OBJECTSTORE

RELEASE 3.0

99999999999

ObjectStore Rapid Database Development for Java
Release 3.0, October 1998

ObijectStore, Object Design, the Object Design logo, LEADERSHIP BY DESIGN, and Object
Exchange are registered trademarks of Object Design, Inc. ObjectForms and Object Manager
are trademarks of Object Design, Inc.

All other trademarks are the property of their respective owners.

Copyright © 1989 to 1998 Object Design, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

COMMERCIAL ITEM — The Programs are Commercial Computer Software, as defined in
the Federal Acquisition Regulations and Department of Defense FAR Supplement, and are
delivered to the United States Government with only those rights set forth in Object
Design’s software license agreement.

Data contained herein are proprietary to Object Design, Inc., or its licensors, and may not be
used, disclosed, reproduced, modified, performed or displayed without the prior written
approval of Object Design, Inc.

This document contains proprietary Object Design information and is licensed for use
pursuant to a Software License Services Agreement between Object Design, Inc., and
Customer.

The information in this document is subject to change without notice. Object Design, Inc.,
assumes no responsibility for any errors that may appear in this document.

Object Design, Inc.
Twenty Five Mall Road
Burlington, MA 01803-4194

Chapter 1

Chapter 2

Chapter 3

Release 3.0

Contents

Preface............ 5
OVEIVIEW 1
Introducing the Database Designer...................... 2
Creating Relationships. 5
Viewing the Database Design 6
Introducing the ComponentWizard. 8
Generating ProjectFiles 10
Designthe Database 13
Starting the Database Designer......................... 14
Creating Classesand Fields. 15
Creating AccessorMethods 18
Creating Relationships. 20
Create an Inheritance Relationship 20
Enhancingthe Design........... 22
Create Two Additional Classes, 22
Create Two Additional Relationships 23
Create an Additional Method for Employee. 24
Reviewing the Completed Database Design 27
Save the Database Design i, 27
Run the ComponentWizard....................... 29
Starting the ComponentWizard 30
Start the Component Wizard from Visual J++ 30

i

Start the Component Wizard from the Database Designer .. 31

Selecting the Database and Classes. 33
Select a Database Design (Visual J++Only) 33
Select Classest e 33

Defining Database Entry Points 34
Create Roots for Top-Level Classes. 34
Define Database Roots 35
Display New Package Information....................... 35

Examining the Component Wizard Code. 36
Class Definitions. 36
Class CONSLIUCTONttt 37
Class ExtentHandling 37
The extentsJavafile....... 38
DefiningMethods 41

Writing an Applicationo 43
ThetopJavaclass. 43
Writing the Main Function 44

Buildingthe Project 46
Building the Project with JDK 46
Building the Project Using Visual J++ 1.1................... 48

ObjectStore Rapid Database Development for Java

Purpose

Audience

Scope

Release 3.0

Preface

ObjectStore Rapid Database Development for Java is a tutorial that
shows you how to build an ObjectStore application — from
database design to code generation — using two new Rapid
Database Development (RDD) tools: the Database Designer and
the Component Wizard.

This tutorial shows you how to

= Use the Database Designer to design a database

= Use the Component Wizard to generate Java classes that form
the skeleton of your application

= Implement a simple Java application using code created by the
Component Wizard

This tutorial is for Java application developers who are new to
using ObjectStore. In addition to describing productivity tools, it
introduces some basic concepts.

This tutorial supports ObjectStore for Java, Release 3.0 or later.

How This Tutorial Is Organized

This tutorial contains the following chapters:

Software Requirements

Chapter 1, Overview, on page 1, introduces the two
productivity tools that help you design and generate code for
ObjectStoreapplications — the Database Designer and the
Component Wizard — and describes the application that you
create as you work through the tutorial.

Chapter 2, Design the Database, on page 13, describes how to
use the Database Designer’s graphical user interface to quickly
create a database design to support your application.

Chapter 3, Run the Component Wizard, on page 29, describes
how to use the Component Wizard to create Java classes and
takes a look at some of the Wizard-generated code. It also
shows how to write a simple Java application on top of the
Component Wizard-generated code.

To run both the Database Designer and the Component Wizard,
you will need the following:

ObijectStore for Java, Release 3.0 or later.

Any supported Java implementation. See thereadme.htm file in
the ObijectStore for Java installation directory for a complete
list.

ObjectStore Rapid Database Development for Java

Notation Conventions

Release 3.0

: Preface

This book uses the following conventions:

Convention Meaning

Bold Bold typeface indicates user input or code.

Sans serif Sans serif typeface indicates system
output.

Italic sans serif Italic sans serif typeface indicates a

variable for which you must supply a
value. This most often appears in a syntax

line or table.
Italic serif In text, italic serif typeface indicates the
first use of an important term.
[1 Brackets enclose optional arguments.
{a]b]c} Braces enclose two or more items. You can

specify only one of the enclosed items.
Vertical bars represent OR separators. For
example, you can specify a or b or c.

Three consecutive periods indicate that
you can repeat the immediately previous
item. In examples, they also indicate
omissions.

Internet Sources of More Information

Obiject Design

Other ObjectStore
products

Product support

Training

Your Comments

Object Design’s site on the World Wide Web is the source for
company news, white papers, and information about product
offerings and services. Point your browser to
http://www.objectdesign.com/ for more information.

Object Design offers a comprehensive set of rapid development
and enterprise integration tools. For information about these and
other Object Design products, point your browser to
http://www.objectdesign.com/products/products.html.

Object Design’s support organization provides a number of
information resources and services. Their home page is at
http://support.objectdesign.com/. From the support home page,
click Tech Support Information to learn about support policies,
product discussion groups, and the different ways Object Design
can keep you informed about the latest release information —
including the web, ftp, and email services.

You can obtain information about training courses from the
Object Design web site (http://www.objectdesign.com). From the
home page, select Services and then Education.

Customers in North America can obtain information about Object
Design’s educational offerings by calling 781.674.5000, Monday
through Friday from 8:30 AM to 5:30 PM Eastern Time. You can
also get up-to-date information and register for education courses
at http://www.objectdesign.com/services/services.html.

Object Design welcomes your comments about ObjectStore
documentation. Send your feedback to support@odi.com. To
expedite your message, begin the subject with Doc:. For example:

Subject: Doc: Incorrect message on page 76 of reference manual

You can also fax your comments to 781.674.5440.

ObjectStore Rapid Database Development for Java

In this chapter

Release 3.0

Chapter 1
Overview

This chapter introduces you to two new Rapid Database
Development (RDD) tools: the Database Designer and the
Component Wizard.

This tutorial is designed to give you hands-on experience with the
Database Designer and Component Wizard. Try the exercises in
the tutorial to see how quickly and easily you can develop
applications using ObjectStore. The tutorial, which starts in
Chapter 2, Design the Database, on page 13, assumes that you
have installed ObjectStore and these RDD tools.

This chapter covers the following topics:

Introducing the Database Designer 2
Introducing the Component Wizard 8
Creating Relationships 5
Viewing the Database Design 6
Generating Project Files 10

1

Introducing the Database Designer

Introducing the Database Designer

The Database Designer is a tool used for designing PSE Pro
databases. It provides a graphical user interface (GUI) that lets
you quickly create all the elements you need to represent your
database design:

= Classes

= Fields

= Methods

= Relationships

I iSiein el shaas [hapgpe - P'eiionsal dhc [DSgsci i Jasa)

P £ Cou Bemmeshe fow ook inde fiee
O & = Az -] & b 7]

Wew Do et Cope Paele | Pa C00W

@ ek 3Ny nama: Sheg
wpare : il
= B2 T -
o eddes oh
= B2 [rpies
rom TrmH
i e st ISR | ooy
& Rl petal sy Do ng ol . - Srirg|
W v il vl Foad romn et
s ‘.:d e Lo B L]
by Coptarant] et S Bned by
Separrandisa L B O e
= Ereokess Ere
[T
depairmcyilare D
ampleywan: Enplcseal |
P R Ry =
HU&

2 ObjectStore Rapid Database Development for Java

Release 3.0

Chapter 1: Overview

You can define database elements by simply clicking a button on
the Database Designer toolbar.

=) - 7 Z +

Clazz Relationzhip || One-way | Bidiestionsl Inhentance

For example, clicking the Class button opens the Class dialog box
from which you can create a class, its fields, and methods.

sl | Aedstennbipn | Hstheds |

Tl Rl
Eoloitie

Eupen [l

E

| o

The Database Designer provides support for both PSE Pro and
primitive Java data types.

Introducing the Database Designer

Design from the top You can design your database using either the top-down or

down or bottom up bottom-up approach. For example, you can quickly sketch a
database design, populate it with only the classes you intend to
implement, and then change the Database Designer default names
as needed. You can create a class and later fill in the details such
as fields, methods, and relationships. Or you can define each class
in detail, one at a time, using property sheets in the Class dialog

box.
“DefaultClass1™ Class: Field
M B
ame ACce:
Iage ’75' Public ¢ Private Protected
™ Wolatile
Aeailable Types: Type:
E = fint
g I
<4 I
[TupeisAmray
M- java.lang
- conn.odi util
(= Untitled1
i DiefaultClass1 =
Ok I Cancel Help

4 ObjectStore Rapid Database Development for Java

Creating Relationships

Release 3.0

Chapter 1: Overview

You can easily create a relationship (one-way or inheritance)

between classes.

To create a relationship between classes,

1 Select the relationship type you want to create by clicking the
corresponding button on the Database Designer toolbar.

2 Press and hold the Shift key.

3 Click and drag the mouse pointer from one class to the
corresponding class you are creating the relationship with, and
then release the mouse button.

Employee
salary: float

s

\

I]epartment\
departmenﬂl;'me: String

The Database Designer opens a dialog box with default values for
the relationship you created. You can accept the default values or
you can define the relationship using actual names.

s

Lt
fererdogs: = Puble T Prves T Proecisd
™ okl
Erelable: Ty T
i ot F'l*!'lﬂ:l
v G
;M 2]
=) Uridimd
[ffat e ﬂ
- P
Luriarsm
E vphirens =T o 1 Ay
[T] & coes | =

Viewing the Database Design

Viewing the Database Design

Class hierarchy

You can view the information in your database design in three
ways:

= Class hierarchy view
= Database diagram
= Element dialog boxes

The class hierarchy view displays a detailed view of all the
elements in your database design.

=@ Untitled! [ObjectStore Java)
=- M2 Persan
g name String
o g ageint
-2 Customer
e @ address Sting
=- B8 Employes
b g salary float

This view is updated automatically whenever you make a change
to the database design, such as adding a field to a class, creating a
relationship, or changing a default name to one appropriate for
your design. Color-coded symbols help you quickly identify
different design elements.

ObjectStore Rapid Database Development for Java

Database diagram

Element dialog boxes

Release 3.0

Chapter 1: Overview

The database diagram provides a higher-level view of the database
design by showing which classes are related and how. Note that
you can choose to display either of two styles of standard
modeling notation — OMT (object modeling technique) or UML
(unified modeling language). This tutorial uses UML notation.

Person

name: Sinrg

& age: |

JI'I:J "—\—.__-\-.___"‘—\—_______

Errip lope ! Cridtomies
+ gvarTimeHesurs: 0t + pddress SN0
= galary fioat
+ flaat gatSalard)

+ i SeCsalary oGl A5a ey
+ el gatlramma st foat heumkais)

Die partsisnt

'|||+ dupammenthame: 51000
L1 & wmpleywes: Epployed] |

Database diagrams can be printed and are useful for documenting
your design. The design diagram is an effective way to convey
database information to a nontechnical audience.

Each class and relationship has an associated dialog box that
contains detailed information. To view the relationship, double-
click an element in the design diagram, or select Properties from
the Class or Relationship menu bar.

The Class dialog box includes a separate property sheet for
creating and maintaining each of the following database elements:

« Fields
e Methods

= Relationships

Introducing the Component Wizard

Introducing the Component Wizard

The Component Wizard is a code generator that uses the database
design file you create with the Database Designer to generate
ObjectStoreclasses.

You can launch the Component Wizard directly from Visual J++.
I 1|

Fior Propon | wWosipeces | Db Domasreens |

AL [M Appwesd il Corcda App | oG pamec
s v Appisraeed 8] 'windd OpraracLind [Frsamed
Tusimiad e Projeo) 'weel] Gl Ly
[ihabare Wereed Fou v Loguen
ol i Wiermnd R R — =
Exh] Lo =
S dgrplbad i mnd
Farv Prige O i i
ok e i idd e cLmmeE veol 1pace
WFL 2o Controdiseme | R,
MFT Appesiowd (8]
MFT Appsa s e zl
thima [phpie Wipamd
Dyt 5 b Comrporeit 'Wipand bow Do p
o pag Veiey M pctme
i |

Lo] _cwee |

8 ObjectStore Rapid Database Development for Java

Chapter 1: Overview

If you are using another Java compiler, you can start the
Component Wizard from the Tools menu in the Database
Designer.

You can select a database design and choose one or more classes,
and then click Next to step through the creation process, or you
can use the default values provided by the Component Wizard
and then click Finish.

Release 3.0 9

Generating Project Files

Generating Project Files

10

The Component Wizard automatically generates several types of

files.
[Sios] Tups | bkl [
o] g IKE Fie BRAE 12 71
] Coin ey TEE - Lyva 5 i Pl ETREE | 2 AN
] Diesm bmerit o FE lrcaioue i [R]
] clessd bl 1EE W3 DOEL Sabch Pl B2t 12 00
| Eruplcqess e FE lres S oures Fils B 20T A
) D 05Tl s TEF v 5 cance Fils B 12 3T A
W] Bt [5acind ds IEE -Lyes 5 s Fils BT 13 70 AN
] Futandy FEE Ly §owne Pl BT 1351 A
] P pas iy FE Lyen S owie Pl ETREE 125 AN
Pt j'w'i chs ¥E P Fis BT 1 2 20
P towni ke {EE Prowd Walipee EIRRE 13 2 A
i P ronrasi nc: 4IKE HLE Fin B 12 30
dl'\ﬂ:-\:ﬂ'l opd #E UF] His BT 1837 AN
I Toppren 1EF Lyes §oance Fils ECTH 1201 AW

The following table describes some of the important files created
by the Component Wizard.

File Name

class.class

project.dsw

doall.bat

cfpagrs

extents.java

top.java

Description

Class definition for every class in the database
design. Class files also contain the code for the
CRUD (create, read, update, and delete)
functions associated with each class.

Workspace file, which bundles project and
custom build dependencies (like a makefile for
other makefiles). Generated only if you are
using Visual J++.

A batch file that compiles the Java classes, calls
the ObjectStorepostprocessor, and runs the
application.

Contains the parameters for the postprocessor.

A wrapper around a container class that
manages extents by automatically associating
the container class with the proper root.

A Java class that contains the skeleton of a
“main” function that you can use as a
foundation for writing your
ObjectStoreapplication.

ObjectStore Rapid Database Development for Java

Chapter 1: Overview

Now that you have been introduced to the Database Designer and
the Component Wizard, you can begin using these tools to design,
write, and build your applications.

Release 3.0 11

Generating Project Files

12

ObjectStore Rapid Database Development for Java

Release 3.0

Chapter 2
Design the Database

This chapter shows you how to use the Database Designer to
define a database for a simple personnel application.

This chapter covers the following topics:

Starting the Database Designer

Creating Classes and Fields

Creating Relationships

Enhancing the Design

Reviewing the Completed Database Design

14
15
20
22
27

13

Starting the Database Designer

Starting the Database Designer

Open a workspace

Save the empty
workspace

14

When you start the Database Designer, you need to specify the
type of schema you want to design. To start the Database
Designer, double-click the Database Designer icon located in the
ObjectStore program group that was created when you installed

ObjectStore.

You can also launch the Database Designer from the Windows
@#san] Mmenu. Click Programs | ObjectStore Database Designer |
ObjectStore Database Designer.

To open a new database design file, or workspace, click the New
button on the Database Designer toolbar.

NbgwciSizin [heiahass Damgne - nbilsd] |[sciSiss Jasa)

Bl EN D Belshosbie Jen Lo liekea Hed
0 & = ! G B PE hm

Hea Opn e ; Copy Pua
= o - 7§ &
h - . . - A -

g, Urtstied |DispctSime Javal

Nand, WU |

The Database Designer opens an unnamed, empty workspace
where the classes, fields, methods, and relationships that
represent the schema of your database are stored.

Click the Save button ' Save to save the database design file with
the name personnel. By default, this file is saved to the
odi\PSEProJ\0OSDD\bin directory with the .dbs extension (for
database schema).

ObjectStore Rapid Database Development for Java

Chapter 2: Design the Database

Creating Classes and Fields

After you open a new workspace, you can create the classes and
fields that will become the foundation of your personnel database.

Check default names The Database Designer uses default prefixes for class and field
names. You can use these default values to quickly sketch a design
and then fill in the details later.

To open the Options dialog box and view the default values, click
Tools | Options.

FE5 Y |F,-|||
Cbmc Fratwes
Chrst _
e I-h'
biaiwad I'h-l-l'u.-‘l
Enpawd | ermard
Falevorchap cond s sl =
| o | el sl

Release 3.0 15

Creating Classes and Fields

Create a Person class

=y

Clazs

Add Name and Age
fields

16

Use the Class dialog box to create and edit classes, and to define
methods and relationships.

To create a class called Person:

1 Click the Class button on the Database Designer toolbar, or

click Class | Add on the menu bar to open the Class dialog box.

Gmsdl | Aedatesnign | Hstheds |

Dl Pl
Ceziti!

Eupen Clan

§

| o

E

2 Inthe General property sheet, change the default value in the
Class Name field from DefaultClass1 to Person.

3 Add the following fields to the Person class. Each field uses a
primitive data type, therefore you can add your field
information directly in the Class dialog box:

Field Type
name String
age int

You can also add fields to your classes at a later time.

4 Click a row in the Name column of the Fields list box and then
type the field name.

5 Click a row in the Type column to display a list of primitive
data types.

ObjectStore Rapid Database Development for Java

Create an Employee
class

Release 3.0

Chapter 2: Design the Database

Tip: You can access Java, ObjectStore, and user-defined types
from the Field Relationship dialog box. To display this dialog
box, click the ellipsis entry (...) in the Type drop-down list, or
click the Add button.

6 Select the type and press Enter to define the field.

T, - |
Grrmndl | Redatnnbign | Bbabids |
Tl B
Foer
Euper Clams
Fisks
| Type
o T B
i
el | | =l
pst | | |
|

Create an Employee class using the same procedure you used to
create the Person class. Then define the following two fields:

Field Type
salary float
OvertimeHours int

Note: To make the salary field private, click the Private option
button located in the Access group box of the corresponding
Relationship dialog box.

17

Creating Accessor Methods

Creating Accessor Methods

The get method

The set method

18

After you create classes, you can create accessor methods for each
class. This example creates accessor methods for the Employee
class. These methods will return and set the value of the salary
field.

To create a method that returns the value of the salary field:

1 Click the Methods tab of the Class dialog box.
2 Click the Add button.
The Class: Method dialog box opens.

Hyw
fast s
Y. ™ Siske
" Pk | Pems | Posieg | [Pl
Arbs ks
R =)
g L
Fiara I.I.E
1|
s
L | | H
]
AL Wiy It !

[Tl e]]

3 Type getSalary in the Name field.
4 Select float from the Return type list and then click OK.

To create a method to set the value of the salary field:

1 Click the Add button on the Methods tab of the Class dialog
box.

The Class: Method dialog box opens.

2 Type setSalary in the Name field.
3 Select void from the Return type list box.

ObjectStore Rapid Database Development for Java

Chapter 2: Design the Database

4 Click the Name field in the Argument list box to display the
default argument name.

5 Change the default argument name by typing Salary in the
Name field.

6 Select float from the Return type list and then click OK.

The next section shows you how to use the database diagram to
create a relationship between the Person class and the Employee
class, and then create a method for the Employee class.

Release 3.0 19

Creating Relationships

Creating Relationships

You now have two classes defined for your personnel database,
the Person class and the Employee class. In this section, you will
create an inheritance relationship between these two classes using
a database diagram. The following database diagram shows the
contents of these two classes.

Pars o

+ mameE STING
+ mga: ol

Employse
+ evarTimeHaurs: iri
= salary: floal

+ lkaa]
+ waid Mot aalary)

Create an Inheritance Relationship

20

An inheritance relationship consists of a superclass and a subclass;
the subclass inherits attributes from the superclass. Inheritance
relationships are sometimes called is-a relationships, as in, an
Employee is a Person.

To create an inheritance relationship between the Employee and
Person classes:

1 Click the Inheritance button 4‘ on the Database Designer
toolbar Inheritance

2 Press and hold the Shift key.

3 Click and drag the mouse pointer from the Employee class (the
subclass) to the Person class (the superclass), and then release
the mouse button.

Note that when you define an inheritance relationship
graphically, you must always identify the subclass first.

ObjectStore Rapid Database Development for Java

Chapter 2: Design the Database

Tip: You can drag a class anywhere within the database
diagram.

When the relationship is created, a line that connects the two
classes appears in the diagram.

Pars o

+ FiaEbE SN
e T HE

Emplayes

+ awer TmeHours: inl
- salany: floaot

+ B0l)

+ i {fkaal aSalarny

Note: This example uses UML notation, which uses an arrow
symbol at the end of the line to identify the inheritance
relationship. OMT notation uses a triangle symbol instead of an
arrow.

You can also create a relationship by selecting a class name in the
diagram and then either

= Selecting Add from the Relationship menu or

<2
= Clicking the Relationship button Relationshin | on the toolbar.

Release 3.0 21

Enhancing the Design

Enhancing the Design

You now have defined an inheritance relationship between the

Employee and Person classes in your personnel database design.
In this section, you add more classes, relationships, and a method
to make the design more complete.

Create Two Additional Classes

Add two classes, Customer and Department, to your database

design. The field name and type for each class are defined in the
following table:

Class Field Name, Type
Customer code, int
Department

departmentName, String

After you add these classes, your database diagram will look
similar to the following diagram:

| ool o
e e

w Pl dhe [kt iom Jasal

I=i=En
& CSEprrandi ars Diers]
B3 7y pioren + Tl =)
g i B * e
= B2 rany

2
& rarmn theg
e

+ B2 [rpioes

L

Corsllpi v
Emwlems 1l g
v e Tt b a: o
salmy Foal
+ Bl [

+] o Bl Dby

o il Vel B Tes T

22

Tip: To get started, click the Class button on the toolbar, or select
Add from the Class menu. If you need more help, see Create a
Person class on page 16.

ObjectStore Rapid Database Development for Java

Chapter 2: Design the Database

Create Two Additional Relationships

Inheritance

One-way

Release 3.0

Now add an inheritance relationship between the Customer and
Person classes. Click the Inheritance button on the Database
Designer toolbar, press and hold the Shift key, and then drag the
mouse pointer from the Customer class to the Person class. (See
page 20 if you need more specific instruction.)

Next, create a one-way relationship between the Department and
Employee classes. Although you can create any relationship
graphically, some relationships require you to provide additional
information before the relationship can be created.

To create a one-way relationship between the Department class

and the Employee class:
e
1 Click the One-way button | Onewar | on the toolbar.

2 Press and hold the Shift key.

3 Click and drag the mouse pointer from the Department class to
the Employee class, and then release the mouse button.

The One-way Relationship dialog box appears.

“Togartmen” Clarr. e sy Aclalosabeg
fine: 7 Puble T Prves T Proscid |
e |
drolable Typen Taoe |
o ook bl Fﬂhﬂ]
i Sa
i Mg 2]
-1 Parmonra
Fam LI
Fogheen
Luniaran
[regsatimend = _I‘lpui-ng.!
|

4 Click in the Name field and then change the default field name
to employees.

5 In the Available Types box, double-click on Employees.
6 Click the Type is Array check box.
7 Click OK.

23

Enhancing the Design

This defines a one-to-many relationship between Department
and Employee; in other words, a department contains zero to
many employees. In this example, the relationship is
implemented using a Java array.

You can also create a relationship by selecting a class name in the
diagram and then either

= Selecting Add from the Relationship menu or

= Clicking the Relationship button Relatianship | on the toolbar.

Create an Additional Method for Employee

24

Now you create another method for the Employee class. Consider
that the end user of your personnel application will need to
determine the amount of overtime costs generated by a particular
employee.

You need to add a method declaration to the Employee class in
your database design and then write a simple method definition
using Visual J++ or another code editor.

ObjectStore Rapid Database Development for Java

Release 3.0

Chapter 2: Design the Database

To create a method for Employee:

1 Double-click the Employee class name in the database diagram
to open the Class dialog box.

2 Click the Methods tab to display the Methods property sheet.

Gereil | Relbrntips Miathods |

| Miganben Fingion

bl |

L | I
He |
3 Click the Add button to open the Class: Method dialog box.
["Ewpbores” O Methed 0

M

Apren I Sk

F Pubk: [Pivala [Prieoed | [Frdl

Rk bipe |
foe 3.
Axgarad Ligl
| Fisare: | Tups
a1 _|
eid
o |2l
i | I I

[] cwem | s |

4 Click the Name field and type the name getOvertimeCost.

25

Enhancing the Design

5 Select float from the Return Type list.

6 Click the Name field in the Argument list box and change the
default argument name to hourlyRate.

7 Select float from the Type drop-down list and then click OK.

M
E-_!l--hhvl'r..'
5 I G

F Pubk: [Pivala [Prieoed | [Frdl

Rekss hie
[roe o
Augurasi Lis
 Fiawre | 1
a1 _|
|
o |
i | I |

[k] cwew | wew |

The new method appears on the Methods property sheet, and
also appears in the Employee class in the database diagram.

Emplagas
+ avarTimaHaurs:

- wdlary (sl

+ flsal galSalard)
+ vy d setoalang ol esalary]
+ Moat gelCraerhimeC canfios hourkdabs)

8 Click Close to close the Class dialog box.

26 ObjectStore Rapid Database Development for Java

Chapter 2: Design the Database

Reviewing the Completed Database Design

The completed design diagram for the personnel database should
include all the classes, fields, and relationships shown in the
following figure. Note that the placement of individual classes
might vary — you can arrange the classes in a database diagram
according to your preferences.

T — [_Io[=]|

[- H | |
= g Feiwr Pazmari :
:.,,;::-\.-.Lﬂ = nEmE: S |
= = [irones = g
¢ T Shag L
WY gy ‘-F'-'_ﬂ_/_,_,-o-""
g Coiw Tt pirs ind
By ool Fowt EfTyse BT |
¢ Bt gl + e | e HGea] 1 :
e vesc okl Bl alndan| reTm——— * whirae Siing

Boal o] vestreal ool hoaripFate]
- W= '\..l:.:.,_, e e o] ek]
e 2 e pol Tl y” Bl monlet

¢ SEprTandi ara Dherg + Wel e B R PP
i wreplowe Ersplowes| |

frppend

* depadmorferes Thig
E = mmployman: Erposw |

Save the Database Design

When you are satisfied that your design is correct, save the design
file. This file is used as input to the ObjectStore Component
Wizard, which is described in the following chapter.

Release 3.0 27

Reviewing the Completed Database Design

28

ObjectStore Rapid Database Development for Java

Chapter 3
Run the Component
Wizard

This chapter shows you how to use the Component Wizard to
generate the code you will use to implement your application.
Using the personnel database design file you created in Chapter 2
as input, you can select a number of code-generation options and
let the Component Wizard do the rest.

This chapter covers the following topics:

Starting the Component Wizard 30
Selecting the Database and Classes 33
Defining Database Entry Points 34
Examining the Component Wizard Code 36
Writing an Application 43
Building the Project 46

Release 3.0 29

Starting the Component Wizard

Starting the Component Wizard

Visual J++ plug-in

Stand-alone tool

The Component Wizard is available as a Visual J++ plug-in or as
a stand-alone tool that you can launch from the Database
Designer. This chapter describes both ways to start the
Component Wizard.

Use the Component Wizard from within Visual J++ to
automatically generate the Java classes for your application. The
compiler uses the project information in order to be aware of all
the files in your application, as well as the code that causes the
compiler to invoke the postprocessor on all your persistent
classes. You can select any database design from which to
generate code.

Use the Component Wizard as a stand-alone tool if you are using
a Java compiler other than Visual J++. The code generated by the
Component Wizard is based on the active design in the Database
Designer.

Start the Component Wizard from Visual J++

30

To start the Component Wizard from Visual J++:

1 Start Microsoft Developer Studio.
2 Click File | New to open the New dialog box.

ObjectStore Rapid Database Development for Java

Chapter 3: Run the Component Wizard

3 Click the Projects tab and select ObjectStore Component Wizard
for Java in the Projects list.

Fisi Progoti | wokipates | Db Doasrenns |

AL LU Sppa'nad
T

T LETEY 2
Datuare "Wireed Fos v
DireSiamde: faddm Wioramd
e L e
S gl Wi and

44 Prigscn

o ok e

SFL Ackved Controlsizad
UFT dpphsiowd @)

MFT Appao s e
b Do iadipd e WA

il Corade App Progact parac
8] Wil O Lind | Pessarred
) 'weeT] B Liba sy

Ligaa
T r— =

& Chaie ree modeapans
ol S

Co
I =

Plsticarn:

W] e el Hiachee

] e |

4 Type the name Personnel in the Project Name field.

5 If necessary, change the directory specified in the Location
field. This field specifies where the Component Wizard will

write the files it creates.

6 Accept the default values for the remaining fields and then

click OK.

Start the Component Wizard from the Database Designer

Release 3.0

To start the Component Wizard from the Database Designer,
select Component Wizard from the Tools menu.

31

Starting the Component Wizard

After you start the Component Wizard, the ObjectStore
Component Wizard for Java Step 1 of 2 dialog box opens.

DissctStaer Component Wicsd e Java - Slep | ol 2

Ereh | gek Pt Carcal | | | e (]

Every dialog box of the Component Wizard has a Next and a
Finish button. Both buttons advance the Component Wizard.

The Next button Click Next to let the Component Wizard guide you through one
step at a a time. You should consider using Next so that you can
become familiar with all of the Component Wizard'’s features.

The Finish button Click Finish to let the Component Wizard complete automatically,
using default values wherever possible. Note that the Finish
button might be unavailable if a subsequent dialog box in the
Component Wizard has one or more fields that require user input.

32 ObjectStore Rapid Database Development for Java

Chapter 3: Run the Component Wizard

Selecting the Database and Classes

If you are running the Component Wizard from within Visual
J++, you first need to select a database. Then select the classes that
you want to use in your application.

If you are running the Component Wizard from the Database
Designer, the active database will be used. Then you need to select
the classes that you want to use in your application.

Select a Database Design (Visual J++ Only)

Select Classes

Release 3.0

To select a database design:
1 Click the Open Database Design button to display the Open
window.

2 Locate and open the database design file for the personnel
database you created in Chapter 2.

Tip: ObjectStore database design files have a default extension
of .dbs.

When you start the Component Wizard, all the classes in the
database appear by default in the Design Classes list box.

Click Next to continue to the next step, as described in Defining
Database Entry Points.

Tip: After you become more familiar with the Component Wizard,
you can click the Finish button whenever it is available.

33

Defining Database Entry Points

Defining Database Entry Points

Now you need to define the entry points, called roots, of your
database. A database root gives an object a persistent name, which
allows the object to serve as an entry point into persistent memory.
When an object has a persistent name, any process can look it up
by that name and retrieve it; you can find related objects by
navigating from object to object.

Dot Steie Component 'Wicsd lm Jawa - Slep 2 ol 2

Spbert e eoford e ed eeveciated wool e ko miech choor i Hhe O bpeetSioe

st damgn

Aot Morss | Claers Hwera | Exord Tiza

Lirrkaran i-E,] ricTa.

[T T e i NEToetet

Lrupikeras L iz we roes

Pazon Fanan TEE]

| | ¥
[TEeah || cHec J Carcal I Halp

Create Roots for Top-Level Classes

For more information

34

A database root can be any type of object or collection of objects. By
default the Component Wizard creates a root for each top-level
class in a schema that points to one of the collection types for
ObjectStore. These types include OSTreeSet and OSVector. The
Component Wizard uses OSTreeSet by default. For each of the
selected classes, the Component Wizard generates the code to
create the root, create the container, and update the class extent,
that is, all the persistent instances of the class.

To learn more about roots, entry-point objects, and collections, see
the ObjectStoreJava AP I User Guide.

ObjectStore Rapid Database Development for Java

Define Database Roots

Chapter 3: Run the Component Wizard

The Component Wizard displays the default values that will be
used to define the database roots for your application.

You can change these defaults by

= Changing the root name — the default root name is the same as

that of its class.

= Removing a root — each class that is defined in the database
becomes a database root by default unless you specify None as

the extent type.

= Changing the extent type — each root is defined by default as

an instance of OSTreeSet.

This tutorial uses the default values supplied by the Component

Wizard.

Display New Package Information

Release 3.0

When you click the Next button, the Component Wizard displays
the New Package Information dialog box. Click OK to continue.

[bgetties | g=s Comporant \Wirad wll coals 5 res dalslan pacogs i

CEPEE N Prar iy o

fssnireg Llpcis kun Lres packuspe Parsorral

Chotrrst 1 b ot
Paurian Clarma
it orads i Ciliorss jvil
I;q:mghm..-ﬂm
e o Evines g
Petion i Parson g
[T« FTP
Earnny jpmg -
Kl | _|J
Inaiall Crwcione
& elyProasat \Pavsorad
|: [\ | Carcel |

You are now ready to build an application.

35

Examining the Component Wizard Code

Examining the Component Wizard Code

Class Definitions

36

This section examines some of the code generated by the
Component Wizard.

For each class you define in the Database Designer, the
Component Wizard generates a file called ClassName.java where
ClassName is the name of the class. The ClassName.java file
contains the class definition, including attributes, declarations,
and method signatures.

The following is an excerpt from the Employee.java file:

public class Employee extends Person{
/I Attributes

public int overTimeHours;

private float salary;

// Operations
public float getSalary()

{

float ret=0;
/ITODO: Add your code here
return ret;

public void setSalary(float aSalary)

{
/ITODO: Add your code here

}
public float getOvertimeCost(float hourlyRate)
{

float ret=0;
/ITODO: Add your code here
return ret;

}

}

You need to provide the method body for each method you define
in the Database Designer. See Defining Methods on page 41 for
more information on writing methods.

ObjectStore Rapid Database Development for Java

Class Constructor

Class Extent Handling

Release 3.0

Chapter 3: Run the Component Wizard

For each class, the Component Wizard generates an empty
constructor with no parameter, and a constructor that initializes
all the attributes to the values passed as parameters to the
constructor.

The following is an excerpt from the Person.java file:

public class Person{

I T
/I Constructor

public Person()

{

}

public Person(String _name, int _age)

{

name=_name;
age=_age;

For each class for which an extent has been defined, the
Component Wizard generates the following attribute definition:

l[Extents
public static Ext_OSTreeSet Ext = new Ext_OSTreeSet("Person");

The Ext attribute points to the extent for the class that is
implemented as

Ext_OSTreeSet

The Component Wizard also generates the following method:

public void preFlushContents()
{
Segment theSegment=
Session.getCurrent().segmentOfpreFlushContentsObject();
Database db = theSegment.getDatabase();
Collection theExtent = (Collection) Ext.getExtents(db);
if (theExtent.contains(this))
updateExtents(db, true);

37

Examining the Component Wizard Code

For more information

The extents.Java file

38

The preFlushContents method is called when the instance changes
its persistent state. The previous implementation of the
preFlushContents method ensures that when the instance
becomes persistent because it has been included or referred to by
another persistent object, it gets inserted into the proper extent.

The following generated method explicitly inserts an instance into
its extent:

void updateExtents(Database db, boolean add)

Ext.update(this, db, add);
}
This method should be called after an instance has been created to
insert it into the proper extent. When inserted into a persistent
extent, the newly created instance becomes persistent itself.

To learn more about persistence by reachability, see the
ObjectStoreJava AP 1 User Guide.

The extents.Java file contains the Extents class, which implements
the default extent-handling functionality.

An extent is a collection of all the instances of a class in the
database and can be implemented using any container class. The
Component Wizard allows you to implement extents using either
an OSTreeSet or OSVector; that is why the Extents class is an
abstract class that gets specialized by Ext_OSTreeSet and Ext_
OSVector. These classes are the classes for which an extent-
handling mechanism has been specified in the Component
Wizard.

ObjectStore Rapid Database Development for Java

Working with extents

Release 3.0

Chapter 3: Run the Component Wizard

To enable an application to retrieve an extent, the collection has to
be reachable by navigating a root, that is, a named entry point into
persistent memory. You can specify both the name of the root and
the type of the collection used to implement a class extent in the

ObjectStore Component Wizard for Java Step 2 of 2 dialog box.

DissctStaer Component Wicsd o Java - Siep 2ol 2

Spbert e eoford e ed eeveciated wool e ko miech choor i Hhe O bpeetSioe

st damgn

Aot Marse | Claers Hwrw | Exderd Tiza

Lirrkaran i-E,] ricTa.

[T T e i NEToetet

Lroplesess L gz we N

Pazon Fanan TEE]

i | ¥
[TEeah || cHec | J Carcal I Halp |

In the personnel database, you implemented the extent of the

Department and Person classes using an OSTreeSet; therefore, the
class Ext_OSTreeSet is used. By default, root names are based on

class names.

public abstract class Extents

{
String m_name;
Database m_db=null;
Object m_obj;
Object m_root;

public String getRootName() {return m_name;};

public Extents(String rootname)

{

m_name =rootname;

}

public abstract Object createExtents(Database db);

public Object getExtents(Database db)

{
try{

39

Examining the Component Wizard Code

if (db!=null){
m_db=db;
m_root=m_db.getRoot(m_name);

}

catch(DatabaseRootNotFoundException RootNotFound){
m_root = null;

}

if (m_root==null){
m_root = createExtents(db);
setExtents(m_root);

}

return m_root;

}

public void update(Object obj, Database db)
{

m_obj= obj;

m_db=db;
}

protected void setExtents(Object root)
{
m_root =root;
m_db.createRoot(m_name, root);

}

protected boolean checkType(Object obj, String type)
{
Class ¢ = obj.getClass();
String name = c.getName();
return (hame.compareTo(type) == 0);
}
}

40 ObjectStore Rapid Database Development for Java

Public methods

For more information

Defining Methods

Release 3.0

Chapter 3: Run the Component Wizard

The public methods of this class are

public String getRootName()

Returns the name of the root that points to the extent.

public abstract Object createExtents(Database db);
Implemented by the Ext_OSTreeSet and Ext_OSVector classes.
It creates the proper container collection for the extent.

public Object getExtents(Database db)

Returns the class extent. If the extent does not exist, it calls the
createExtents method to create one and attaches it to the proper
root.

public void update(Object obj, Database db)
Inserts the obj object into the extent.

For more information on database roots, see the ObjectStoreJava
AP User Guide.

The Component Wizard generates the signatures of the methods
you define with the Database Designer; you will need to define
the method implementation.

Consider the following example of the body of the getSalary
method of the Employee class.

The Component Wizard generates the following code:

public float getSalary()
{

float ret=0;
/ITODO: Add your code here
return ret;

}

The getSalary method returns the value of the salary attribute. The
method body might look like this:

public float getSalary()

return salary;

}

The setSalary method sets the value of the salary attribute. The
method body might look like this:

41

Examining the Component Wizard Code

public void setSalary(float aSalary)

/ITODO: Add your code here
salary = aSalary;
}

The getOvertimeCost method should return the product of the
hourlyRate parameter and the number of overtime hours stored in
the overTimeHours attribute:

public float getOvertimeCost(float hourlyRate)
{

float ret=0;

/ITODO: Add your code here

ret= overTimeHours * hourlyRate;
return ret;

42 ObjectStore Rapid Database Development for Java

Chapter 3: Run the Component Wizard

Writing an Application

This section describes how to get started writing an
ObjectStoreapplication using the files generated by the
Component Wizard.

The top.Java class

The top.java class contains the skeleton of a simple main for your

application. You can use this class to get started with the
implementation of your application.

final public class Top

{

public static Database db=null;

public static void main(String argv[]) throws java.io.lIOException

{
String dbName="db.odb";

ObjectStore.initialize(null, null);

try{

try{
db = Database.open(dbName, ObjectStore.OPEN_

UPDATE);

catch (DatabaseNotFoundException e){
db = Database.create(dbName,ObjectStore.ALL_READ |
ObjectStore.ALL_WRITE);

}
Transaction t = Transaction.begin(ObjectStore.UPDATE);

/linsert your code here

t.commit();
db.close();

}

catch(Exception e){
System.out.printin(e);

}

finally{
ObjectStore.shutdown(true);

}

}
}

The db attribute points to a Database object:

public static Database db=null;

Release 3.0

Writing an Application

The database gets opened in the main function:

try{
db = Database.open(dbName, ObjectStore.OPEN_UPDATE);
}

If it does not exist it is created:

catch (DatabaseNotFoundException e){
db = Database.create(dbName,ObjectStore.ALL_READ |
ObjectStore. ALL_WRITE);

}
The main function also shows how you can start and commit a
transaction:

Transaction t = Transaction.begin(ObjectStore.UPDATE);
/linsert your code here
t.commit();

Writing the Main Function

For more information

44

In this example, you create a couple of persistent instances of the
Department class and associate some employees with them.

The main function of the Top class might contain the following:
Transaction t = Transaction.begin(ObjectStore.UPDATE);

/linsert your code here

/[Creating a Department instance
Department depl = new Department();
depl.departmentName = "Marketing";
depl.employees = new Employee[10];

//Adding depl to the extent of Departments
depl.updateExtents(db, true);

t.commit();

This code creates a new Department instance and sets its name to
Marketing.

The updateExtent call inserts the newly created Department into
the proper extent. Given that the class extent is allocated
persistently (it is reachable from a root), the dep1 object instance
automatically becomes persistent.

To learn more about roots, entry-point objects, and collections, see
the ObjectStoreJava AP I User Guide.

Now add some Employees and attach them to Marketing:

ObjectStore Rapid Database Development for Java

Release 3.0

Chapter 3: Run the Component Wizard

/ICreating some Employee instances
Employee el= new Employee(10, 20000, "John", 33);
Employee e2= new Employee(25, 35000, "Peter", 40);

/IAttaching the employees to the Department
depl.employees[0]= el;
depl.employees[1]=e2;

When you attach el and e2 to the employees array, they become
persistent by reachability because dep1 is a persistent object.

To complete the example, add another Department with some
additional employees.

/ICreating another Department instance
Department dep2 = new Department();
dep2.departmentName = "Sales";
dep2.employees = new Employee[10];

//Adding dep2 to the extent of Departments
dep2.updateExtents(db, true);

/ICreating some Employee instances

Employee e3= new Employee(10, 50000, "Chris", 51);
Employee e4= new Employee(45, 38000, "Larry", 39);
Employee e5= new Employee(15, 35000, "Andy", 55);

/IAttaching the employees to the Department
dep2.employees[0]= e3;
dep2.employees[1]= e4;
dep2.employees[2]= e5;

45

Building the Project

Building the Project

This section shows you how to build a project, using either the
Java JDK or Visual J++.

Building the Project with JDK

The doall.bat file

How to build a project

46

The Component Wizard automatically generates a batch file
called doall.bat that contains the commands you need to compile
and execute your project.

The following is the contents of the doall.bat file:

@echo off

ECHO Compiling source files
javac *.java

ECHO Running ObjectStore classfile postprocessor
call osjcfp @cfpargs

ECHO run the program
java Personnel.Top

The doall.bat assumes that you are using the javac command-line
compiler and that itis in your bin path. If this is not the case, make
the appropriate changes to doall.bat.

After all the Java files are compiled, doall.bat calls the
postprocessor to process all the classes that are part of the schema
you defined with the Database Designer.

To build a project with JDK:

1 Make the directory where you generated your project your
current directory.

2 Run doall.bat.

ObjectStore Rapid Database Development for Java

The cfpargs file

For more information

Release 3.0

Chapter 3: Run the Component Wizard

The cfpargs file is generated by the Component Wizard and
contains the flags for the postprocessor. This is the contents of the
cfpargs file for the personnel example:

-dest . -inplace
-persistaware
Top.class
Extents.class
Ext_OSTreeSet.class
Ext_OSVector.class
-persistcapable
Customer.class
Department.class
Employee.class
Person.class

If the compilation and postprocessing operations successfully
complete, the java Personnel. TOP command executes your
application.

See the postprocessor documentation in the ObjectStoreJava AP
User Guide.

47

Building the Project

Building the Project Using Visual J++ 1.1

When you run the Component Wizard from Visual J++, it
generates the VJ++ package that includes all the Java files needed
to compile the application based on the schema you defined with
the Database Designer.

o Mo cesredl - Mo esd] 0 eeeabapes 5 udia - [T o java)
|F] [[Yeew st Puopcd [ed Jook Windos lsp il x|
I = =l e oSl
I'—'ﬂ:.nﬂ :"..».-..--.-.n..uu.».-u..-'m\..u :I Eﬁﬁ ¥ ! w] [ﬂiﬁ i 4 l vl
sl | peckage Personnsl —
[T e P impart COH odi ®
Prinonssd bles impart COH cadi ukal =

= S i Tl
J_'I g - lingl publis slass Tep

] Dmpariren p=u public static Dstsbess db=pull.
1| Ermplipes e
=] Ent_DETawaSad s public mtatic voud mmiz(Sdicizg asge[]) thoows 3
2] B 05 1 . .
JE’:'J e Strima_dbbeess "db odn
£ Exterdtjrva jeetSiore. AstLialige(null, Bulll
]| P jarva
- EEEm e
n Filaz LN
._.II:"M:.* | dbe = latsbars. cpanidblasm Ubjm=iEsa
ratch | IebsbessBot FoifiENCSp Lo &1
dis = Mulabass. cresteldhilaas, (hjesLSea =
1
5 Qs |] istien | - isnn| Lald Irl
A L&11iid LhTSER Laks 11155 ahi u-\.IEt'. Lles [ox pEd e IEniel - J&%a LELaa
I | Cond iguratian rzo=nel Jave ¥Vertusl Nachire [ebup
Falizg
Hicromaft [R] Tisus]l J++ Compi ler Verziom 1 01 7033 pil}
opyrighkt L] Eicromalt arp 1949Ek. ALl righis resssved
hiectStore PartPFrocsssos -
Taid f by b Fisd inlilen 6 3 Cmd in Fiard | Barwin), 900 Dabagging 3, Seiosa] i | Ir
Rewaly

48 ObjectStore Rapid Database Development for Java

Chapter 3: Run the Component Wizard

The Component Wizard also sets the project so that at the end of

the compilation process, the compiler calls the postprocessor.
wruimu..,.,u.,_-..,:.m | Goresd | Debeg | dee Pottbadum |
= Fomtbrsld Cncorpiion: Iu:h-w'.llll':ll-ul::a
(S
[wcp@opug]

= i3 Sousce Fim
Fari-buid commarad1]

IN Cosbiwm pircie
Crbpesdi il | e
E rehinger jorve
E sl F Tess5er e
Ed_ L Varks pa
Edenin araa
P ey

24 T o
=] Aermare Fie
=] e

sllaTel

=[]

=]t |

To build the project using Visual J++, select Rebuild All from the

To build a project
Build menu.

The following code is a sample of the output of the compilation

process:

L0 o = Lrres 2 o YW LELHS |

| LElliPS LALEE LEfs 111865 and Sulpd! Liles SR =]
; Fa t
~Configuratiaon reazaml - Jave Virtusl Bachime Debug-—-cee—eaes

pilizg . i I I
Hicresaft [F) Fisusl Jé+ Comgpiler Tersios L.01 7022
7right |C)] Hicromatt Carp 199k . All righis resssesd

hiecaifitore PantProosssoo

= U mrrozie), U0 warnimgim))|
-
o

Parrmonrasl
|| wald J TAURR b FIND 0 SH T PR IN FRRIS), SAIEW L UL Deeggag maer) 4 |

Release 3.0

Building the Project

To run the application

50

To run the application, select Execute from the Build menu, or
press Ctrl+F5.

The first time you run the application, Visual J++ prompts you to
enter the name of the class you want to execute. In this example,
you enter Personnel.Top.

ite ol Bren clmnn e o b s =
Spscdy Hhs resirs dabag | TS I
Lo I
Clars e nare
F‘r::!ﬂ'm:

Fasn et ursdan
" B

5 Lk ey i BT

I DT s has

If Visual J++ displays “ERROR: Could not execute Personnel. Top: The
system cannot find the file specified”, check that you added the proper
class path to the list of class directories. For example, if you
created your project under c:\Myprojects\Personnel, make sure the
c:\Myprojects directory is included in the list of class directories:

To add a directory to the Class path:

1 Select Options from the Tools menu.
2 Click the Directories tab.

3 Select Class File from the Show directories for: list and then
click OK.

i | Tabi | Dbigy | Compadiy | Bl esbsi || [T]F]
Elad Shuces o poroaa b
[l.g p bl Bl b 3 II:I: 1 I 3
[rsiwmy [l ol B
A PSS PR daal . 20 =]
o s e I B 20
C DD PSERSIOY
D0 P EFSI0 e
LY TR | olera® Sarzan
VTl Tt

ObjectStore Rapid Database Development for Java

	Rapid Database Development for Java
	For Java
	ObjectStore Rapid Database Development for Java
	Preface
	How This Tutorial Is Organized
	Software Requirements
	Notation Conventions
	Internet Sources of More Information
	Training
	Your Comments

	Overview
	Introducing the Database Designer
	Creating Relationships
	Viewing the Database Design
	Introducing the Component Wizard
	Generating Project Files

	Design the Database
	Starting the Database Designer
	Creating Classes and Fields
	Creating Accessor Methods
	Creating Relationships
	Create an Inheritance Relationship

	Enhancing the Design
	Create Two Additional Classes
	Create Two Additional Relationships
	Create an Additional Method for Employee

	Reviewing the Completed Database Design
	Save the Database Design

	Run the Component Wizard
	Starting the Component Wizard
	Start the Component Wizard from Visual J++
	Start the Component Wizard from the Database Designer

	Selecting the Database and Classes
	Select a Database Design (Visual J++ Only)
	Select Classes

	Defining Database Entry Points
	Create Roots for Top-Level Classes
	Define Database Roots
	Display New Package Information

	Examining the Component Wizard Code
	Class Definitions
	Class Constructor
	Class Extent Handling
	The extents.Java file
	Defining Methods

	Writing an Application
	The top.Java class
	Writing the Main Function

	Building the Project
	Building the Project with JDK
	Building the Project Using Visual J++ 1.1

