand the Jacobian in powers of the step size and to consider the effects of higher 
variations of f with respect to the state variables. The corrections (errors) due to 
the time dependence of the Jacobian matrix are often negligible compared to the 
higher order direct errors resulting from the truncations of various stages of the 
algorithm. At each stage of the algorithm, the 

af 
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term of (10) and (11) and the FN1?2 term is expanded about the solution at tN, 
and terms of order 

h f a2f N 

ay2 N 

are neglected compared to aflayIN. 
The resulting Jacobian matrix af/ayl, is then factored from the summations in 

(10) and (11). These equations are then put into normal form by the application of 
a rotation matrix R, which (if appropriate) diagonalizes af/aylN and transforms the 
error components into normal coordinates. The eigenvalues of hc(af/ay)IN are 
designated hTc, i 1, 2, , and the diagonal matrix is designated hC; so that 

JcY O o ... 

hC= O h O . 
* = hcR*| R1f 

0 0 jy 
Also, the N error components in normal coordinates are designated E' and e' so 
that ?'= R * e and e'= R e (i.e., primed quantities designate normal coordi- 
nates). In a parallel fashion, it is also assumed that the error driving term 

N-j+2--8eo RbN_X+2-8eo 

in (10) is a slowly varying function of time, as is the Jacobian matrix; it is also 
expended in a time series about tN. 

In what follows, the leading term in a more uniformly valid expansion for the 
error driving term F of (9) is obtained. In this expansion, the leading term depends 
only on the local Jacobian matrix, but includes the most important contribution 
from each stage of the algorithm. By subtracting the normal forms of (10) and 
(11), one obtains the equations 

m+1-?3w k?1 

(12) N =2 I a - S E (1)2ii0 TN21AM0 h Z fl1(1), 
j=1 j= 1 

where 6") = e'(l'- is the difference between the Ith stage error and 
the Ith stage estimate of the "ultimate" error. T' in (12) has also been rotated 
into normal coordinates. Note that S618 ) vanishes because eCN += For 
I O, 1 2, * * m + 1, (12) forms a system of m +2 difference equations in the 
m + 2 unknowns 8ng)2 1 0 . . *, m and f = 1 or 1 + 1, D corresponding to the 
PECE[CE]m algorithm. (For the PE[CE]m algorithm, the ;(l) equation is omitted 
and m +1 equations in m +1 unknowns are obtained.) Note that in (12), 6` 
always appears with a subscript of the form (N+ 2)-I' with I' always equal to I or 
to l+1. 

To solve the system of equations (12), it is necessary to propagate forward the 
8517s which are "delayed" by one step. A self-consistent approximation is made by 
recognizing that the errors propagate as ehN (solution of the homogeneous error 
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equation). We write 

( 13) aN+2-1+1 -uN+2-1 e 

Eliminating the 8(n+2I variables from the system of m + 1 equations (12) permits 
the determination of (4N, a function of h. It is convenient for numerical calcula- 
tions to expand 4"N, 

(14) ? Z N'h. 

Each +(N) is a linear combination of the local truncation and roundoff errors in each 
stage of the algorithm. A computer program was written to compute the coeffi- 
cients +(N) for many algorithms. The local roundoff errors were assumed constant 
in the computer simulations and consistent with the word size of the computer. 
The local truncation errors are of the form 

N- k+CC(1) y(k+c) 

(k +c)! 

where C''+C is the error coefficient for the lth stage of the algorithm. 
Since the error driving term 4?N is linear in the truncation and roundoff errors, 

it is possible to write it in the form 

O= Ck hk+.o~ +) ?k+0 - roundoff error, 

where C*+C(h) are complicated but computable functions of the Jacobian eigen- 
value hc. C*+C(h) is designated as the error coefficient of the entire algorithm. 
Error coefficients as a function of h were calculated for algorithms PECE[CE]m 
and PE[CE]m for all orders up to 16. Estimates of the local error in the state 
variable for the simple harmonic oscillator were made. Reasonable agreement 
was obtained between the theoretically predicted and actually observed local 
errors. Figure 1 depicts a typical result of such a comparison. No attempt was 
made to extract global error estimates by integrating the homogeneous error 
differenlial equation (9). 

Figure 1 shows a theoretical curve of accuracy versus effective stepsize (i.e., 
number of function evaluations for eight cycles of simple harmonic motion). After 
one step of a PECE[CE]2 integration process, theory gives slightly lower accuracy 
predictions than what is actually observed. The spike in the data corresponds to a 
change in sign of the error as a function of step size. Also shown is the global 
accuracy after eight cycles of the motion. Even after eight cycles, the phenomenon 
of numerical instability occurs just beyond the theoretical step size at which 
numerical instability should ensue, according to the stability analysis presented in 
the next section. These results tend to support the nonasymptotic theory of error 
analysis. 
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FIG. 1. Comparison of theory with experimental accuracy for 13th order PECE[CE]2 algorithm 

The errors calculated from the nonasymptotic theory were used to draw the 
following conclusions with respect to the efficiencies of the various back- 
correction algorithms. Here the efficiency of an algorithm is interpreted as the 
reciprocal of the number of function evaluations required to achieve a given 
number of significant digits of accuracy. 

Without regard to stability, the classical PE algorithm is the most efficient 
algorithm with few exceptions. When stability is taken into account, often the 
PECE algorithm is more efficient. 
For a given order, some Class I and Class II back-correction algorithms, 
(e.g., k = 4, m = 1) surpass the efficiency of classical algorithms. 
Relative to the classical algorithms, there is little if any loss in efficiency 
caused by the additional function evaluations of a back-correction algorithm. 
When the additional function evaluations required by the back-correcting 
algorithms are pseudo-evaluations E*, significant increases in efficiency over 
classical algorithms normally occur. 

These advantages become more meaningful when the improved stability charac- 
teristics of these methods are considered in the next section. 

5. Stability analysis. Error analysis alone gives insufficient information to 
judge the applicability of a given algorithm to the solution of a particular problem. 
The stability of the algorithm must also be considered. It is well known [4] that 
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when all orders are considered, the most efficient multistep algorithms border 
upon instability. The stiffer the differential equations, the more stable the 
algorithm must be. The classical stability analysis [2] is applicable to the back- 
correction algorithms. Two algorithms are considered here: PE[CE]m and 
PECE[CE]m. 

The system of scalar error equations (normal form of equation (11)) without 
truncation or roundoff errors may be applied in analyzing the stability of these 
algorithms [4]. The following error equations pertain to both Class I and Class II 
algorithms. 

(a) Predictor error equation. 
k* k 

(1Sa) eN+ z aj(O) eN-m)j+ hc Z 8j(O) eNn[(i+l),m+l] 
j=O j=O 

(b) Corrector error equations. 
k * 1 -2 

e )+2-I = aj(l) eNm) 
+ 

hc r I 8j(l) eN+1 i 
(15b) j=O j=O 

+m 
k 

Ej (l) e N+ 1-)?j + 8j (l) e + 1j 
j=I-1 j=m+l 

In these equations, hc is used to represent an eigenvalue of the Jacobian matrix 
times the step size (squared for Class II). For the algorithms presented in ? 2, k* is 
0 (or 1) for Class I (or Class II); the analysis, however, holds for larger values of k*. 
If there is a growing extraneous solution to these equations, then the method is 
unstable. 

In the algorithms that were tested (equations (3) and (4)), k* = 0 for all Class I 
algorithms and a(,(l) = 1. For the Class II algorithms, k* = 1, ao(l) 3 + m - 1, and 
al(l)= I-m- 2. 

Assuming solutions to difference equation (15) of the standard form e" 
- ;ZN leads to a system of linear equations in 41. The existence of a nontrivial 
solution requires the determinant of the coefficients of ; to vanish. For the 
PECE[CE]m algorithm these equations are 

k* 

vOz+ _E aj(?)~, vm q-m-j 

(I 6a) -h 8Lj(?)!:j+IZq-+ L q-j);+l =( 

where q = max[k, m + k *]i= j=m+l 

k* 

;jZq-1 _Ey aj(j); +1Zq-m-j-1 
j=O 

(16b) 
_1I-2 m k C c A j(l) + IZq- 3 +I Ej(l)jzq-j + E Z i(1) +IZq-i = 

_j=O j=l-1 j=m+l 

where q = max [k, m + k* + 1]. 
For the PE[CE]m algorithm, the equation for Vj is eliminated; and where it 

appears on the right-hand side of (16), Vj is replaced by 4o. The resulting 
determinant of the coefficients, as a function of Z and h, is called the characteristic 
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polynomial P(Z, hc). One (or two for Class II) of the roots Z of the polynomial 
P(Z, hC) = 0 corresponds to the characteristic solution of the error differential 
equation and follows the error characteristics of the original differential equation. 
This root is called a principal root; the other roots are called extraneous. All 
principal roots will have values - e + o (h'+1), where n is the order of the method. 
If any extraneous root has magnitude greater than 1, then the errors will become 
unbounded after many integration steps and the method is said to be absolutely 
h-unstable. This definition is distinct from the concept of absolute stability which 
requires the principal roots to have magnitude less than 1 as well. The roots of 
P(Z, hC) = 0 are dependent on the value of hc. The region in the hc complex plane 
which characterizes the boundary between h-stable and h-unstable algorithms is 
determined by the solution of the equation 

P(e 6, hC) = 0 

for real 0, 0 < 0? 2 ir. A computer program was constructed to generate the region 
of stability for these algorithms. Figure 2 shows the stability diagram comparison 
of the classical, 15th order, Class II PECE (Stormer-Cowell) algorithm compared 
to that of the 15th order Class II PE[CE] back-correction algorithm. Each 
algorithm requires two function evaluations per step. 

STORMER-COWELL 
STABILITY REGION 

BACK CORRECTOR 
STABILITY REGION 

STORMER-COWELL - - - - - - 

M= 1 BACK CORRECTOR 

FIG. 2. Region of stability in the complex h2 plane for 15 th order Class II processes 

For oscillatory type problems, where the Class II Jacobian has negative 
eigenvalues, the intersection of the stability diagram curve with the negative real 
axis determines the maximum step size that can be taken for stable integration. 
Table 3 shows values of this negative h as a function of order for the PE, PECE 
classical, and PE[CE], PECE[CE], PE[CE]2, PECE[CE]2, PE[CE]3, PECE[CE]3 
back-correction algorithms. Note that for the classical Cowell algorithms, the 
region of stability decreases geometrically with increasing order, while for the 
m = 2 back-correction algorithm, the degradation with increasing order appears 
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to be much slower. The small arrows in Table 3 indicate that a topologically 
different portion of the stability diagram controls stability for negative h, and so at 
these places the trends in h with increasing order may be expected to change. The 
most remarkable feature of the back-correction algorithms, as can be seen in 
Table 3, is the improved region of stability relative to classical on-grid algorithms. 

6. Numerical results. In order to illustrate the accuracy, stability, and over- 
all efficiency of the methods described above, a number of them have been used to 
obtain the numerical solution of the differential equations describing the fully 
perturbed motion of the ATS-F geosynchronous satellite, and the numerical 
solution of the equation describing the motion of a simple harmonic oscillator 
(SHO). The equation to be solved for the simple harmonic oscillator is 

Y +y =O0 

subject to the initial conditions 

y(O) = O, y(O) = 1. 

The solution is well known: y(x) = sin x. 
The accuracy of a given method is ascertained by comparing the numerical 

solution with the known solution at x = 16ir. The number of significant digits of 
accuracy (negative logarithm of the absolute error) at x = 16ir is plotted against 
the total number of function evaluations on a log scale. Such a graph is called an 
efficiency curve. If it is assumed (for more complicated problems than SHO) that 
the evaluation of the second derivative of y consumes the dominant portion of 
computer time, then the curve so plotted reflects the accuracy achieved for a given 
amount of work. In the truncation error limited region, the efficiency curve of a 
process has a slope proportional to the order of the process. Numerical instability 
manifests itself when the accuracy drops off more rapidly than that indicated by 
the order of the process. This instability occurs at larger step sizes (fewer function 
evaluations) on the left portion of the efficiency curves. Roundoff error becomes 
evident when the curve peaks and the slope becomes negative at smaller step sizes. 
It should be noted that high order processes give evidence of encountering 
instability at smaller step sizes than lower order processes. 

In Figs. 3, 4, 5 and 6 the efficiency curves representing methods of order 4, 8, 
12, 16 and 20 as applied to the harmonic oscillator are depicted. The cases where 
m = 0 denote the use of classical Adams or Stormer-Cowell methods. The cases 
where m 1 denote the use of m back-corrections. Notice how the step size where 
instability ensues (for a given high order method) is affected by the introduction of 
back corrections. 

Figure 7 shows the efficiency graph after 27 of the fully perturbed ATS-F 
satellite orbits integrated on the Goddard Trajectory Determination Subsystem 
(GTDS) using the most efficient (12th order) Class II Stormer-Cowell method 
(dashed line). Also shown (solid line) is the most efficient (17th order) back- 
correction algorithm (m = 2) that could be found for this orbit. The 17th order 
PECE*[CE*]2 method provides an approximate solution which is from two to 
four significant figures more accurate than the one obtained using the 12th order 
PECE* method. It is concluded from these and other, as yet unpublished, 
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FIG. 7. Efficiency graph for the integration of 27 orbits of the fully perturbed, geosynchronous 
ATS-F satellite 

numerical experiments that the enhanced stability afforded by back-correction 
algorithms permits the effective use of higher order algorithms. 
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