
An Algorithm for Combining Graphs Based on
Shared Knowledge

 Hisham Al-Mubaid and Said Bettayeb

University of Houston- Clear Lake, Houston, TX USA
 Hisham@uhcl.edu & Bettayeb@uhcl.edu

ABSTRACT.
We propose an algorithm for connecting nodes from multiple
disconnected graphs based on a given tuple set representing
shared knowledge. The set of tuples is used to create bridge-
edges for combining two graphs. The path from a node in a
graph to a node in the other graph passes through a bridge-
edge. This method of combining two graphs will enable more
comprehensive understanding and exploring of the relatedness
of the knowledge entities (the nodes) in two graphs based on a
given domain knowledge represented in the set of tuples. This
approach has useful applications in various domains and in
particular in bioinformatics. In bioinformatics, for example,
we can explore the functional relationship between two gene
products given their Gene Ontology annotation terms from the
molecular function MF and biological process BP graphs of
GO. Moreover, the proposed algorithm can be applied to
WordNet to enable exploring the relative degree of relatedness
of words from multiple lexical hierarchies, like nouns and
verbs, within the WordNet.

Keywords
Combining graphs, graph theory, gene ontology.

1. Introduction
There are various ways to represent structured
knowledge and information in different domains. One
of the common ways to represent structured knowledge
is using graphs [1,6]. Typically, ontologies and
taxonomies are represented as trees or hierarchical
graphs similar to trees in which the knowledge is
embedded in the nodes and edges. The edges denote the
relationships between the information constructs which
are the nodes. For example, WordNet is the main
source of structured knowledge about nouns, verbs,
adjectives and adverbs in the English language and can
be viewed as hierarchical graph [13]. WordNet is a
lexical database of English terms organized, in its
simplest way, into four graphs for nouns, verbs,
adjectives and adverbs. A large number of algorithms
and techniques have been devised specifically for
WordNet to examine and estimate the degrees of
similarity and relatedness between terms for various
applications including word similarity, information
retrieval, and knowledge discovery [5, 13]. Also, the
bioinformatics field is highly loaded with knowledge

sources that are structured into graphs and trees, e.g.
GO, MeSH, SNOMED-CT, HPO [1, 6, 7, 10, 11, 12].
In some applications, it is important to connect nodes
from multiple graphs, perhaps within the same
ontology, to produce the desired results.
In this paper, we propose an algorithm for connecting
nodes from multiple disconnected graphs, with disjoint
vertex sets, based on a given tuple set that summarizes
domain knowledge from the same domain of the
graphs. Each graph represents certain aspect of
knowledge structured in a way that the edges represent
the relationships between the knowledge terms or
entities (i.e., the nodes).
Since the two graphs represents two aspects (e.g.
nouns and verbs) of the knowledge source (e.g.
WrodNet) then we can utilize a shared knowledge (e.g.
benchmark corpus), represented as tuples, to connect
the two graphs in a systematic and structured way. The
set of tuples is used to create new edges connecting
nodes from the two graphs. Such edges are called
“bridge-edges”. Therefore, the path between two
nodes in two graphs can pass through one or more
bridge-edges.
This method of connecting two graphs, or two
knowledge sources, will enable us to explore and
understand the degree of relatedness of the nodes in
two graphs more comprehensively based on a given
domain knowledge summarized in the set of tuples.
This approach has many useful applications in various
domains and in particular in bioinformatics. In
bioinformatics, there exist massive volumes of data
and information from medicine and molecular biology
organized and structured into a large number of
ontologies, taxonomies, vocabularies, and other
hierarchical structured databases [16]. The most
commonly used biomedical ontologies are represented
as directed acyclic graphs (DAGs) [8, 9, 11]. For
example, we can explore the functional relationship
between two genes given their gene ontology (GO)
annotation terms (GOA terms) from the molecular
function (MF) and biological process (BP) taxonomies
combined [7, 12]. Moreover, the proposed algorithm
can be applied to WordNet lexical database to enable

978-1-880843-85-7/ISCA BICOB/March2012 137

exploring the relatedness of words from multiple
lexical hierarchies, e.g. nouns and verbs, within the
WordNet [5, 13]. Furthermore, another application of
this method of connecting two knowledge graphs is
ontology integration [10]. Ontology integration has
been an important research topic in the past few
decades, and it is used for information retrieval and
knowledge extraction from multiple ontologies sources
in many domains [10].
The focus of this paper is on graphs that represent
structured knowledge such as ontology, terminology,
or simply a structure knowledge graph. The method for
connecting two graphs based on shared domain
knowledge is detailed in Section 3 and explained in an
algorithm in section 3.2.

2. Related Work
Graphs are abstraction of real life problems. Graphs
have long been used in many applications to many
fields in computer science, most branches of
engineering, chemistry, telecommunications,
scheduling, transportation, and social systems to name
just a few [2, 3, 4, 8, 10]. A graph G = (V, E) is a pair
where V is a set of objects called nodes, or vertices,
and E a set of edges. Graphs are generally represented
by means of diagrams in which vertices are
represented by small circles or dots, and edges by line
segments. If the graph is directed then the edges are
represented by arrows. The edges of a graph can have
weights that could represent the distance between the
nodes, the time that it takes to traverse that link, the
probability that that link does not fail, or any other
measure relevant to the problem at hand. If the edges
have weights, the graph is said to be a weighted graph
and is represented by a triplet G=(V,E,W) where W is
the weight on the edges.
Many ways of combining graphs to produce new
graphs have been proposed in the literature. The
union, the cartesian product, and the join are just few
examples of graph combinations. Given two graphs
G1=(V1, E1) and G2 =(V2, E2) where V1 and V2 are
distinct, the cartesian product G=G1xG2 is the graph
whose set of vertices is the Cartesian product of V1 and
V2, i.e. V={(u1,u2) such that u1 ∈V1 and u2 ∈V2} and
the set of edges E consists of the edges ((u1, u2) (v1,
v2)) such that u1=v1 and (u2 ,v2) ∈ E2 or, u2=v2 and (u1,
v1) ∈ E1. The join G= G1+ G2 is the graph whose set of
vertices V is the union of V1 and V2 and the set of
edges E is the union of E1, E2 and the set {uv | u ∈ V1
and v ∈ V2}; i.e. besides the edges that are already in
G1 and G2, an edge is added between every node in G1
and every node in G2 [2].
In this paper, we propose a way of combining graphs
that is similar in nature to the join operation [15]. The
set of vertices is obtained in exactly the same fashion,
i.e. V = V1∪V2. The set of edges E differ from that of

the join in the last component only, i.e. E= E1∪ E2 ∪
EC where EC is defined as follows. There is an edge
between vertex x of G1 and vertex y of G2 if x and y
appear in the same tuple of the domain knowledge.
The weight of that edge depends on the number of
tuples that contain such a pair. We call such an edge a
bridge-edge. All the other edges are assigned weight
1. Shortest path problem is the one of the most primary
graph traversal problem and arises in a wide variety of
applications. Transportation and telecommunications,
are just a few examples of such applications [3, 4].
Finding the most reliable path for a communications is
reduced to finding the shortest path. Bellman-Ford and
Dijkstra’s algorithms are two efficient algorithms that
compute single-source shortest paths in a weighted
graph [3]. The distance-vector routing protocol uses a
variant of Bellman Ford algorithm.

3. Connecting Graphs
We would like to connect two graphs representing two
aspects of structured knowledge source in a given
domain. In the general form, a graph consists of nodes
where each node is a term or entity in a domain
knowledge, and the edges depict the relationships, e.g.
is_a, between the nodes. We assume that the graph is a
directed acyclic graph (DAG). Typically, DAGs are
used as a common way of representing knowledge
sources like ontologies. A DAG is a graph that has no
cycles and each edge has a direction. A knowledge
source usually relies on viewing the DAG as a
hierarchical graph with root node, internal nodes, and
leaf nodes. As we go down the graph from the root
towards the leaves, the nodes, or terms, become more
specific and the root is the most general knowledge
term. Two graphs will be connected using domain
knowledge presented as a set of tuples TP ={P1, .., Pn}

3.1 Problem formulation

Given two DAG graphs G1 = (V1, E1) and G2 = (V2,
E2). As stated earlier, we assume that the set of
vertices V1 and V2 are distinct, G1 is connected and so
is G2, and no edges exist between G1 and G2. Each
edge eij has weight 1: W(eij)=1 s.t. eij is an edge in G1
or in G2.
Also given a set TP of n tuples s.t.

TP = {P1, …, Pn}.
Each tuple Pi (i=1, .., n) is a set of terms

Pi={t1,…,tk}
where each term tj is a term (a node) in G1 or in G2.
See Figure 1. Further, each tuple Pi includes terms
(nodes) from both graphs G1 and G2. That is,

Pi={…,tp,….,tq,…}
where tp is a node in G1 whereas tq is a node in G2, or
vice versa.

138

tp tqBrige-edge
epq

G1 G2

Figure 1: A bridge-edge and bridge nodes

ta tf

tgtctb th

td te ti

G1 G2

Figure 2: Four bridge edges between G1 and G2

For each pair of terms (tp, tq) such that tp and tq ϵ Pi (Pi is
some tuple in TP), and tp,tq do not belong to the same
graph: We draw an edge epq to connect node tp and tq
(i.e., connecting graph G1 with graph G2). The edge epq
is called bridge-edge because it has one endpoint in G1
and the other in G2, and the nodes tp and tq are called beq.
That is, the node tp in G1 is also called bpq because it is
part of bridge epq to node tq in graph G2.
Define a b_count(tp, tq) to be the number of tuples in TP
containing both terms tp and tq where tp, tq are not in the
same graph:

b_count(tp, tq) = number of tuples containing
both terms tp and tq………..….(1)

We also define a weight function w(.) for each newly
introduced bridge edge as follows;

w(epq) = b_count(tp, tq)/max(b_count())………..(2)
Thus, from the set TP of n tuples, we create a set of
bridge edges bkl between G1 and G2 and each such
bridge-edge bkl has a weight w(bkl) such that, according
to equation (2):

0 < w(bkl) ≤ 1…………………..(3)

Figure 3: The tuple set for the example
graphs in Figure 2.

These bridge edges can be represented in a table such
that rows are the nodes in G1 and the columns are the
nodes in G2 as in Table 1.
For example, as shown in Table 1, the bridge edge
between node tp in G1 and node tq in G2 is 0.7 while the
weight of the bridge edge between tp+1 and tq+1 is 0.4.
Figure 2 illustrates four bridge edges between two
graphs G1 and G2, namely (tc, tg), (td, tg), (te, th), and (te,
ti). The four bridge edges in Figure 2 are created from
the tuples shown in Figure 3.

3.2 An algorithm for combining graphs

The following algorithm combines two graphs G1 and
G2 according to a given set of tuples.

Algorithm: Combine_two_graphs
Input: 1) Two DAG graphs G1=(V1, E1) and G2 = (E2, V2).

 V1 = {ti | 1 ≤ i ≤ n1}, V2 = {tj | 1 ≤ j ≤ n2 }
2) A set TP of n tuples {T1, .., Tn} s.t. each tuple Ti is

a set of terms: Ti = {t1, .., tk}
3) A threshold tsh: 0 < tsh ≤ 1

Output: A graph Gc=(Vc, Ec): Gc is a graph resulting from
connecting nodes in G1 with nodes in G2

1. Initialize b_count(tp, tq) = 0 for all 1 ≤ p ≤ n1,1 ≤ q ≤ n2;
also initialize Ec = ∅

2. For each tuple Ti={t1, …, tk} do the following:
2.1 For each pair {(tp, tq) | tp,tq∈Ti and tp ∈V1 and

tq ∈V2} set
b_count(tp, tq) = b_count(tp, tq) +1

3. Compute max_bc = max{b_count(tp,tq) } for all tp, tq
4. For each pair (tp, tq) s.t. b_count(tp, tq) > 0, compute

w(epq) = b_count(tp,tq)/max_bc
5. For each pair (tp, tq), if w(tp, tq) ≥ tsh

then Ec = Ec U epq (note: epq is an edge between tp and tq)

else w(tp, tq) = 0
6. Output combined graph Gc = (Vc, Ec) such that

Vc = V1 U V2 and Ec = E1 U E2 U Ec

3.3 Graph exploration and terms relationship

A common technique to explore a graph representing
knowledge source, like ontology or vocabulary, is to
examine the relationships between the nodes in the
graph. The basic way to estimate the relationships

P1 = {tc, tg}
P2 = {tc, td, tg}
P3 = {te, th, ti}
P4 = {ta, tc, te}
P5 = {te, th}

139

between the terms of the knowledge is though path
length as a measure of relationship. Path length as a
relationship measure between the terms in a given
ontology graph has been used extensively in WordNet
and in bioinformatics domains [5, 6, 13, 9, 13, 14]. The
path length between two terms in the same graph is
computed straight forward by edge counting. If there is
more than one path, then the shortest path is taken as
follows:

PL(t1, t2) = the shortest path length (least
number of edges) between

nodes t1 and t2,……………………(4)

where t1 and t2 are two nodes in a single graph (G1 or
G2). If the two nodes belong to two graphs, then each
path between them passes through a bridge edge. Define
a path length between two nodes belonging two graphs as
follows: If ti and tj are not in the same graph then:

PL(ti, tj) = PL(ti, tp) + PL(tj, tq) + 1/w(epq) …..…(5)

where tp is a bridge node in the path from ti to the root,
and similarly tq is a node in the path from tj to the root;
and w(.) is weight function shown in equation (2). This
way we can estimate the relationship between concept or
term ti and term tj belonging to two different graphs.

4. Applications and Case Studies

4.1 Case study: WordNet

WordNet is the most comprehensive lexical database of
the English language. WordNet consists of four
independent tree-like hierarchies for nouns, verbs,
adjectives and adverbs [13]. The nodes represent
concepts, or set of terms called synsets and the edges
represent lexical and semantic relationships between
them. In the two graphs of WordNet shown in Figure 4. If
we are given a tuple set of English words, we can
connect the two graphs via bridges. Then we can
estimate and compute the similarity and relationships
between a noun (e.g. car) and a verb (e.g. drive). We can
use a standard benchmark corpus of words (e.g. Brown
corpus of WSJ corpus) and divide it into chunks of 5
words or 10 words (i.e., window size w=5 or w=10
respectively) and use them as tuples to connect the two
graphs. The Brown corpus is a one million words
benchmark text corpus and has been extensively used in
natural language processing research and it can be used
here to produce tuple sets to connect graphs. For
instance, from the tuple {they, can, build, beautiful,
house} there will be a bridge to be created between the
noun node {house} in the noun sub-graph and the verb
node {build}in the verb sub-graph.

 …. tq tq+1 ….
…
tp 0.7
tp+1 0.4
…

Table 1: weights of bridge edges

4.2 Case study in bioinformatics

The second application example we discuss is in the
bioinformatics domain, specifically using the gene
ontology (GO) [7]. We can explore the functional
relationship between two genes given their gene
ontology annotation terms (GOA terms) from the
molecular function and biological process graphs
combined [1, 6, 12]. Gene ontology is a structured
vocabulary of gene functions and related information
at the molecular level, biological process and cellular
localization. GO, therefore, is composed of three
orthogonal sub-ontologies: molecular function (MF),
biological process (BP), and cellular component (CC).
It is the main source of information about gene
functions, processes, and localizations. GO have been
studied and investigated for long time, and very
extensively, for computing gene similarity and
relationships among gene products in various
organisms [10, 11, 12]. Moreover, most of the
approaches for discovering new gene functions and
identifying gene disease associations are also based on
GO. However, there has not been any work that
explores the functional relationships between gene
products in terms of their MF and BP annotation terms
combined. Figure 5 illustrates small parts of the MF
and BP graphs of GO. If we use the gene ontology
annotation (GOA) database of one genome as tuple set
(shared knowledge), then we can introduce a large
number of bridge edges between these two graphs. Of
course, the GOA database represents a verified domain
knowledge and so the bridge edges are valid
information augmented into the graphs. The GOA
database, for the human genome for example, contains
the GO annotation terms for each gene from the MF,
BP, and CC components. Table 2 contains the GOA
terms of four genes from the MF and BP sub-
ontologies. Thus with the GOA database we can
connect MF and BP nodes which will enable to
compute the functional similarity, using path length,
between two genes or two GO terms within the MF
and BP space. Currently all the projects and techniques
for estimating the functional similarity and
relationships between genes, GO terms, gene-diseases,
are based on either MF or BP but not combined [10,
11, 12, 14]. To the best of our knowledge, we have not
seen any work that combines MF and BP to compute
similarity is such a comprehensive way.

140

car drive

G1: nouns G2: verbs

Figure 4: Simplified illustration of two graphs of WordNet: nouns and verbs.

5. Conclusion
We presented a method for combining multiple graphs
via bridge-edges using shared domain knowledge. The
method is useful is cases when each graph represents
one aspect of some domain knowledge. Connecting
two graphs can enable more comprehensive viewing,
exploring, and understanding of the knowledge with its
both aspects. The external knowledge is represented as
a set of tuples to allow for determining bridge nodes
and for creating bridge-edges between the graphs. We
have discussed two application domains for the
proposed algorithm. To the best of our knowledge, this
is the first attempt for such a work that enable
exploring multiple knowledge graphs by connecting
the graphs using meaningful relations derived from
domain knowledge.

References

1) J.J. Goeman and U. Mansmann, Multiple Testing
on the Directed Acyclic Graph of Gene
Ontology. Bioinformatics 2008, 24(4):537-544.

2) G. Chartrand; and L. Lesniak, Graphs and Digraps,
4th Edition, 2004, CRC press.

3) T.H. Cormen, C.E. Leiserson, R. L. Rivest and C.L.
Stein, Introduction to Algorithms,3rd Edition,
2009, MIT Press.

4) R. K. Ahuja, T.L. Magnanti, J. B. Orlin. Network
Flows. Prentice Hall, 1993.

5) T. Pedersen, S. Patwardhan, and J. Michelizzi,
WordNet::Similaritymeasuring the relatedness of
concepts, presented at the 19th Nat. Conf. Artif.
Intell. (AAAI-04), San Jose, CA, 2004.

6) H. Al-Mubaid and Hoa A. Nguyen. Measuring
Semantic Similarity between Concepts within
Multiple Ontologies in the Biomedical Domain.
IEEE Trans. SMC-C, Vol.39, No.4, pp. 389-398,
July 2009.

7) The Gene Ontology: www.geneontology.org
8) R. Ambauen, S. Fischer and Horst Bunke. Graph

Edit Distance with Node Splitting and Merging,
and Its Application to Diatom Identification. In
Graph Based Representations in Pattern
Recognition, Lecture Notes in Computer
Science, 2003, Volume 2726, 2003.

9) K. M. Sim and P. T. Wong. Toward Agency and
Ontology for Web-Based Information Retrieval.
IEEE Transactions SMC, vol.34, no.3,2004.

10) Vaida Jakoniene and Patrick Lambrix. Ontology-
based integration for bioinformatics. Proc of
31st VLDB Conf, Trondheim, Norway, 2005.

11) Robinson PN, Mundlos S. The Human Phenotype
Ontology. Clinical Genetics, 2010: 77: 525–534.

12) H. Al-Mubaid and A. Nagar, A New Path Length
Measure Based on GO for Gene Similarity with
Evaluation Using SGD Pathways, IEEE CBMS-
2008.

13) G. A. Miller, WordNet: A lexical database for
English, Commun. ACM, vol. 38, pp. 39–41,
1995.

14) R. Rada, H. Mili, E. Bichnell, and M. Blettner,
Development and application of a metric on
semantic nets, IEEE Trans. Syst., Man, Cybern.,
vol. 9, no. 1, pp. 17–30, Jan./Feb. 1989.

15) G. Ganapathy and R. Lourdusamy. Matching and
Merging of Ontologies Using Conceptual
Graphs. Proc. of the World Congress on
Engineering WCE 2011, July, 2011, London,
UK.

16) L. Humphreys, D. Lindberg, H. Schoolman, and
G. Barnett. The Unified Medical Language
System: Informatics Research Collaboration. J. of
the Ameri Medical Informatics Association, 1(5),
1998.

141

http://cbms2008.it.jyu.fi/
http://cbms2008.it.jyu.fi/

Figure 5: Illustration of parts of the BP and MF aspects of the gene ontology.

Gene id GO annotation
BP terms MF terms

AAC1
GO:0006783, GO:0006810,
GO:0006839, GO:0009060
GO:0015886, GO:0055085

GO:0005488,
GO:0005215
GO:0005471

AAC3
GO:0006783, GO:0006810
GO:0009061, GO:0015886

GO:0055085

GO:0005488,
GO:0005215
GO:0005471

ROD1 GO:0042493, GO:0070086 GO:0031625

SNM1 GO:0006379, GO:0006364

GO:0003723,
GO:0000171
GO:0016787,
GO:0004518

Table 2: Example of GOA data for four genes.

142

