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Abstract-- The gene expression data generated by the Microarray 
technology for thousands of genes simultaneously provide huge 
amounts of biomedical data in forms of gene expression profiles.  
This generated gene data include complex variations of 
expression levels of thousands of gene in the classes of samples. 
The gene level variations allow for classifying and clustering the 
samples based on only a small subset of genes.  In this work, we 
want to identify the most significant genes that demonstrate the 
highest capabilities of discrimination between the classes of 
samples. We present a new gene selection technique for 
extracting the most significant genes from the huge gene/feature 
space in a given gene expression dataset.  Our method is based 
on computing the discriminating capability of each gene, and 
classifying the data according to only those most significant genes 
that have highest discriminating capabilities. We also adapted 
from text categorization and information retrieval five feature 
selection techniques into the gene selection task to compare with 
our method. We evaluated the method using four well-known 
gene expression datasets. The experimental results showed that 
our method produces impressive and competitive results in 
terms of classification performance with few selected genes 
compared with the existing techniques.  
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I. INTRODUCTION 
 
The DNA Microarray technology was first introduced in 1995 
for measuring the expression levels of thousands of genes 
simultaneously [1, 2, 7]. These genes are amplified by 
Polymerase Chain Reaction (PCR) technique. A robot spots 
the PCR resulted genes onto an ordinary glass microscope 
slide. The next process denatures and links the spotted DNA 
to the glass slide [7]. Each microscope slide contains a grid-
like pattern like an array with thousands of spots of amplified 
copies of each gene. Immobilized DNA on the microarray 
will be hybridized with a probe, which is a known labeled 
DNA sequence.  In order to make the probe, mRNA is 
isolated from control or diseased samples, and converted into 
cDNA. The nucleotides 1used to produce cDNA include a 
green dye (Cy3) or a red dye (Cy5) [5, 7]. Since each 
microarray contains thousands of DNA spots, the output 
numeric data is too much to be processed manually. So, there 
is a great demand for efficient methods for analysis and 
manipulation of gene expression data. These data include 
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complex variations among expression levels of each gene in 
the normal vs disease tissue samples, which allows for 
classifying and clustering the samples into normal vs disease 
based on only a small subset of the genes.  The goal of this 
work is to extract those genes that demonstrate high 
discriminating capabilities between the classes of samples. 
We propose a new method for gene classification and 
extraction using various feature selection techniques. Our 
method is based on computing thresholds and discriminating 
capabilities of each gene and classifying the data according to 
only those genes that have highest capabilities to discriminate 
between the two classes (viz. normal, disease) of samples. 
The method extracts very small subsets of useful salient genes 
that can improve the classification accuracy of tissue samples. 
We applied the method on four well-known gene expression 
datasets. We also applied five other feature selection 
techniques from the text classification literature to compare 
with our method. The method produces encouraging and 
competitive results in terms of classification performance 
compared with recent similar techniques.  
A number of methods have been proposed and applied into 
gene expression profiles in the last few decades.  Paul and Iba 
[1] modified the Probabilistic Model Building Genetic 
Algorithm (PMBGA) into a Random PMBGA (RPMBGA) 
for gene selection. They tried to reduce the size of gene 
subsets while keeping accuracy of classification in the high 
level.  For the same task, Liu et al. [2] used the neural 
network for gene expression profiles. They used 100 
iterations of resampled data as an input to their architecture, 
which consists of three neural network feature selection 
methods. They used Kent Ridge datasets [11] and found 
100% accuracy for ALLAML and Lung Cancer data, and 
97.06% for the prostate cancer dataset [2].  
 

 
II. THE PROPOSED METHODS 

 
DNA Microarray technology produces 2D representation of 
gene expression levels containing 2 or more classes of (tissue) 
samples. The variation in the expression levels of each gene 
between class-1 vs. class-2 determines how much that gene is 
related to one of the two classes.  The gene that demonstrates 
high differences in its expression levels between class-1 and 
class-2 is a good “significant” gene that is typically highly 
related with the disease of class-2 samples (assuming normal 
vs disease tissue samples). Our method for gene selection is 
adapted from the feature selection techniques in the text 
categorization (TC) and information retrieval (IR) literatures 



[12, 13]. These feature selection techniques, like Mutual 
Information and Chi-square, are based on selecting the salient 
features from a huge feature space based on the feature values 
in the underlying classes. Our method is based on computing 
a discriminating value V for each gene in the dataset. A gene 
with the highest V value is the one that have the highest 
differences in its expression levels between the two classes of 
samples. Then we sort the genes based on their computed V 
values, select the top n genes, and delete the remaining 
(unselected) genes for the data. Before we delve into the 
details we explain how we compute the thresholds which are 
needed for our feature selection techniques. 
 
A. Selecting Thresholds  
 

We want to find such a threshold t that separates the gene 
expression levels in class-1 for its levels in class-2 with the 
least noise. For example, if the expression levels of gene g in 
class-1 are all positive and in class-2 are all negative, then in 
this case a threshold value of zero (t=0) is the best value that 
gives the least noise (zero noise).  For that, we examine, for 
each gene, all the values from the minimum gene expression 
value in all samples to the maximum one and select the value 
that gives lowest noise as a threshold. 
 
B. Computing V Values 
 

Suppose we are given a gene expression matrix with two 
classes of samples: classe-1 and class-2.  Assume further that 
we have a threshold value t. For each gene we define four 
values a, b, c, and d as follows: 

a = # of gene expression values of gene g in class-1 ≥ t 
b = # of gene expression values of gene g in class-1 < t 
c = # of gene expression values of gene g in class-2 ≥t 
d = # of gene expression values of gene g in class-2 < t  
 

For example, if the threshold t = 0, then we compute for a 
given gene how many one of its expression values in class-1 
are above or equal to 0 (a value), or below 0 (b value); and 
how many one of its expression values in class-2 are above or 
equal 0 (c value), or below 0 (d value).  Furthermore, for a 
given threshold t, the most useful gene is the one that has the 
highest a and d values and lowest b and c values.  Then, the 
measure  [ (a + d) - (b + c) ] is a good indicator of how much 
a gene differentiates between the two classes.  Thus, we 
compute for each gene a V score using our method as follows: 

 

V = (a+d)-(b + c ) ……………………..(1)  
 

This method (Eq.1) selects the genes that demonstrate the 
highest separation in their expression values from class-1 to 
class-2.  Then, to evaluate our method and compare it with 
the similar feature selection techniques, we borrowed and 
adapted from the IR and TC research four other feature 
selection techniques: Mutual Information (MI), Chi-square 
(X2), GSS-Coefficient, and Odd Ratio (OR) [12, 13] and are 
defined as follows: 
 
MI =  
 
 
X2 =  
 

 
GSS-Coeff  =  
 
 
 

OR  =  
 
where N is the total number of samples in both classes.  We 
further adapted from MI (Eq.2) a new feature selection 
technique by giving more weight to the a value of each gene 
and to the difference (a - b). So we multiplied MI by a and 
also by (a – b), and the resulting formula are shown in Eq.6: 
 

         
MI-2 = a*(a-b) * 
 
 
C. Learning and classification 
 

We evaluate the selected gene subset using machine learning 
with a two-class classification based on only the n selected 
genes.  We use support vector machines (SVM) [9, 10] for 
learning and classification. Numerous theoretical 
justifications exist in the literature to support SVM [10].  We 
take two classes at a time and apply SVM to train on them 
and produce a classifier (model). The classifier will then be 
used in the classification phase to classify the testing samples. 
We use the SVM-light implementation with the default 
parameters (svmlight.joachims.org).  
 
 

III. EXPERIMENTS AND RESULTS 
 
A. Datasets  
 

We used four microarray datasets to evaluate our method: 
ALL-AML Leukemia [4], Lung cancer [3], Prostate cancer 
[2], and the Diffuse Large B-cell Lymphoma (DLBCL)[5]. 
Table 1 contains the details of these datasets. These datasets 
(downloaded from [11]) are used commonly for sample 
classification and gene clustering research.  
 
B. Results and Discussion 
 

We ran our method to select subsets of most significant genes 
for a number of subset sizes. Subsets with size of 1, 2,… ,10, 
50 and 100 genes were selected. We evaluated our method 
(Eq.1) using the four datasets described in Table 1. Table 2 
summarizes the results; each dataset was tested with subsets 
of 1, 2,…,10 selected genes.  
 

TABLE 1 
 The four gene expression datasets used in our experiments 

Dataset Number 
of Genes

Number of 
Classes Training Set Testing Set 

ALL-AML 
Leukemia [4] 7129 

2 
AML vs. 

ALL 

38 samples: 27 
ALL & 11 AML 

34 samples: 20 
ALL and 14 

AML 

Lung cancer 
[3] 12533 

2 
MPM vs. 
ADCA 

32 samples: 16 
MPM and 16 

ADCA 

149 samples: 
134 ADCA and 

15 MPM 

Prostate 
Cancer [2] 12600 

2 
tumor vs. 
normal 

102 samples: 52 
tumor and 50 

normal 

34 samples: 25 
tumor and 9 

normal 

DLBCL [5] 4026 2 germinal 
vs. activated 

47 samples: 24 
germinal and 23 

activated 
NA N*(a.d – c.b) 

(a+c)*(b+d)*(a+b)*(c+d) 

a.d – a.c

N2

(a + 0.5)*(d + 0.5) 

(c + 0.5)*(b + 0.5)

…………(3) 

…………….…(4) 

………………(5) 

(a+c)* (a+b) 
…….……………(2) 

   N*a
(a+c)* (a+b) 

……………(6) 

N*a 



TABLE 2 
The classification accuracy results of our proposed method with subsets of 

sizes 1 to 10 genes on the four gene expression datasets.  
 

Datasets Number  
of Genes AMLALL Prostate 

Cancer  
Lung  

Cancer 
DLBCL

 
10 97.06% 100.00% 98.66% 100.00%
9 97.06% 100.00% 98.66% 100.00%
8 97.06% 100.00% 98.66% 100.00%
7 97.06% 100.00% 98.66% 100.00%
6 97.06% 100.00% 98.66% 100.00%
5 91.18% 100.00% 98.66% 100.00%
4 94.12% 100.00% 99.33% 90.00%
3 94.12% 100.00% 96.64% 100.00%
2 88.24% 100.00% 98.66% 80.00%
1 94.12% 97.06% 98.66% 70.00%

Average 94.71% 99.71% 98.53% 94.00%
 

These results (Table 2) demonstrate that our feature selection 
technique produces the highly significant features as the 
classification accuracy is very impressive. For example, with 
6 genes only, the method produces accuracy of 97.06% 
correct classifications in the AML-ALL dataset, and 100% 
accuracy with only two genes in the prostate cancer dataset. 
To further evaluate the method, we conducted experiments on 
the four methods MI, X2, GSS-Coeff, and OR (Eqs. 2, 3, 4, 5) 
using the same experimental settings of Table 2, and the 
results are in Tables 3, 4, 5, 6. From these experimental 
results we can see that our method is superior in selecting the 
most significant genes. The classification performance with 
only ten genes or less showed that our technique can produce 
accuracy on average 94.00% to 99.71% (Table 2), whereas 
the other four methods are lagging behind, from which, X2 
comes next with average accuracy of one to ten genes on the 
four datasets ranges from 93.00% to 97.06%.   Moreover, we 
examined our second technique (MI-2) that we adapted from 
MI on the same setting, and the results are in Table 7. These 
results, in Table 7, can be easily compared with the MI results 
in Table 3 to realize that our technique (MI-2) outperforms MI 
significantly.  For example, on the Lung Cancer dataset, our 
method gave average accuracy of 98.93% (Table 7) while MI 
produced for the same dataset 67.32% (Table 3). Furthermore, 
if we compare the performance of our MI-2 technique to X2, 
GSS, and OR  (Tables 4, 5, 6) we again notice that it is 
competitive and effective in selecting the significant genes. In 
another set of experiments, we used 50 and 100 genes selected 
by our method and by the other methods, and the results are in 
Table 8. Again, our method outperforms the other techniques 
on three out of the four datasets (Table 8). We also notice that 
the GSS-Coefficient technique works very well in the case of 
50 and 100 genes.  Finally, Table 9 summarizes, for each 
dataset, the average accuracy of one to ten genes selected 
using our method and the other four feature selection 
techniques. As we can see in Table 9 that our method on 
average (of 1 to 10 genes) produced the best accuracy results 
on three datasets AML-ALL, Prostate cancer, and DLBCL. 
And in the fourth dataset (Lung cancer) our method produced 
the second best accuracy (98.53%) and very close to the best 
accuracy of 98.93% produced by the GSS method.  

TABLE 3 
The classification accuracy results using MI for feature selection with subsets 

of sizes 1 to 10 genes on the four datasets.  
 

AMLALL Prostate  
Cancer 

Lung  
Cancer DLBCL 

Number of genes
AccuracyAccuracy Accuracy Accuracy

10 genes 64.71% 73.53% 75.84% 90.00% 
9 genes 67.76% 73.53% 74.50% 90.00% 
8 genes 64.71% 73.53% 73.83% 90.00% 
7 genes 64.71% 70.59% 65.77% 90.00% 
6 genes 64.71% 70.59% 55.03% 70.00% 
5 genes 50.00% 73.53% 47.65% 70.00% 
4 genes 64.71% 73.53% 47.65% 70.00% 
3 genes 64.71% 73.53% 52.35% 80.00% 
2 genes 58.82% 73.53% 90.60% 80.00% 
1 gene 58.82% 73.53% 89.93% 60.00% 

Average 62.37% 72.94% 67.32% 79.00% 
 
 
 

TABLE 4 
The classification accuracy results using X2 for feature selection with subsets 

of sizes 1 to 10 genes on the four datasets.  
 

AMLALL Prostate 
Cancer 

Lung  
Cancer DLBCL

Number of genes
Accuracy Accuracy Accuracy Accuracy

10 genes 97.06% 97.06% 96.64% 100.00%
9 genes 97.06% 97.06% 96.64% 100.00%
8 genes 97.06% 97.06% 96.64% 100.00%
7 genes 97.06% 97.06% 96.64% 100.00%
6 genes 97.06% 97.06% 96.64% 100.00%
5 genes 97.06% 97.06% 96.64% 100.00%
4 genes 97.06% 97.06% 97.32% 90.00%
3 genes 94.12% 97.06% 97.32% 90.00%
2 genes 85.29% 97.06% 97.32% 80.00%
1 gene 85.29% 97.06% 98.66% 70.00%

Average 94.41% 97.06% 97.05% 93.00%
 

 
 

TABLE 5 
The classification accuracy results using GSS-Coefficient for feature 
selection with subsets of sizes 1 to 10 genes on the four datasets. 

 

AMLALL Prostate  
Cancer 

Lung  
Cancer DLBCL Number 

of genes
Accuracy Accuracy Accuracy Accuracy 

10 genes 61.76% 97.06% 99.33% 100.00% 
9 genes 73.53% 97.06% 99.33% 100.00% 
8 genes 73.53% 97.06% 99.33% 100.00% 
7 genes 67.65% 97.06% 99.33% 100.00% 
6 genes 64.71% 97.06% 99.33% 100.00% 
5 genes 94.12% 97.06% 97.99% 100.00% 
4 genes 88.24% 97.06% 98.66% 90.00% 
3 genes 88.24% 97.06% 98.66% 100.00% 
2 genes 88.24% 97.06% 98.66% 80.00% 
1 gene 94.12% 97.06% 98.66% 70.00% 

Average 79.41% 97.06% 98.93% 94.00% 

 
 
 
 
 
 
 
 



TABLE 6 
The classification accuracy results using OR technique for feature selection 

with subsets of sizes 1 to 10 genes on the four datasets. 
 

AMLALL Prostate 
Cancer 

Lung 
Cancer DLBCL 

Number of genes 
Accuracy Accuracy Accuracy Accuracy

10 genes 94.12% 100.00% 97.99% 80.00% 
9 genes 94.12% 100.00% 97.99% 80.00% 
8 genes 97.06% 100.00% 97.32% 90.00% 
7 genes 58.82% 100.00% 97.32% 70.00% 
6 genes 58.82% 100.00% 96.64% 100.00%
5 genes 58.82% 100.00% 96.64% 90.00% 
4 genes 91.18% 97.06% 97.32% 90.00% 
3 genes 82.29% 97.06% 97.32% 90.00% 
2 genes 76.47% 97.06% 97.32% 80.00% 
1 gene 73.53% 94.12% 98.66% 70.00% 

Average 78.52% 98.53% 97.45% 84.00% 
 

 
TABLE 7 

The classification accuracy results using MI-2 technique for feature 
selection with subsets of sizes 1 to 10 genes on the four datasets. 

 

AMLALL Prostate 
Cancer 

Lung  
Cancer DLBCL 

Number of genes 
AccuracyAccuracyAccuracy Accuracy 

10 genes 97.06% 38.24% 98.66% 100.00% 
9 genes 94.12% 38.24% 99.33% 100.00% 
8 genes 88.24% 41.18% 99.33% 100.00% 
7 genes 91.18% 35.29% 98.66% 70.00% 
6 genes 91.18% 88.24% 98.66% 90.00% 
5 genes 94.12% 94.12% 98.66% 90.00% 
4 genes 88.24% 91.18% 99.33% 90.00% 
3 genes 94.12% 97.06% 99.33% 90.00% 
2 genes 94.12% 97.06% 98.66% 80.00% 
1 gene 88.24% 97.06% 98.66% 70.00% 

Average 92.06% 71.77% 98.93% 88.00% 
 

 
IV. CONCLUSION 

 
This paper explores feature selection techniques within the 
context of gene expression data for sample classification. We 
presented two new gene selection techniques and compared 
them with several features selection techniques adapted from 
the information retrieval literature. The methods extract small 
gene subsets that allow for sample classification with high 
accuracy.  Since the gene expression profiles are usually 
produced from disease and normal tissue samples, the 
extracted genes are considered as related with that underlying 
disease. Furthermore, identifying a small group of genes that 
can classify the gene expression data with very high accuracy 
leads to the discovery that these selected genes are associated 
with that disease studied in the gene expression dataset. In the 
experimental results, the proposed techniques demonstrated 
superior or very competitive performance in terms of 
accuracy of sample classification. In the future work, we plan 
to investigate how we can support our findings by exploiting 
the huge amounts of biomedical literature (e.g. Medline) using 
text-mining techniques. 

 
TABLE 8 

TABLE 8: The classification accuracies for all datasets with 50 and 100 
genes selected using our method as well as the other feature selection 

techniques 
 

Dataset Our 
method X2 MI GSS Coeff OR 

100 
genes 85.29% 85.29% 67.65% 97.06% 76.47%AMLAL

L 
50 genes 97.06% 85.29% 58.82% 97.06% 82.35%

100 
genes 100.00% 32.35% 61.76% 97.06% 26.47%Prostate 

Cancer 
50 genes 100.00% 26.47% 50.00% 100.00% 29.41%

100 
genes 93.29% 90.60% 91.28% 100.00% 93.96%Lung  

Cancer 
50 genes 95.97% 93.29% 91.28% 100.00% 95.97%

100 
genes 100.00% 100.00% 60.00% 100.00% 100.00%

DLBCL
50 genes 100.00% 100.00% 60.00% 100.00% 100.00%

 

 
TABLE 9 

Summary of the average accuracy of one to ten genes on the four datasets for 
our method and the other four feature selection techniques. 

 

 Our method X2 MI GSS Coeff OR 

AMLALL 94.71% 94.41% 62.37% 79.41% 78.52%

Prostate Cancer 99.71% 97.06% 72.94% 97.06% 98.53%

Lung Cancer 98.53% 97.05% 67.32% 98.93% 97.45%

DLBCL 94.00% 93.00% 79.00% 94.00% 84.00%
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