# BIOL 5534.01 Conservation Biology Spring 2011

Class meetings: Mondays 7:00 – 9:50pm; Bayou Building 1435

Instructor: Dr. Cindy Howard

Office: Bayou Bldg., Faculty Suite 3525

**Telephone**: (281) 283-3745 (please leave a message if you don't get an answer)

**E-mail**: <a href="mailto:howardc@uhcl.edu">howardc@uhcl.edu</a> (best way to contact me)

Office hours: Mon and Wed 3-5pm; Thu 4-6pm; other times by appointment

Webpage: <a href="http://sce.uhcl.edu/howard/">http://sce.uhcl.edu/howard/</a>

#### **Course text and materials**

MacDonald, D.W. and K. Service, eds. 2007. *Key topics in conservation biology*. Blackwell Publishing, Malden, MA. 307 pp. ISBN 978-1-4051-2249-8.

PowerPoint slides for each lecture, as well as practice problems and other course information will be available at least one day before each class session at <a href="http://sce.uhcl.edu/howard">http://sce.uhcl.edu/howard</a> under Courses: BIOL 5534.

#### Major sources for course material

Ecological Society of America. Frontiers in Ecology and the Environment (various issues).

Gibbs, J.P., M.L. Hunter, Jr. and E.J. Sterling. 2009. *Problem-solving in conservation biology and wildlife management*, 2<sup>nd</sup> ed. Blackwell Publishing, Malden, MA. 328 pp.

Hunter, M.L. and J. Gibbs. 2007. *Fundamentals of Conservation Biology*, 3<sup>rd</sup> ed. Blackwell Publishing, Malden, MA. 497 pp.

Moulton, M.P. and J. Sanderson. 1999. *Wildlife issues in a changing world*, 2<sup>nd</sup> ed. Lewis Publishers, Boca Raton, FL. 500 pp.

Pimm, S.L. 1991. The balance of nature? University of Chicago Press, Chicago, IL. 434 pp.

Primack, R.B. 2006. *Essentials of conservation biology*, 4<sup>th</sup> ed. Sinauer Associates, Inc., Sunderland, MA. 585 pp.

Reaka-Kudla, M.L., D.E. Wilson and E.O. Wilson, eds. 1997. *Biodiversity II: Understanding and protecting our biological resources*. Joseph Henry Press, Washington, DC. 551 pp.

Wilson, E.O., ed. 1988. Biodiversity. National Academy Press, Washington, DC. 521 pp.

#### **Prerequisites**

Course work in ecology (BIOL 4131 or equivalent).

# **Course objectives**

To provide students with an in-depth study and analysis of the major concepts governing conservation biology, including species, genetic, population and ecosystem diversity issues, endangered species, invasive species and case studies related to human impacts on ecological systems and the earth's biodiversity.

# **Learning outcomes**

Upon successful completion of this course, students will be able to analyze and evaluate current research in conservation biology, to articulate and discuss debatable views on biodiversity issues, human impacts on biodiversity and natural systems, and apply this knowledge to specific examples within their chosen fields.

#### **Course format**

This course investigates the biological, physical and anthropogenic forces shaping the earth's ecosystem, population and genetic biodiversity. Current and historic issues surrounding endangered species and the conservation of the earth's biological diversity will be explored through informal lectures, review of case studies, research literature, student presentations and class discussions of issues relating to conservation biology.

#### **Evaluation**

| (A, B, C) | Preparation / participation in group roundtable discussions (3 @10% each)         | 30%       |
|-----------|-----------------------------------------------------------------------------------|-----------|
| (D)       | Term paper #1: summary of current issues in conservation biology and biodiversity | 40        |
| (E)       | Endangered species status report / presentation                                   | 20        |
| (F)       | Invasive species status report / presentation                                     | 20        |
| (G)       | Case study issue report / presentation                                            | 50        |
| (H)       | Term paper #2: final summary of issue paper discussions                           | <u>40</u> |
|           |                                                                                   | 100%      |

# Grading scale:

| Α  | 92-100% | B- | 78-79% | D+ | 66-67% |
|----|---------|----|--------|----|--------|
| A- | 88-92%  | C+ | 76-77% | D  | 60-65% |
| B+ | 86-87%  | С  | 70-75% | D- | 58-59% |
| В  | 80-85%  | C- | 68-69% | F  | <58%   |

Standards for grades pertaining to graduate work (from UHCL catalog):

- Performance in the range of "A" represents exceptional scholarship and intellectual initiative in accomplishing graduate level course goals and objectives.
- Performance in the range of "B" represents competent achievement in accomplishing graduate level course goals and objectives.
- Performance in the range of "C" represents the minimally acceptable performance in accomplishing graduate level course goals and objectives.
- A "D" or "F" performance represents unsatisfactory or below minimally acceptable performance in accomplishing graduate level course goals and objectives.

#### **Class attendance**

Class attendance is strongly recommended. Handout materials and reading assignments will be available for students who miss class; however, a significant portion of the grade in this class will be based on preparation and participation in group discussions and/or in summary term papers based on presentations made in class.

Information on university closures due to weather or other events can be obtained from the UHCL hotline (281-283-2221) or http://www.uhclemergency.info/go/site/1522/.

The course instructor may send messages to students during the semester regarding class schedule updates or changes, using the students' university email accounts.

# **Incompletes and withdrawals**

The last date to drop this course without a grade penalty is <u>March 28, 2011</u>. In accordance with UHCL policy, an incomplete grade (I) can only be assigned if the student is making satisfactory progress, but cannot complete the course for a documentable reason.

# **Academic honesty**

Please review the UHCL Academic Honesty Policy in the current UHCL catalog. Every student enrolled in this class is expected to abide by the UHCL Honesty Code, which states, "I will be honest in all my academic activities and will not tolerate dishonesty." Your participation in this class constitutes your acceptance of the UHCL

Academic Honesty Policy. Dishonesty of any kind (e.g., plagiarism, cheating on exams) is not acceptable in this course. It can result in a grade of "F" on an assignment or test, a grade of "F" in the course or suspension from the university (see catalog). Your written work may be checked for plagiarism at any time. The full UHCL Academic Honesty Policy can be found at

http://prtl.uhcl.edu/portal/page/portal/PRV/FORMS POLICY PROCEDURES/STUDENT POLICIES/Academic Honesty Policy.

# **Special academic accommodations**

Students requiring special academic accommodations with regard to exams, etc. should contact the Disabilities Services Office at 281-283-2627 (http://prtl.uhcl.edu/portal/page/portal/UAO).

#### **Electronics**

Use of cell phones, pagers, PDAs, laptop / notebook computers or similar electronic devices is generally not permitted during class periods. Exceptions may be made on a per class period basis and must be cleared with the course instructor prior to the start of class.

# Special note for new graduate students

Acceptance into the master's degree program in the School of Science and Computer Engineering at UHCL is a two-step process. Each of you in the class has completed at least the first step: acceptance to UHCL (automatic if you have a bachelor's degree from an accredited institution) and approval to enroll in classes. The second step is acceptance into a specific degree program (e.g., Biology, Environmental Science or Chemistry). Each program has a graduate admissions committee that will review your complete file (all transcripts and GRE scores) and decide on your acceptance into the program. Following acceptance, you will be assigned a faculty advisor who will assist you in completing your Candidate Plan of Studies (CPS).

If you are planning to work on a master's degree in one of the SCE programs, it is very important that you complete your file and be evaluated by the admissions committee as early as possible in your UHCL career. If you complete more than 9 hours (3 courses) prior to your acceptance into a program, there is no guarantee that any more than 9 hours will be counted toward your degree.

# BIOL 5534.01 Conservation Biology Spring 2011

# Mondays 7:00-9:50pm Bayou Building 1435

Schedule (this is a new course – a work in progress and subject to revision as we go):

| Date  | Topic                                                                  | Assignments                                                                               |
|-------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 01/24 | Course introduction                                                    |                                                                                           |
| 01/31 | Conservation biology; Conservation ethics; Ecosystem services          | Reading set #1                                                                            |
|       | Conservation biology roundtable discussion                             |                                                                                           |
| 02/07 | Species, genetic and population diversity; Measurement of biodiversity | Reading set #2                                                                            |
| 02/14 | Species diversity roundtable discussion                                | Reading set #2 group presentations (A)                                                    |
| 02/21 | Ecosystem diversity; Ecoregions and biodiversity hotspots              | Reading set #3                                                                            |
| 02/28 | Ecosystem diversity roundtable discussion                              | Reading set #3 group presentations (B)                                                    |
| 03/07 | Extinction: historical, processes, anthropogenic causes                | Term paper #1 due: summary of current issues in conservation biology and biodiversity (D) |
|       |                                                                        | Reading set #4                                                                            |
| 03/14 | Spring Break: no class                                                 |                                                                                           |
| 03/21 | Extinction roundtable discussion                                       | Reading set #4 group presentations (C)                                                    |
| 03/28 | Endangered species roundtable discussion                               | Endangered species report due (E)                                                         |
| 04/04 | Invasive species roundtable discussion                                 | Invasive species report due (F)                                                           |
| 04/11 | Case study presentations                                               | Case study report due (G)                                                                 |
| 04/18 | Case study presentations                                               |                                                                                           |
| 04/25 | Case study presentations                                               |                                                                                           |
| 05/02 | Case study presentations                                               |                                                                                           |
| 05/09 |                                                                        | Term paper #2 due: final summary of issue paper discussions (H)                           |

# **Topic Areas for Case Study Reviews and Presentations**

| Topic Area                                            | Name |
|-------------------------------------------------------|------|
| Built / cultivated ecosystems                         |      |
| Conservation organizations                            |      |
| International conservation policies                   |      |
| U.S. conservation policies                            |      |
| Fisheries overexploitation                            |      |
| Integrated Pest Management versus pesticide use       |      |
| Pesticides versus beneficial species                  |      |
| Tropical rainforest deforestation                     |      |
| Desertification                                       |      |
| Effects of sport hunting versus subsistence hunting   |      |
| Habitat fragmentation                                 |      |
| Conservation in urban settings                        |      |
| Wildlife and migration corridors                      |      |
| Wetlands                                              |      |
| Effects of climate change on biodiversity             |      |
| Conservation economics                                |      |
| Zoos and botanical gardens                            |      |
| Conservation politics in the U.S.                     |      |
| Ecosystem restoration / reserve design                |      |
| Conservation genetics                                 |      |
| Effects of human population growth on biodiversity    |      |
| Biodiversity of agricultural species                  |      |
| Conservation of metapopulations                       |      |
| Biodiversity versus occurrence of infectious diseases |      |
| Biodiversity versus discovery of new medicines        |      |
| Role of education in biodiversity conservation        |      |
|                                                       |      |
|                                                       |      |
|                                                       |      |
|                                                       |      |