Derivation of Third-Order Runge-Kutta Methods
for Solving the Initial Value Problem % = f(@t,x) With x(@,)=x,

n-1
@ x, =xy+2D ¢, ft, +a,h, x,)
k=0
where the Runge-Kutta Ansatz
k-1
D) x,=x,+h) B, flt+a i X))
j=0

In the following derivation, we will assume (at first) that fis a function of x only, f= f{x).
The Taylor Series for x(7y + &), (the true solution at #; + /) about the point # =y, gives:
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Now, since . = f.f  (note that we are using the abbreviation f, for o
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and = f..f? + f1f,we have for the Taylor Series:
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For our equation (I) we have:
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(Note: All f f;, fi, etc. are evaluated at x; unless otherwise indicated)



So (IV) becomes:
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So for the respective orders (comparing V and III), we obtain:
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The number of stages, n, is the number of times the derivative function, f(t,x), is
evaluated during each step. The minimum number of stages possible for a third-order
Runge-Kutta method is 3. When n is 3, then the equations of condition become:
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It should be noted that these equations are four nonlinear algebraic equations in the six
unknown coefficients: {o, oz, Bai, Co, €1, and c;}. These can be solved using the
following hints:

Guess values for o; and o, such that o0, and o;#0 and 0,#0. Choose simple
fractions, if you like. Then, solve equations 2) and 4) for ¢| and c¢,. Then solve 1) for
o, and 3) for Ba1. Use oy=Pio and o= B + P21 to get Big and Bao.

Once you have values for the coefficients, you can construct your program. The
equations II and I will be used to obtain values for x;, X, and x5 at each step. Once you
have a value for x3, you can advance the numerical integration to the next step (by
updating the values of xg and tg).
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