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Abstract 
 
          The DNA Microarray technology can measure the 
expression levels of thousands of genes simultaneously, and 
produces huge volumes of gene expression data. Such gene 
data include complex variations among expression levels of 
genes in the various classes of samples, which allows for 
classifying and clustering the samples based on only a small 
subset of genes. We aim to identify those genes that 
demonstrate high capabilities of discrimination between the 
classes of samples (e.g. the normal vs disease tissue 
samples).  We present a new technique for gene selection 
and extraction using various feature selection techniques. 
Our method is based on computing thresholds and 
discriminating capabilities of each gene, and classifying the 
data according to only those genes that have highest 
discriminating capabilities. The method extracts very small 
subsets of informative genes that can improve the 
classification accuracy. We applied the method on four 
different common gene expression datasets used mainly for 
this purpose. The method produces encouraging and 
competitive results of classification performance compared 
with recent similar techniques.  
 
 
1. INTRODUCTION 
 
         DNA Microarray chips were first introduced in 1995 
for measuring the expression levels of thousands of genes 
simultaneously [1, 2, 13]. This technology studies the genes 
with known sequence. These genes are amplified by 
Polymerase Chain Reaction (PCR) technique. A robot spots 
the PCR resulted genes onto an ordinary glass microscope 
slide. The next process denatures and links the spotted DNA 
to the glass side [13]. Each microscope slide contains a grid-
like pattern like an array with thousands of spots of 
amplified copies of each gene. Immobilized DNA on the 
microarray will be hybridized with a probe, which is a 
known labeled DNA sequence.  In order to make the probe, 
mRNA is isolated from control or diseased samples, and 
converted into cDNA. The nucleotides used to produce 
cDNA include a green dye called Cy3, or a red dye called 
Cy5. Therefore, cDNA is distinguishable by colors. After 
passing through the entire process, sensors and scanners are 
used to detect dyes (green and red) and record their location 
and intensities into the computerized system [13, 7]. Since 
each microarray contains thousands of DNA spots, the 

output numeric data is too much to be processed 
manually.  Therefore, there is a great demand in the 
biomedical field for efficient methods for analysis and 
manipulation of gene expression data. These data includes 
complex variations among expression levels of each gene 
in the normal vs disease tissue samples, which allows for 
classifying and clustering the samples into normal vs 
disease based on only a small subset of the genes.  For 
example, one experiment carried out on samples of lung 
cancer tissue and samples of normal tissues can produce 
the expression results of thousand or maybe tens of 
thousands of genes for the normal and disease tissue 
samples. Each one of these genes may have variations in 
its expression levels between the normal versus the 
disease samples. We should mention that classes of 
samples can also be types of some disease (e.g. cancer) 
such that each class represents a different type of the 
disease. 
The goal of this work is to extract those genes that 
demonstrate high discriminating capabilities between the 
normal and disease samples. We propose a new method 
for gene classification and extraction using various 
feature selection techniques. Our method is based on 
computing thresholds and discriminating capabilities of 
each gene and classifying the data according to only those 
genes that have highest capabilities to discriminate 
between the two classes (viz. normal, disease) of samples. 
The method extracts very small subsets of useful salient 
genes that can improve the classification accuracy of 
tissue samples. We applied the method on four different 
gene expression datasets used commonly for this purpose. 
Our proposed method produces encouraging and 
competitive results in terms of classification performance 
compared with recent similar techniques.  
 
Related work: During the last few decades, a number of 
methods and algorithms have been proposed and applied 
into gene expression profiles; some of them produced 
very significant results in terms of accuracy.  Paul and Iba 
(2005) [1] modified the Probabilistic Model Building 
Genetic Algorithm (PMBGA) into a Random PMBGA 
(RPMBGA) for gene selection and applied it to three 
datasets. They have tried to reduce the size of gene 
subsets while keeping accuracy of classification in the 
high level. In all three datasets they have results superior 
or comparable to previous researches.  For the same task, 
Liu et al. (2004) [2] used the neural network for gene 



expression profiles. They used 100 iterations of resampled 
data as an input to their architecture, which consists of three 
neural network feature selection methods: Ranksum test, 
Principle Components Analysis (PCA) and clustering. They 
used Kent Ridge datasets [17] and found 100% accuracy for 
ALL-AML and Lung Cancer datasets, and 97.06% for the 
prostate cancer dataset [2]. In another effort, Gordon et al. 
(2002) [3] tried to distinguish between the pathological 
distinction of malignant mesothelioma (MPM) and 
adenocarcinoma (ADCA) of the lung cancer using gene 
expression levels only. Their focus was on searching all of 
the genes represented in the microarray for genes with a 
highly significant difference in average expression levels 
between the two types MPM and ADCA. They chose 8 top 
genes. Five of the genes correctly classified into MPM and 3 
into ADCA. They validated their results using an 
independent testing set [3].  
Shen et al. [5] used dimension reduction for cancer 
classifications. They combined Penalized Logistic 
Regression (PLR) techniques with Partial Least Squares 
(PLS) and with Singular Value Decomposition (SVD) 
separately. They found out that the combination of PLR and 
PLS is more preferable in terms of accuracy and 
computational speed. Furthermore, Y. Lee et al. (1999) [6] 
used Multi-category Support Vector Machine (MSVM) 
versus Binary SVM for cancer classification. They used 
leaving-out-one cross-validation (LOOCV) and generalized 
approximate cross-validation (GACV) for validation. Their 
result for leukemia data using MSVM resulted in a 0 to 1 
test error, at best, which is a very good result. They applied 
their method into Small Round Blue Cell Tumors (SRBCT), 
as well [6].  
The main objective of these methods is to select the most 
useful gene subset by applying dimensionality reduction 
into the gene expression profile. In spite of all, Do et al. 
(2003) [4] did not change the number of genes (features); 
instead they had improved Proximal Support Vector 
Machines (PSVM) method. They proposed a new column-
incremental linear PSVM to deal with the huge amount of 
data by avoiding loading of the whole dataset in the main 
memory. Their reported accuracy for ALLAML Leukemia 
is 97.06%, prostate cancer is 97.06%, and is 98.66% for 
lung cancer. 
 
2. THE PROPOSED METHODS 
 
        The representation of genes expression levels 
generated by the Microarray technology is a two-
dimensional representation including two or more classes of 
(tissue) samples as columns and the genes as rows. We 
transpose the matrix and thus each column will be 
representing a gene and the samples will be the rows.  Such 
a gene expression matrix contains large number of genes 
(usually ~20,000-25,000) such that each gene has 
expression levels in the samples of “class-1”, “class-2”, 
“class-3”,…etc. with a modest number samples (rows) in 
each class.  In the simplest case there can be only two 

classes; for example, class-1 representing normal tissue 
samples, and class-2 representing cancer tissue samples. 
However, sometimes a dataset may include several 
classes, for example, each class represents one type of 
cancer. In this research we cast the multi-class problem as 
a two-class case and we deal with two classes at a time. 
The variation in the expression levels of each gene 
between class-1 vs. class-2 samples determines how 
much that gene is related to one of the two classes.  We 
would like to determine how much a given gene 
discriminates between class-1 and class-2 samples. The 
gene that demonstrates high differences in its expression 
levels between class-1 and class-2 is a good 
“informative” gene that is typically highly related with 
the disease of class-2 samples (assuming class-2 is 
disease tissue samples).  Such informative genes can 
produce high accuracy in the process of samples 
classification. We want to identify the highly informative 
genes to be used for classification of samples instead of 
using the entire set of genes. Our method is based on 
computing a discriminating value (v) for each gene in the 
dataset. A gene with the highest “v value” is the one that 
have the highest differences in its expression levels 
between the two classes. Then we sort the genes based on 
their computed v values.  And then, we select the top n 
genes and delete the remaining (unselected) genes from 
the data. Then we use machine learning determine how 
accurately that small subset of n genes can classify the 
samples. 
 
Computing v values 
Suppose we are given a gene expression matrix with two 
classes of samples classe-1 and class-2, and each gene is 
represented as a column.  Assumer, further, that we have 
a threshold value t. For each gene we define four values a, 
b, c, and d as follows: 

a = # of gene expression values of gene g in class-1 ≥ t 
b = # of gene expression values of gene g in class-1 < t 
c = # of gene expression values of gene g in class-2 ≥t 
d = # of gene expression values of gene g in class-2 < t  

 
For example, if the threshold t = 0, then we compute for a 
given gene how many of its expression values in class-1 
are above or equal to 0 (a value), or below 0 (b value); 
and how many of its expression values in class-2 are 
above 0 (c value), or below 0 (d value).  If a gene g has its 
four values (a,b,c,d) as follows  a = |class-1|, b = 0, c = 0, 
and d = |class-2|. That is, all its values in class-1 are 
above the threshold, and all its values in class-2 are below 
the threshold. In other words, there is a threshold, t, that 
clearly separates the gene values in class-1 from its values 
in class-2. Then we say that this gene, g, perfectly 
differentiates between class-1 and class-2 in its 
expression levels, and it’s a very useful gene. 
Furthermore, for a given threshold t the most useful gene 
is the one that has the highest a and d values and lowest b 
and c values.   



  

Dataset Number of 
Genes Number of Classes Training Set Testing Set 

ALL-AML Leukemia 
[6] 7129 2 

AML vs. ALL 38 samples: 27 ALL and 11 AML 34 samples: 20 ALL and 14 
AML 

Lung cancer [3] 12533 2 
MPM vs. ADCA 

32 samples: 16 MPM and 16 
ADCA 

149 samples: 
134 ADCA and 15 MPM 

Prostate Cancer [2] 12600 2 
tumor vs. normal 

102 samples: 52 tumor and 50 
normal 

34 samples: 25 tumor and 9 
normal 

DLBCL [7] 4026 2 germinal vs. 
activated 

47 samples: 24 germinal and 23 
activated NA 

 
Table 1: The four gene expression datasets used in our experiments 

 
 
 
Then, the measure [ ( a + d )  – (b + c ) ] is a good indicator 
of how much a gene differentiates between the two classes.  
Thus, we compute for each gene a v score as follows: 
 

v = ( a + d ) – ( b + c ) ……………………..(1)  
  
and we select the genes that have the highest v values. Next, 
we sort all genes (columns) based on their v values in 
descending order.  Recall that the computed v values for all 
genes depend on the thresholds. Next, we discuss how we 
select thresholds. 
 
Selecting thresholds for computing v values: 
We want to find a threshold t that separates the gene 
expression levels in class-1 for its levels in class-2 
according to Equation (1).  We initially test the threshold     
t = 0, then we compute the v value for each gene based on 
t=0, then we sort them and select the n genes with the n 
highest v values.  In our method, after careful and extensive 
experimentation we identified three techniques for selecting 
the threshold: 

(1) The basic technique: t = 0. 
(2) Use a separate threshold for each gene. 
(3) Use the same threshold t for all genes where t can be 

selected from the set T={-1024, -512, -256, …, 2, 
0, 2, 4, 8, ……., 512, 1024}. 

We found that selecting the threshold from T, using method 
(3), gives better performance in classification accuracy most 
of the time. 
 
Learning and classification 
We have discussed how we select a subset of the n most 
significant genes from the entire set of genes. We remove all 
unselected genes and then the data has n columns.  We want 
to evaluate the selected gene subset using machine learning. 
We do a two-class classification based on only the n 
selected genes.  We use support vector machines (SVM) 
[15, 16] for learning and classification. SVM is an inductive 
learning technique for two-class classification. Numerous 
theoretical and empirical justifications exist in the literature 
to support SVM [16].  In our method, we take two classes at 

a time and apply SVM to train on these two classes and 
produce a classifier (model). The classifier will then be 
used in the classification phase to classify testing samples. 
We use the SVM-light implementation 
(svmlight.joachims.org) with the default parameters.  
 
 
3. EXPERIMENTS AND RESULTS 
 
Datasets  
We used four different microarray datasets to evaluate our 
method: ALL-AML Leukemia [6], Lung cancer [3], 
Prostate cancer [2], and the Diffuse Large B-cell 
Lymphoma (DLBCL)[7]. Table 1 contains the details of 
these datasets (most of these datasets were obtained from 
[17]). These datasets are used commonly for sample 
classification and gene clustering research. For the 
DLBCL dataset the whole available microarray data is 
divided into training set and testing set.  
 
Experimental Setups: Data Preprocessing 
The four datasets were preprocessed from the raw 
Microarray data. Each ratio value in raw gene expression 
data is associated with a character: A for active, P for 
hyperactive and M for silent (normal). These characters 
are irrelevant in such tasks like ours; therefore all of these 
characters in all datasets were removed [17].  Also any 
other textual information about Affymatrix, Descriptions, 
Accessions or etc., added by producers of the raw data, 
were removed.  
 
Results and Discussion 
We ran our method to select subsets of most significant 
(useful) genes for a number of subset sizes. Subsets with 
size of 1, 2,… ,10, 50 and 100 genes were selected. The 
DLBCL dataset is the only available gene expression 
profile data contains 4026 genes. This dataset is divided 
into two individual sets, training and testing sets. For 
division 80/20 rule is used. The testing subset is selected 
from 3 different portions of data, beginning, middle and 
end.  



 
Datasets 

Number 
of Genes AMLALL 

Threshold=64 
Prostate 
Cancer 

Threshold=64 
Lung Cancer 
Threshold=512 

DLBCL 
Threshold=0 

10 97.06% 100.00% 98.66% 100.00% 
9 97.06% 100.00% 98.66% 100.00% 
8 97.06% 100.00% 98.66% 100.00% 
7 97.06% 100.00% 98.66% 100.00% 
6 97.06% 100.00% 98.66% 100.00% 
5 91.18% 100.00% 98.66% 100.00% 
4 94.12% 100.00% 99.33% 90.00% 
3 94.12% 100.00% 96.64% 100.00% 
2 88.24% 100.00% 98.66% 80.00% 
1 94.12% 97.06% 98.66% 70.00% 

Average 94.71% 99.71% 98.53% 94.00% 
 

Table 2: Results of classification accuracy for each dataset with its best corresponding threshold. 10 experiments with subset 
sizes from 1 to 10 genes are run for each dataset. 
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Figure 1: Comparison between our results and other published results on the four datasets, the best results known up-to-
date are taken from [2]. 

 
 

  
Threshold: t = 0: The basic threshold, t=0, assumes that all 
values in class-1 are above zero and values in class-2 are  
all  negative. In this case definition of class positive and 
negative can impact the result tremendously. Each dataset is 
used for population sizes 1 to10 genes and t= 0. The average 
accuracy in each dataset is as follows:  
 

ALL-AML Lung 
cancer 

Prostate 
cancer DLBCL 

89.77% 86.18% 95.90% 94.0% 
  

 
Using separate threshold for each gene: In the second set of 
experiments we tested our method using the technique of 
separate threshold for each gene. In this case, the algorithm 
starts from first gene and passes through all genes. For each 

gene, the error rate (b+c) is calculated based on different 
numbers (from lowest gene expression level to the highest 
gene expression value). The number that produces the 
lowest error rate (b+c), is selected as a threshold, so each 
gene has its own threshold.  In the next step program 
calculates the v score for each gene based on the 
calculated threshold. The genes with the highest v values 
will be selected. The average accuracy results for each 
dataset is as follow: 
 

ALL-AML  Lung cancer Prostate 
cancer DLBCL 

58.88% 74.02% 56.99% 98.0% 
 
These results are not as good as we were expecting. This 
method works perfectly for the DLBCL dataset however. 



One reason for not getting perfect accuracy with this 
approach might be the nature of expression data. 
 
Using same threshold for all genes: We tested the method 
using the third threshold selection technique, namely, 
selecting the threshold from the set {–1024, –512, …., –2, 0, 
2, 4, 0……, 512, 1024}. Once a threshold is found for a 
dataset, it will be used for all genes within that set. This 
method provides very good accuracy in sample 
classification. Table 2 summarizes the results, each dataset 
was tested with the same threshold using the subsets of 1, 
2,…,10 selected genes.  
This approach provides results similar or superior to the 
previous reported results on this task [2].  Figure 1 
illustrates our results compared with the previous published 
results taken from [2].  Figure 2 illustrates the classification 
accuracy for each threshold using only the best 10 genes 
selected by our method. 
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Figure 2: Illustration of the accuracy versus thresholds 
between 0 and 1024, the subset size in all datasets is 10 
genes. 

 
From the results of the three threshold techniques, we notice 
that the best accuracy for each dataset can be achieved with 
a different number of genes. We conducted another group of 
experiments to determine how many genes are needed for 
achieving the best classification accuracy in each dataset, 
and the results are in Table 3. The results in Table 3 show 

for each dataset how many genes are needed to achieve 
the best accuracy at four different thresholds.  The smaller 
subsets of selected genes are more preferable than the 
larger subsets. The experiments on our method are so far 
conducted using at most 50 genes. We would like to 
evaluate our method with a little larger subset size. For 
that, we examined the accuracy for each dataset with 50 
and 100 most useful genes, and the detailed results are in 
Table 4. As we have seen in Table 3, our method’s best 
results are produced with 50 or less most informative 
genes, and the results of 100 genes in Table 4 confirm 
this. 
 
 
4. CONCLUSION 
 

       We presented a new technique for gene selection 
using thresholding techniques and the notions of 
a,b,c,and d values. The method extracts a small gene 
subset that allows for sample classification with high 
accuracy.  Since the gene expression profiles are 
usually produced from disease and normal tissue 
samples, the extracted genes are considered as related 
with that underlying disease. Furthermore, identifying a 
small group of genes that can classify the gene 
expression data with very high accuracy leads to the 
discovery that these selected genes are associated that 
disease studied in the gene expression dataset. The 
method proposed in this paper produces very promising 
and competitive results compared with the recently 
published results on this task. We have demonstrated 
the efficiency of the method with an extensive 
evaluation using four different datasets used mainly and 
extensively for this purpose. In the future work, we 
want to explore the ways to find, for each gene 
separately, the best threshold that yields the highest v 
value for that gene which will further improve the 
classification accuracy. Moreover, we plan to 
investigate how can we support our findings by 
exploiting the huge amounts of biomedical literature 
(e.g. Medline) using text-mining techniques. 

 
 

 AMLALL Prostate Cancer Lung Cancer DLBCL 

 No. of 
Genes Accuracy No. of 

Genes Accuracy No. of 
Genes Accuracy No. of 

Genes Accuracy

Threshold=0 50 
genes 97.06% 8 genes 91.18% 1 gene 97.32% 3 genes 100% 

Different 
Thresholds for 
Different Genes 

50 
genes 88.24% 3 genes 73.53% 9 genes 99.33% 2 genes 100% 

Threshold=64 6 genes 97.06% 2 genes 100% 2 genes 96.64% 50 genes 70% 
Threshold=512 4 genes 97.06% 2 genes 100% 4 genes 99.33% 50 genes 70% 

 
Table 3: The best gene subset size and accuracy for each dataset in all experiments. 



Threshold=0
Different 

Threshold for 
Different Genes 

Threshold=64 Threshold=512Dataset 
Accuracy Accuracy Accuracy Accuracy 

100 genes 64.71% 73.53% 85.29% 67.65% AMLALL 
50 genes 97.06% 88.24% 85.29% 85.25% 

100 genes 88.24% 73.53% 100.00% 97.06% Prostate 
Cancer 50 genes 76.47% 73.53% 100.00% 100% 

100 genes 89.93% 89.93% 89.93% 93.29% 
Lung Cancer 

50 genes 89.93% 93.29% 89.93% 95.97% 
100 genes 100.00% 80.00% 70.00% 70% DLBCL 
50 genes 100.00% 60.00% 70.00% 70% 

 
Table 4: The accuracies for all datasets with 50 and 100 genes. 
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