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THE USE OF BACK CORRECTIONS IN MULTISTEP
METHODS OF NUMERICAL INTEGRATION*

P. BEAUDETT AND T. FEAGIN}

Abstract. Generalized multistep methods for the numerical solution of nonlinear systems of
ordinary differential equations are introduced which allow the correction of previously computed
values of the solution at internal points of the grid. These methods are shown to possess enhanced
numerical stability. Preliminary numerical results indicate that for some satellite orbit problems these
methods also possess greater overall efficiency. A uniformly converging theory of error propagation is
presented which is valid for nonasymptotic values of the step size. Experimental results are seen to
conform with theory.

1. Introduction. Among the most commonly used methods for solving
nonlinear ordinary differential equations are the linear multistep methods [4] in
which the numerical solution is generated stepwise at the points of an equally
spaced grid. These methods are sometimes called predictor-corrector methods
because, as the integration advances, the solution at a point of the grid is first
predicted and then usually corrected. The multistep methods considered here are
distinguished from the classical methods in that they allow the solution to be
corrected at back points as the integration proceeds forward. It is shown that these
methods possess enhanced stability and, as a consequence, greater efficiency is
realized. The only processes addressed in this paper are constant step size
processes; it is assumed that any desired change in time steps is accomplished by a
time regularizing transformation. Processes are considered here for the solution
of systems of first order ordinary differential equations (Class I),

dy
1 —==f(y, ¢
1) 2 1.0
subject to the initial condition y(t,) =y, and for the solution of systems of second
order ordinary differential equations (Class II),

d2

@) A=)
subject to the initial conditions, y(t,) =y, dy/dt(t,) = ¥o. It should be noted that
the solution of the second order equation when f = f(y, dy/dt, t) may be accom-
plished by means of combining a process for solving a Class I problem with a
process for solving a Class II problem. [1]

In the next section, algorithms for numerical integration which use back
corrections are introduced. The procedure for determining the coefficients is
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described in § 3, and the results are presented. Section 4 displays a unified
approach to the theory of error propagation for these algorithms. A comparison is
made with errors obtained from numerical experiments. Section 5 contains an
analysis of the stability of the algorithms, and the predicted maximum stable
step size is compared with that obtained by numerical experiments. Section 6
includes the numerical results which are used to substantiate the conclusion that
the higher order back-correction algorithms can lead to more efficient numerical
integration because of an enhanced stability region.

2. Description of the algorithms. In this section, back-correcting algorithms
for obtaining approximate solutions of ordinary differential equations are
described. The predictor-corrector formulas for the Class I back-correcting
algorithms are:

(a) Predictor

k+1

(3a) YN =Yn-mth 2 Bi(0)inji,
j=1

(b) Correctors

k+1
(3b) Ynioot =Yn-mth Y Bi(Dinojur forl=1,2,--- m+1,
j=1
The formulas are used to propagate the state y from the Nth grid point to the
(N +1)st grid point. The correctors are applied to m + 1 grid points, the (N +1)st
back through to the (N + 1 — m)th point correspondingto /[ =1,2, - - -, m+1. The
step size is denoted h so that the Nth grid point is associated with time ¢t = Nh.
The subscript N on y or f designates evaluation at time ¢t = Nh; B;(l) is the
ordinate form of the coefficients for the process. Quantity k + 1 is the order of the
method in the step size, h.
For Class II problems, the formulas are:

(a) Predictor

K+1
(43) YN+ = (m + 2)yN_m - (m + 1)yN_m-1 +h? Z 'Yj(O)fN—jﬂ,
=1

J

(b) Correctors

k+1
Yz =(M+3=Dyn-m—(M+2~Dyn_m + h* ¥ Vi(Dfin-j+2
(4b) j=1

forl=1,2,--- , m+1,

where v;(I) denotes the jth coefficient (ordinate form) of the process.

Many algorithms are possible using these formulas. The conventional nota-
tions PE(CE)" or P(EC)" for classical methods can be augmented by using
brackets [-] to designate the application to back points. Thus the algorithm
PECE[(CE)*]™ would designate the sequence of operations:

1. Predict the state at t = (N +1)h and evaluate the derivative.

2. Correct the state at t = (N +1)h and evaluate the derivative.
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3. Correct the state at t = Nh and evaluate the derivative.

4. Correct the state at t = Nh and evaluate the derivative a second time.

5. Repeat steps 3 and 4 at the points t=(N—1)h, t=(N-2)h,---,t

=(N+1-m)h.
In this paper, each operation will be designated as a stage of the algorithm. Two
types of back-correction algorithms have been investigated. They are
PECE[CE]™ and PE[CE]". Note that for m =0, the classical PECE and PE
methods are obtained.

It often occurs in complicated systems [3] that the derivative f consists of two
parts; f =f, +f,, where f, is a large component which is not too difficult to compute
and f, is a small perturbation requiring extensive calculation. For such systems the
concept of a pseudoevaluate, hereafter denoted by E* [5], where only f, is
computed/recomputed, is particularly fascinating. Numerical stability of such
systems is usually governed by the properties of f,, and stabilization at significantly
reduced cost can be achieved by doing only a pseudo-evaluation after each back
correction. The satellite ephemeris predication problem is an example of a system
for which the concept of pseudoevaluation [7] has been used to improve the
efficiency of computation.

As a guide to the user, it was ascertained that the PECE[CE] algorithm for
Class I and the PE[CE] algorithm for Class II gave about the most efficient
computation for any given order, p = k + 1. These experiences are based upon the
simple harmonic oscillator and satellite trajectory problems.

3. The coefficients. The coefficients for both Class I and Class II methods can
be determined in rational form by making use of the operator identity [6]

I-E*

(5) (Vo) = hL[{m

L
} E_J:I E’'D*,

where Vi is the backward difference operator (V=V,), L, K, and J are arbitrary
integers and h is an arbitrary step size.

Vi =fv —fnv—x
Vin =fy —fnor.
E is the shifting operator
E’ty=fn.r

D is the differentiation operator and I is the identity. Methods exist [6] for
expanding the operator in brackets in a power series of the backward difference
operator so that

6) Vi hL(§ GU.K, L)V")EJDL.
i=0

A rational arithmetic computer program was written to obtain the C,(J, K, L)
in rational form. The application of this operational formula upon yn.,-, with
L=1, K=m+2-1 yields the predictor (J=—1,1=1) and corrector (J=0)
difference forms for Class I back-corrector algorithms.
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k
(7) Yzt =Yn-m T h Y G, m+2—1L 1)Vin,.
i=0
It is noteworthy that the coefficients C;(J, K, L) are given in rational form so that
they find application on all computational facilities.

Table 1 lists the coefficients for the difference form of all Class I back-
correction algorithms with m = 3. Table 2 gives the same coefficients for Class IT
methods. For any given order, p = k + 1, the B(vy for Class II) ordinate form of the
coefficients (as in (3) and (4)) may be computed from (see [6])

®) B =(—1y z (]’)c

All computational examples were performed using the ordinate form of the
difference equations (i.e., (3) and (4)).

4. Error analysis. Presented in this section is a theory of local error estima-
tion for the back-correction algorithms. A computer program was written using
these theoretical results in order to estimate the local truncation and roundoff
errors for most of the algorithms of interest. The information thus obtained was
used along with the results of the stability analysis (§ 5) to select the most
promising algorithms for extensive study and to formulate the conclusions pre-
sented at the end of this section. A brief discussion of the contents of this section
and the motivations leading to the developed theory is first presented.

In the usual presentation of error analysis [2], an asymptotic theory (meaning
valid in the limit h - 0) is developed. For such a theory the errors committed at
each step are assumed to emanate from the last stage of the algorithm (i.e., the
corrector). Using a small but finite step size h, local errors committed at earlier
stages of the algorithm are multiplied by h and are tacitly assumed to be
negligible. However, this assumption cannot be made for the case of large
step sizes and/or for the back-correction algorithms. The local errors committed
in the early stages of the back-correction algorithm are much larger than those
committed in the latter stages, and multiplication by h cannot guarantee that they
are negligible. This is particularly true with the realistic step sizes used for efficient
numerical integration. A nonasymptotic error analysis is therefore desirable and
consequently is developed here for the back-correction algorithms. Because
errors at the different stages of the algorithm combine coherently with errors from
previous time steps to form the error at the final stage, it is difficult to isolate
independent local errors associated with the algorithm. To ascribe equivalent
independent local errors to the algorithm, it is necessary to compare an
inhomogeneous differential equation for the error with the difference equations
which describe the errors propagated by the algorithm. In this way, relationships
are established between the inhomogeneous term of the error differential equa-
tion, the local truncation and roundoff errors for each stage of the algorithm, and
the intermediate state errors. The elimination of all intermediate state error
variables leads to the desired relationship between the inhomogeneous driving
term of the error differential equation and the various truncation and roundoff
errors of the algorithm. However, this elimination of all intermediate state error
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BACK CORRECTIONS IN MULTISTEP METHODS 905

variables is not straightforward because corresponding state errors occur,
evaluated at neighboring points on the grid. An approximate method must be
established to propagate these corresponding neighboring errors to the same grid
point prior to their elimination.

To propagate the state errors from one grid point to another, the homogene-
ous error differential equation is used in a manner consistent with other approxi-
mations made in the theory. This method of propagating errors is called a
“self-consistent approximation’ because it is consistent with the error differential
equation. '

It is well known [2] that if a numerical method is stable, the errors in the state
will propagate with characteristics governed by the differential equation. The
difference between the computed state yv' " and the exact state yx is the error,
en =y —y~. For small errors €y, linearization of the error equation is permit-
ted because terms of order |en|> will be extremely small compared to local
truncation and roundoff errors.

Usually [2] an error equation of the form
9 €= a e+

ay

is derived from the associated error difference equation in which the error driving
term ® is equal to the local sum of errors due to truncation and to round off of the
final corrector formula. This equation is only asymptotically accurate and does not
reflect higher order errors caused by the predictor formula. When practical
step sizes (nonasymptotic values of h) are used, these higher order errors of the
predictor often outweigh the corrector errors. The approach to error analysis
which follows reflects error propagation at nonasymptotic values of the step size.

With the knowledge that accumulated errors propagate via the homogeneous
error equation (€ =0f/dy - €) in the absence of any further local errors, a self-
consistent error driving term ® is determined which properly reflects higher order
errors introduced by the difference algorithm. The self-consistent approximation
which is used involves the propagation of errors expressions over one integration
step via use of the homogeneous error differential equation.

Beginning with the error propagation differential equation (9), one can
obtain a system of difference equations for the final and intermediate stage errors,
€W, via the same algorithm used for solving the original differential equation.
From the PECE[CE]™ back-correction algorithms (Equations (3) and (4)) for

!
Class { L

£(Nl) 2-1-5 ={ ! }SN—m+{ 0 }ﬁN—m—l
e 34 m—1—8y I-m—2+8,

(10 ¥ B

min[(j+8,0—0;_,),m+1]
N—j+2-510

N-j+2—8;0

k+1
+h° Z Bj(l)@N—j+2—8w
=1

7
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where c is the class (1 or 2) of the method and €~ without a superscript denotes
the error at the final stage, |=m+1. The index [ is O for the predictor and

1,2, -+, m+1 for the correctors. §; is the Kronecker delta function. ®,_; is the
step function
1, u=0,
0.
0, u>0.

Minor modifications to equation (10) are required for the PE[CE]" type
algorithms. In (10), €V is interpreted as the /th stage estimate of the “ultimate”
error ey in yy at the final stage of the numerical integration process. €4 is not the
error ey = yw —y~iny at the /th stage; the €’s always refer to some estimate of ex,
the error at the final stage of the algorithm. ey satisfies a different system of
difference equations which are derived from the difference equations (3) and (4)
for the state. The procedure which will be followed is to compare (10) with the
difference equations satisfied by eX’. A correspondence will then be made between
the @, of (10) and the local truncation (and roundoff) errors TW of the
predictor and correctors. The difference equations satisfied by e\’ are obtained by

subtracting the exact state yx.,_, from both sides of (3) and (4), expressing all terms
on the right-hand side as errors ey, setting the final stage error to ey and
identifying the remaining terms as the truncation error. The resulting expression

is:

e(l~ll)+2—l—8 = { ! }eN—m+{ 0 }SN—m—l
w0 (3+m_l—51‘0) (l—m_2+61‘0)

k+1
(11) they B,(l)— - eR

N—j+2-8.0

+T(N+2 1-80

In this expression terms of order |e|* have been assumed insignificant. Tx.z-1-s,, IS
the truncation and roundoff error of the predictor and corrector difference
equations.

In order to proceed any further with (10) and (11), it would be customary [4]
to assume a constant Jacobian matrix of/dy, independent of time. The procedure
which will be followed is tantamount to this. Global error propagation (error after
many steps of integration) depends on the dynamic characteristics of the Jacobian
matrix 8f/dy. Thus, to project errors accurately over long times, it is necessary to
expand the Jacobian in powers of the step size and to consider the effects of higher
variations of f with respect to the state variables. The corrections (errors) due to
the time dependence of the Jacobian matrix are often negligible compared to the
higher order direct errors resulting from the truncations of various stages of the
algorithm. At each stage of the algorithm, the

of

Oy N-js2-ay,
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term of (10) and (11) and the ®n-;..-5, term is expanded about the solution at ty,
and terms of order
o’f
hf—;
Iyl n
are neglected compared to 9f/dy|n.
The resulting Jacobian matrix 9f/dy|x is then factored from the summations in
(10) and (11). These equations are then put into normal form by the application of
arotation matrix R, which (if appropriate) diagonalizes of /dy|x and transforms the
error components into normal coordinates. The eigenvalues of h°(6f/dy)|~ are

designated hé,i=1,2,---,and the diagonal matrix is designated h°; so that
hi 0 0
_ 0 gc o ---
h = ’ =h‘R'§—f— ‘R
0o o0 - yin

i

Also, the N error components in normal coordinates are designated €' and e’ so
that € =R -€ and ¢’ =R - e (i.e., primed quantities designate normal coordi-
nates). In a parallel fashion, it is also assumed that the error driving term

4 —
N—j+2—8g0 — R- QN*[—fZ—SQ{()

in (10) is a slowly varying function of time, as is the Jacobian matrix; it is also
expended in a time series about ty.

In what follows, the leading term in a more uniformly valid expansion for the
error driving term ® of (9) is obtained. In this expansion, the leading term depends
only on the local Jacobian matrix, but includes the most important contribution
from each stage of the algorithm. By subtracting the normal forms of (10) and
(11), one obtains the equations

. m+1-8. k+1
(12) Wioran=h" ¥ BB + T a5~ h°®y X Bi(D),
j=1 j=1
where 80 =e\"—¢/’ is the difference between the [th stage error and
the [th stage estimate of the “ultimate” error. T' in (12) has also been rotated
into normal coordinates. Note that 87" vanishes because eV’ =¢el*". For
1=0,1,2,---,m+1, (12) forms a system of m+2 difference equations in the
m+2 unknowns 8%,_r, [=0, -+, mand I'=1[ or [+ 1, @’ corresponding to the
PECE[CE]™ algorithm. (For the PE[CE]" algorithm, the 8" equation is omitted
and m+1 equations in m+1 unknowns are obtained.) Note that in (12), &}
always appears with a subscript of the form (N +2)— I’ with [’ always equal to [ or
tol+1.
To solve the system of equations (12), it is necessary to propagate forward the
8’s which are “delayed” by one step. A self-consistent approximation is made by

recognizing that the errors propagate as e”~ (solution of the homogeneous error
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equation). We write
(13) S(AII)+2—I+1 = 8(N1)+2—l eﬂ.

Eliminating the 8., variables from the system of m + 1 equations (12) permits
the determination of dy, a function of h. It is convenient for numerical calcula-
tions to expand @y,

(14) D =Y OV

i

Each ¢ is a linear combination of the local truncation and roundoff errors in each
stage of the algorithm. A computer program was written to compute the coeffi-
cients &% for many algorithms. The local roundoff errors were assumed constant
in the computer simulations and consistent with the word size of the computer.
The local truncation errors are of the form

k+ (I k+c)
1) h chi—cy(N ¢

N+2—-1-8,) = )
(k+c)!

where CY.. is the error coefficient for the [th stage of the algorithm.
Since the error driving term @y is linear in the truncation and roundoff errors,
it is possible to write it in the form

h k+c R . (k+c)
LI [ +roundoff error,

P, = k+c(h) (k+c)!

where C¥..(h) are complicated but computable functions of the Jacobian eigen-
value A°. C¥,.(h) is designated as the error coefficient of the entire algorithm.
Error coefficients as a function of / were calculated for algorithms PECE[CE]™
and PE[CE]™ for all orders up to 16. Estimates of the local error in the state
variable for the simple harmonic oscillator were made. Reasonable agreement
was obtained between the theoretically predicted and actually observed local
errors. Figure 1 depicts a typical result of such a comparison. No attempt was
made to extract global error estimates by integrating the homogeneous error
differential equation (9).

Figure 1 shows a theoretical curve of accuracy versus effective stepsize (i.e.,
number of function evaluations for eight cycles of simple harmonic motion). After
one step of a PECE[CEY integration process, theory gives slightly lower accuracy
predictions than what is actually observed. The spike in the data corresponds to a
change in sign of the error as a function of step size. Also shown is the global
accuracy after eight cycles of the motion. Even after eight cycles, the phenomenon
of numerical instability occurs just beyond the theoretical step size at which
numerical instability should ensue, according to the stability analysis presented in
the next section. These results tend to support the nonasymptotic theory of error
analysis.
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ghr EXPERIMENTAL (ONE STEP)
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F1G. 1. Comparison of theory with experimental accuracy for 13th order PECE[CEJ algorithm

The errors calculated from the nonasymptotic theory were used to draw the
following conclusions with respect to the efficiencies of the various back-
correction algorithms. Here the efficiency of an algorithm is interpreted as the
reciprocal of the number of function evaluations required to achieve a given
number of significant digits of accuracy.

Without regard to stability, the classical PE algorithm is the most efficient

algorithm with few exceptions. When stability is taken into account, often the

PECE algorithm is more efficient.

For a given order, some Class I and Class II back-correction algorithms,

(e.g., k=4, m=1) surpass the efficiency of classical algorithms.

Relative to the classical algorithms, there is little if any loss in efficiency

caused by the additional function evaluations of a back-correction algorithm.

When the additional function evaluations required by the back-correcting

algorithms are pseudo-evaluations E*, significant increases in efficiency over

classical algorithms normally occur.
These advantages become more meaningful when the improved stability charac-
teristics of these methods are considered in the next section.

S. Stability analysis. Error analysis alone gives insufficient information to
judge the applicability of a given algorithm to the solution of a particular problem.
The stability of the algorithm must also be considered. It is well known [4] that
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when all orders are considered, the most efficient multistep algorithms border
upon instability. The stiffer the differential equations, the more stable the
algorithm must be. The classical stability analysis [2] is applicable to the back-
correction algorithms. Two algorithms are considered here: PE[CE]™ and
PECE[CE]™

The system of scalar error equations (normal form of equation (11)) without
truncation or roundoff errors may be applied in analyzing the stability of these
algorithms [4]. The following error equations pertain to both Class I and Class I1
algorithms.

(a) Predictor error equation.

k* 3
(153) e(Nol—l = Z al_(O) e%"_*rili Z 0) emm[(]+1} m+1]
=0 j=0
(b) Corrector error equations.

K* _(1-2 _
et = ¥ a2 4 R{S B0 et
j=0 j=0

(15b) N
+ 5 e+ 3 D e

j=1-1 j=m+1
In these equations, h° is used to represent an eigenvalue of the Jacobian matrix
times the step size (squared for Class II). For the algorithms presentedin § 2, k* is
0 (or 1) for Class I (or Class I1); the analysis, however, holds for larger values of k*.
If there is a growing extraneous solution to these equations, then the method is
unstable.

In the algorithms that were tested (equations (3) and (4)), k* = Ofor all Class
algorithms and a,(!) = 1. For the Class II algorithms, k* =1, ao(/) =3+ m — 1, and
a()=1-m-2.

Assuming solutions to difference equation (15) of the standard form ey
=(Z" leads to a system of linear equations in {. The existence of a nontrivial
solution requires the determinant of the coefficients of ¢ to vanish. For the
PECE[CE]™ algorithm these equations are

gozqﬂ _ g ai(O){mﬂzq—M*i
(16a) i £ B0z E Bz =0,

where g = max[k, m +k *] -0 jmm

3

K+
(Z7 =Y a(Npn 2!
j=0

(16b)
[Z BWLnZ+ § BULZT+ S Bz ']=0

j=1-1 j=m+1
where g =max [k, m+k*+1].
For the PE[CE]™ algorithm, the equation for ¢, is eliminated; and where it
appears on the right-hand side of (16), ¢, is replaced by {,. The resulting
determinant of the coeflicients, as a function of Z and h, is called the characteristic
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polynomial P(Z, k). One (or two for Class II) of the roots Z of the polynomial
P(Z, h*)=0 corresponds to the characteristic solution of the error differential
equation and follows the error characteristics of the original differential equation.
This root is called a principal root; the other roots are called extraneous. All
principal roots will have values ~ e" +o(h"*"), where n is the order of the method.
If any extraneous root has magnitude greater than 1, then the errors will become
unbounded after many integration steps and the method is said to be absolutely
h-unstable. This definition is distinct from the concept of absolute stability which
requires the principal roots to have magnitude less than 1 as well. The roots of
P(Z, h*) =0 are dependent on the value of /°. The region in the h° complex plane
which characterizes the boundary between h-stable and h-unstable algorithms is
determined by the solution of the equation

P(e® h*)=0

forreal 6, 0 < 6 = 2. A computer program was constructed to generate the region
of stability for these algorithms. Figure 2 shows the stability diagram comparison
of the classical, 15th order, Class II PECE (Stormer—Cowell) algorithm compared
to that of the 15th order Class II PE[CE] back-correction algorithm. Each
algorithm requires two function evaluations per step.

STORMER-COWELL
STABILITY REGION

S/

BACK CORRECTOR
\ STABILITY REGION

STORMER-COWELL — — — — — —
M =1 BACK CORRECTOR

FIG. 2. Region of stability in the complex h* plane for 15th order Class 11 processes

For oscillatory type problems, where the Class II Jacobian has negative
eigenvalues, the intersection of the stability diagram curve with the negative real
axis determines the maximum step size that can be taken for stable integration.
Table 3 shows values of this negative h as a function of order for the PE, PECE
classical, and PE[CE], PECE[CE], PE[CE]’, PECE[CEY, PE[CEYT’, PECE[CE}
back-correction algorithms. Note that for the classical Cowell algorithms, the
region of stability decreases geometrically with increasing order, while for the
m = 2 back-correction algorithm, the degradation with increasing order appears
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to be much slower. The small arrows in Table 3 indicate that a topologically
different portion of the stability diagram controls stability for negative h, and so at
these places the trends in & with increasing order may be expected to change. The
most remarkable feature of the back-correction algorithms, as can be seen in
Table 3, is the improved region of stability relative to classical on-grid algorithms.

6. Numerical results. In order to illustrate the accuracy, stability, and over-
all efficiency of the methods described above, a number of them have been used to
obtain the numerical solution of the differential equations describing the fully
perturbed motion of the ATS-F geosynchronous satellite, and the numerical
solution of the equation describing the motion of a simple harmonic oscillator
(SHO). The equation to be solved for the simple harmonic oscillator is

y+y=0
subject to the initial conditions
y(0)=0, y(0)=1.

The solution is well known: y(x) = sin x.

The accuracy of a given method is ascertained by comparing the numerical
solution with the known solution at x = 16#. The number of significant digits of
accuracy (negative logarithm of the absolute error) at x = 164 is plotted against
the total number of function evaluations on a log scale. Such a graph is called an
efficiency curve. If it is assumed (for more complicated problems than SHO) that
the evaluation of the second derivative of y consumes the dominant portion of
computer time, then the curve so plotted reflects the accuracy achieved for a given
amount of work. In the truncation error limited region, the efficiency curve of a
process has a slope proportional to the order of the process. Numerical instability
manifests itself when the accuracy drops off more rapidly than that indicated by
the order of the process. This instability occurs at larger step sizes (fewer function
evaluations) on the left portion of the efficiency curves. Roundoff error becomes
evident when the curve peaks and the slope becomes negative at smaller step sizes.
It should be noted that high order processes give evidence of encountering
instability at smaller step sizes than lower order processes.

In Figs. 3, 4, 5 and 6 the efficiency curves representing methods of order 4, 8,
12, 16 and 20 as applied to the harmonic oscillator are depicted. The cases where
m =0 denote the use of classical Adams or Stormer-Cowell methods. The cases
where m = 1 denote the use of m back-corrections. Notice how the step size where
instability ensues (for a given high order method) is affected by the introduction of
back corrections.

Figure 7 shows the efficiency graph after 27 of the fully perturbed ATS-F
satellite orbits integrated on the Goddard Trajectory Determination Subsystem
(GTDS) using the most efficient (12th order) Class II Stormer—Cowell method
(dashed line). Also shown (solid line) is the most efficient (17th order) back-
correction algorithm (m = 2) that could be found for this orbit. The 17th order
PECE*[CE*]* method provides an approximate solution which is from two to
four significant figures more accurate than the one obtained using the 12th order
PECE* method. It is concluded from these and other, as yet unpublished,
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F1G. 7. Efficiency graph for the integration of 27 orbits of the fully perturbed, geosynchronous
ATS-F satellite

numerical experiments that the enhanced stability afforded by back-correction
algorithms permits the effective use of higher order algorithms.
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