Derivation of Third-Order Runge-Kutta Methods
for Solving the Initial Value Problem Z—ix; = f(t,x) with x@,)=x,
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In the following derivation, we will assume (at first) that fis a function of x only, /= f{x).
The Taylor Series for x(zy + &), (the true solution at ¢y + k) about the point z =1, gives:
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Now, since — = f_f  (note that we are using the abbreviation f, for ey )
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and Z‘thf = f. f*+ f2f,we have for the Taylor Series:
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For our equation (I) we have:
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and x,—x,= hZﬂ“f(xj) from (II) and similarly
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(Note: All f f;, fu, etc. are evaluated at x, unless otherwise indicated)



So (IV) becomes:
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So for the respective orders (comparing V and III), we obtain:
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The number of stages, n, is the number of times the derivative function, f(t,x), is
evaluated during each step. The minimum number of stages possible for a third-order
Runge-Kutta method is 3. When n is 3, then the equations of condition become:
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It should be noted that these equations are four nonlinear algebraic equations in the six
unknown coefficients: {o;, o, Bai, Co, €1, and co}. These can be solved using the
following hints:

Guess values for o) and o, such that o=0; and o,;#0 and o,=0. Choose simple
fractions, if you like. Then, solve equations 2) and 4) for ¢; and ¢;. Then solve 1) for

co, and 3) for PBy;. Use o= Py and op= Pag + P21 to get Pio and Pag.

Once you have values for the coefficients, you can construct your program. The
equations II and I will be used to obtain values for x;, X», and x3 at each step. Once you
have a value for x3, you can advance the numerical integration to the next step (by
updating the values of xg and tp).
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