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ABSTRACT.  
We propose an algorithm for connecting nodes from multiple 
disconnected graphs based on a given tuple set representing 
shared knowledge. The set of tuples is used to create bridge-
edges for combining two graphs. The path from a node in a 
graph to a node in the other graph passes through a bridge-
edge. This method of combining two graphs will enable more 
comprehensive understanding and exploring of the relatedness 
of the knowledge entities (the nodes) in two graphs based on a 
given domain knowledge represented in the set of tuples. This 
approach has useful applications in various domains and in 
particular in bioinformatics. In bioinformatics, for example, 
we can explore the functional relationship between two gene 
products given their Gene Ontology annotation terms from the 
molecular function MF and biological process BP graphs of 
GO. Moreover, the proposed algorithm can be applied to 
WordNet to enable exploring the relative degree of relatedness 
of words from multiple lexical hierarchies, like nouns and 
verbs, within the WordNet. 
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1. Introduction 
There are various ways to represent structured 
knowledge and information in different domains. One 
of the common ways to represent structured knowledge 
is using graphs [1,6]. Typically, ontologies and 
taxonomies are represented as trees or hierarchical 
graphs similar to trees in which the knowledge is 
embedded in the nodes and edges. The edges denote the 
relationships between the information constructs which 
are the nodes. For example, WordNet is the main 
source of structured knowledge about nouns, verbs, 
adjectives and adverbs in the English language and can 
be viewed as hierarchical graph [13]. WordNet is a 
lexical database of English terms organized, in its 
simplest way, into four graphs for nouns, verbs, 
adjectives and adverbs. A large number of algorithms 
and techniques have been devised specifically for 
WordNet to examine and estimate the degrees of 
similarity and relatedness between terms for various 
applications including word similarity, information 
retrieval, and knowledge discovery [5, 13]. Also, the 
bioinformatics field is highly loaded with knowledge 

sources that are structured into graphs and trees, e.g. 
GO, MeSH, SNOMED-CT, HPO [1, 6, 7, 10, 11, 12]. 
In some applications, it is important to connect nodes 
from multiple graphs, perhaps within the same 
ontology, to produce the desired results. 
In this paper, we propose an algorithm for connecting 
nodes from multiple disconnected graphs, with disjoint 
vertex sets, based on a given tuple set that summarizes 
domain knowledge from the same domain of the 
graphs. Each graph represents certain aspect of 
knowledge structured in a way that the edges represent 
the relationships between the knowledge terms or 
entities (i.e., the nodes).   
Since the two graphs represents two aspects (e.g. 
nouns and verbs) of the knowledge source (e.g. 
WrodNet) then we can utilize a shared knowledge (e.g. 
benchmark corpus), represented as tuples, to connect 
the two graphs in a systematic and structured way. The 
set of tuples is used to create new edges connecting 
nodes from the two graphs.  Such edges are called 
“bridge-edges”. Therefore, the path between two 
nodes in two graphs can pass through one or more 
bridge-edges.  
This method of connecting two graphs, or two 
knowledge sources, will enable us to explore and 
understand the degree of relatedness of the nodes in 
two graphs more comprehensively based on a given 
domain knowledge summarized in the set of tuples.      
This approach has many useful applications in various 
domains and in particular in bioinformatics. In 
bioinformatics, there exist massive volumes of data 
and information from medicine and molecular biology 
organized and structured into a large number of 
ontologies, taxonomies, vocabularies, and other 
hierarchical structured databases [16]. The most 
commonly used biomedical ontologies are represented 
as directed acyclic graphs (DAGs) [8, 9, 11]. For 
example, we can explore the functional relationship 
between two genes given their gene ontology (GO) 
annotation terms (GOA terms) from the molecular 
function (MF) and biological process (BP) taxonomies 
combined [7, 12]. Moreover, the proposed algorithm 
can be applied to WordNet lexical database to enable 
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exploring the relatedness of words from multiple 
lexical hierarchies, e.g. nouns and verbs, within the 
WordNet [5, 13]. Furthermore, another application of 
this method of connecting two knowledge graphs is 
ontology integration [10]. Ontology integration has 
been an important research topic in the past few 
decades, and it is used for information retrieval and 
knowledge extraction from multiple ontologies sources 
in many domains [10].  
The focus of this paper is on graphs that represent 
structured knowledge such as ontology, terminology, 
or simply a structure knowledge graph. The method for 
connecting two graphs based on shared domain 
knowledge is detailed in Section 3 and explained in an 
algorithm in section 3.2. 

2. Related Work 
Graphs are abstraction of real life problems. Graphs 
have long been used in many applications to many 
fields in computer science, most branches of 
engineering, chemistry, telecommunications, 
scheduling, transportation, and social systems to name 
just a few [2, 3, 4, 8, 10].  A graph G = (V, E) is a pair 
where V is a set of objects called nodes, or vertices, 
and E a set of edges. Graphs are generally represented  
by means of diagrams in which vertices are 
represented by small circles or dots, and edges by line 
segments.  If the graph is directed then the edges are 
represented by arrows.  The edges of a graph can have 
weights that could represent the distance between the 
nodes, the time that it takes to traverse that link, the 
probability that that link does not fail, or any other 
measure relevant to the problem at hand. If the edges 
have weights, the graph is said to be a weighted graph 
and is represented by a triplet G=(V,E,W) where W is 
the weight on the edges. 
Many ways of combining graphs to produce new 
graphs have been proposed in the literature.  The 
union, the cartesian product, and the join are just few 
examples of graph combinations.  Given two graphs 
G1=(V1, E1) and G2 =(V2, E2) where V1 and V2 are 
distinct, the cartesian product G=G1xG2 is the graph 
whose set of vertices is the Cartesian product of V1 and 
V2, i.e. V={(u1,u2) such that u1 ∈V1 and u2 ∈V2} and 
the set of edges E consists of the edges ((u1, u2) (v1, 
v2)) such that u1=v1 and (u2 ,v2) ∈ E2  or, u2=v2 and (u1, 
v1) ∈ E1.  The join G= G1+ G2 is the graph whose set of 
vertices V is the union of V1 and V2 and the set of 
edges E is the union of E1, E2 and the set {uv | u ∈ V1 
and v ∈ V2}; i.e. besides the edges that are already in 
G1 and G2, an edge is added between every node in G1 
and every node in G2 [2].   
In this paper, we propose a way of combining graphs 
that is similar in nature to the join operation [15].  The 
set of vertices is obtained in exactly the same fashion, 
i.e. V = V1∪V2. The set of edges E differ from that of 

the join in the last component only, i.e. E= E1∪ E2 ∪ 
EC where EC is defined as follows.  There is an edge 
between vertex x of G1 and vertex y of G2 if x and y 
appear in the same tuple of the domain knowledge. 
The weight of that edge depends on the number of 
tuples that contain such a pair.  We call such an edge a 
bridge-edge.  All the other edges are assigned weight 
1. Shortest path problem is the one of the most primary 
graph traversal problem and arises in a wide variety of 
applications. Transportation and telecommunications, 
are just a few examples of such applications [3, 4]. 
Finding the most reliable path for a communications is 
reduced to finding the shortest path.  Bellman-Ford and 
Dijkstra’s algorithms are two efficient algorithms that 
compute single-source shortest paths in a weighted 
graph [3]. The distance-vector routing protocol uses a 
variant of Bellman Ford algorithm. 

3. Connecting Graphs 
We would like to connect two graphs representing two 
aspects of structured knowledge source in a given 
domain.  In the general form, a graph consists of nodes 
where each node is a term or entity in a domain 
knowledge, and the edges depict the relationships, e.g. 
is_a, between the nodes. We assume that the graph is a 
directed acyclic graph (DAG). Typically, DAGs are 
used as a common way of representing knowledge 
sources like ontologies.  A DAG is a graph that has no 
cycles and each edge has a direction. A knowledge 
source usually relies on viewing the DAG as a 
hierarchical graph with root node, internal nodes, and 
leaf nodes. As we go down the graph from the root 
towards the leaves, the nodes, or terms, become more 
specific and the root is the most general knowledge 
term. Two graphs will be connected using domain 
knowledge presented as a set of tuples TP ={P1, .., Pn}  
 
3.1 Problem formulation 

Given two DAG graphs G1 = (V1, E1) and G2 = (V2, 
E2).  As stated earlier, we assume that the set of 
vertices V1 and V2 are distinct, G1 is connected and so 
is G2, and no edges exist between G1 and G2. Each 
edge eij has weight 1: W(eij)=1 s.t. eij is an edge in G1 
or in G2.     
Also given a set TP of n tuples s.t.  

 

TP = {P1, …, Pn}. 
Each tuple Pi (i=1, .., n) is a set of terms  

Pi={t1,…,tk} 
where each term tj is a term (a node) in G1 or in G2. 
See Figure 1. Further, each tuple Pi includes terms 
(nodes) from both graphs G1 and G2. That is,  

Pi={…,tp,….,tq,…} 
where tp is a node in G1 whereas tq is a node in G2, or 
vice versa.   
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Figure 1: A bridge-edge and bridge nodes 
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Figure 2: Four bridge edges between G1 and G2 

 
 
For each pair of terms (tp, tq) such that tp and tq ϵ Pi (Pi is 
some tuple in TP), and tp,tq do not belong to the same 
graph: We draw an edge epq to connect node tp and tq 
(i.e., connecting graph G1 with graph G2). The edge epq 
is called bridge-edge because it has one endpoint in G1 
and the other in G2, and the nodes tp and tq are called beq.  
That is, the node tp in G1 is also called bpq because it is 
part of bridge epq to node tq in graph G2.   
Define a b_count(tp, tq) to be the number of tuples in TP 
containing both terms tp and tq where tp, tq are not in the 
same graph: 

b_count(tp, tq) = number of tuples containing  
both terms tp and tq………..….(1) 

We also define a weight function w(.) for each newly 
introduced bridge edge as follows; 

w(epq) = b_count(tp, tq)/max(b_count())………..(2) 
Thus, from the set TP of n tuples, we create a set of 
bridge edges bkl between G1 and G2 and each such 
bridge-edge bkl has a weight w(bkl) such that, according 
to equation (2): 

0 < w(bkl) ≤ 1…………………..(3) 
 
 

 
 
 
 
 

Figure 3: The tuple set for the example 
graphs in Figure 2. 

 

These bridge edges can be represented in a table such 
that rows are the nodes in G1 and the columns are the 
nodes in G2 as in Table 1.  
For example, as shown in Table 1, the bridge edge 
between node tp in G1 and node tq in G2 is 0.7 while the 
weight of the bridge edge between tp+1 and tq+1 is 0.4. 
Figure 2 illustrates four bridge edges between two 
graphs G1 and G2, namely (tc, tg), (td, tg), (te, th), and (te, 
ti). The four bridge edges in Figure 2 are created from 
the tuples shown in Figure 3. 

3.2 An algorithm for combining graphs 

The following algorithm combines two graphs G1 and 
G2 according to a given set of tuples. 

Algorithm:  Combine_two_graphs 
Input: 1) Two DAG graphs G1=(V1, E1) and G2 = (E2, V2).  

  V1 = {ti | 1 ≤ i ≤ n1}, V2 = {tj | 1 ≤ j ≤ n2 } 
2) A set TP of n tuples {T1, .., Tn} s.t. each tuple Ti is 

a set of terms: Ti = {t1, .., tk} 
3) A threshold tsh: 0 < tsh ≤ 1 

Output: A graph Gc=(Vc, Ec): Gc is a graph resulting from 
connecting nodes in G1 with nodes in G2 

1. Initialize b_count(tp, tq) = 0 for all 1 ≤ p ≤ n1,1 ≤ q ≤ n2; 
also initialize Ec = ∅ 

2. For each tuple Ti={t1, …, tk} do the following: 
2.1 For each pair {(tp, tq) | tp,tq∈Ti and tp ∈V1 and 

tq ∈V2} set  
b_count(tp, tq) = b_count(tp, tq) +1 

3. Compute max_bc = max{b_count(tp,tq) }  for all tp, tq 
4. For each pair (tp, tq) s.t. b_count(tp, tq) > 0, compute 

w(epq) = b_count(tp,tq)/max_bc 
5. For each pair (tp, tq), if w(tp, tq) ≥ tsh  

then   Ec = Ec U epq  (note: epq is an edge between tp and tq) 

else   w(tp, tq) = 0 
6. Output combined graph Gc = (Vc, Ec) such that 

Vc = V1 U V2 and Ec = E1 U E2 U Ec 
 

3.3 Graph exploration and terms relationship 

A common technique to explore a graph representing 
knowledge source, like ontology or vocabulary, is to 
examine the relationships between the nodes in the 
graph. The basic way to estimate the relationships  
 

P1 = {tc, tg} 
P2 = {tc, td, tg} 
P3 = {te, th, ti} 
P4 = {ta, tc, te} 
P5 = {te, th} 
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between the terms of the knowledge is though path 
length as a measure of relationship. Path length as a 
relationship measure between the terms in a given 
ontology graph has been used extensively in WordNet 
and in bioinformatics domains [5, 6, 13, 9, 13, 14]. The 
path length between two terms in the same graph is 
computed straight forward by edge counting. If there is 
more than one path, then the shortest path is taken as 
follows: 
 

PL(t1, t2) = the shortest path length (least 
number of edges) between  

nodes t1 and t2,……………………(4) 

where t1 and t2 are two nodes in a single graph (G1 or 
G2). If the two nodes belong to two graphs, then each 
path between them passes through a bridge edge. Define 
a path length between two nodes belonging two graphs as 
follows: If ti and tj are not in the same graph then:  

 

PL(ti, tj) = PL(ti, tp) + PL(tj, tq) + 1/w(epq) …..…(5) 

where tp is a bridge node in the path from ti to the root, 
and similarly tq is a node in the path from tj to the root; 
and w(.) is weight function shown in equation (2). This 
way we can estimate the relationship between concept or 
term ti and term tj belonging to two different graphs.  

  
4. Applications and Case Studies 

 

4.1 Case study: WordNet 

WordNet is the most comprehensive lexical database of 
the English language. WordNet consists of four 
independent tree-like hierarchies for nouns, verbs, 
adjectives and adverbs [13]. The nodes represent 
concepts, or set of terms called synsets and the edges 
represent lexical and semantic relationships between 
them. In the two graphs of WordNet shown in Figure 4. If 
we are given a tuple set of English words, we can 
connect the two graphs via bridges. Then we can 
estimate and compute the similarity and relationships 
between a noun (e.g. car) and a verb (e.g. drive). We can 
use a standard benchmark corpus of words (e.g. Brown 
corpus of WSJ corpus) and divide it into chunks of 5 
words or 10 words (i.e., window size w=5 or w=10 
respectively) and use them as tuples to connect the two 
graphs. The Brown corpus is a one million words 
benchmark text corpus and has been extensively used in 
natural language processing research and it can be used 
here to produce tuple sets to connect graphs. For 
instance, from the tuple {they, can, build, beautiful, 
house} there will be a bridge to be created between the 
noun node {house} in the noun sub-graph and the verb 
node {build}in the verb sub-graph. 

 

 …. tq tq+1 …. 
…     
tp  0.7   
tp+1   0.4  
…     

Table 1: weights of bridge edges 
 
4.2 Case study in bioinformatics 

The second application example we discuss is in the 
bioinformatics domain, specifically using the gene 
ontology (GO) [7]. We can explore the functional 
relationship between two genes given their gene 
ontology annotation terms (GOA terms) from the 
molecular function and biological process graphs 
combined [1, 6, 12]. Gene ontology is a structured 
vocabulary of gene functions and related information 
at the molecular level, biological process and cellular 
localization.  GO, therefore, is composed of three 
orthogonal sub-ontologies: molecular function (MF), 
biological process (BP), and cellular component (CC). 
It is the main source of information about gene 
functions, processes, and localizations. GO have been 
studied and investigated for long time, and very 
extensively, for computing gene similarity and 
relationships among gene products in various 
organisms [10, 11, 12]. Moreover, most of the 
approaches for discovering new gene functions and 
identifying gene disease associations are also based on 
GO. However, there has not been any work that 
explores the functional relationships between gene 
products in terms of their MF and BP annotation terms 
combined. Figure 5 illustrates small parts of the MF 
and BP graphs of GO. If we use the gene ontology 
annotation (GOA) database of one genome as tuple set 
(shared knowledge), then we can introduce a large 
number of bridge edges between these two graphs. Of 
course, the GOA database represents a verified domain 
knowledge and so the bridge edges are valid 
information augmented into the graphs. The GOA 
database, for the human genome for example, contains 
the GO annotation terms for each gene from the MF, 
BP, and CC components. Table 2 contains the GOA 
terms of four genes from the MF and BP sub-
ontologies. Thus with the GOA database we can 
connect MF and BP nodes which will enable to 
compute the functional similarity, using path length, 
between two genes or two GO terms within the MF 
and BP space. Currently all the projects and techniques 
for estimating the functional similarity and 
relationships between genes, GO terms, gene-diseases, 
are based on either MF or BP but not combined [10, 
11, 12, 14]. To the best of our knowledge, we have not 
seen any work that combines MF and BP to compute 
similarity is such a comprehensive way. 
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car drive

G1: nouns G2: verbs
 

 
Figure 4: Simplified illustration of two graphs of WordNet: nouns and verbs. 

 

5. Conclusion 
We presented a method for combining multiple graphs 
via bridge-edges using shared domain knowledge.  The 
method is useful is cases when each graph represents 
one aspect of some domain knowledge. Connecting 
two graphs can enable more comprehensive viewing, 
exploring, and understanding of the knowledge with its 
both aspects. The external knowledge is represented as 
a set of tuples to allow for determining bridge nodes 
and for creating bridge-edges between the graphs. We 
have discussed two application domains for the 
proposed algorithm. To the best of our knowledge, this 
is the first attempt for such a work that enable 
exploring multiple knowledge graphs by connecting 
the graphs using meaningful relations derived from 
domain knowledge.     
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Figure 5: Illustration of parts of the BP and MF aspects of the gene ontology. 

 
 
 

 
 

Gene id GO annotation 
BP terms MF terms 

AAC1 
GO:0006783, GO:0006810, 
GO:0006839, GO:0009060 
GO:0015886, GO:0055085 

GO:0005488, 
GO:0005215 
GO:0005471 

AAC3 
GO:0006783, GO:0006810 
GO:0009061, GO:0015886 

GO:0055085 

GO:0005488, 
GO:0005215 
GO:0005471 

ROD1 GO:0042493, GO:0070086 GO:0031625 

SNM1 GO:0006379, GO:0006364 

GO:0003723, 
GO:0000171 
GO:0016787, 
GO:0004518 

Table 2: Example of GOA data for four genes. 
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