
Chapter 11 1

LEARNING TO FIND CONTEXT
BASED SPELLING ERRORS

Hisham Al-Mubaid∗, Klaus Truemper∗∗
∗ University of Houston - Clear Lake
Department of Computer Science
email: hisham@cl.uh.edu
∗∗ Department of Computer Science

University of Texas at Dallas

Richardson, TX 75083-0688, U.S.A.

Email: truemper@utdallas.edu

Abstract A context-based spelling error is a spelling or typing error that turns
an intended word into another word of the language. For example,
the intended word “sight” might become the word “site.” A spell
checker cannot identify such an error. In the English language—
the case of interest here—a syntax checker may also fail to catch
such an error since, among other reasons, the parts-of-speech of an
erroneous word may permit an acceptable parsing. This chapter
presents an effective method called Ltest for identifying the major-
ity of context-based spelling errors. Ltest learns from prior, correct
text how context-based spelling errors may manifest themselves, by
purposely introducing such errors and analyzing the resulting text
using a data mining algorithm. The output of this learning step con-
sists of a collection of logic formulas that in some sense represent
knowledge about possible context-based spelling errors. When, sub-
sequently, testing text is examined for context-based spelling errors,
the logic formulas and a portion of the prior text are used to analyze
the case at hand and to pinpoint likely errors. Ltest has been added
to an existing software system for spell and syntax checking. We have
conducted tests involving mathematical, technical, and general texts.
On the average, Ltest found 68% of context-based spelling errors in
large texts and 87% of such errors in small texts. These detection
rates are relative to words for which training was possible using the
prior text. On the other hand, the number of false-positive diagnoses
was small, involving on average 23 word instances (= 0.7% of the
possible error instances) of a large text and 1 word instance (= 8%
of the possible error instances) of a small text.
These statistics indicate that the method is effective for the recog-
nition of the majority of context-based spelling errors considered in
the experimental tests.

Keywords Semantics of natural language, algorithms, learning typing/spelling

errors, Representation of word context, data mining, learning logic.

1Triantaphillou, E. and G. Felici (Eds.), Data Mining and Knowledge Discov-
ery Approaches based on Rule Induction Techniques, Massive Computing Series,
Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. ???-???, 2004.

1.



2. Data Mining & Knowledge Discovery Based on Rule Induction

1. INTRODUCTION

Finding a spelling or typing error is easy if the erroneous word is not part of
the language, since then a spell checker can point out such a non-word error.
The detection problem is harder if the erroneous word is part of the language.
An example is the misspelling of the intended word “sight” as “site.” Such
an error can be detected by examining the context of the word. Accordingly,
it has been called a context-based spelling error (Golding (1995), Golding and
Roth (1996, 1999), Golding and Schabes (1996)).

It is convenient that throughout most of the chapter we make the following
two assumptions. First, we assume that the event of a context-based spelling
error is relatively rare, and that the user is unlikely to make the same mistake
several times in the same document. For example, if the user misspells “sight”
as “site,” then this error is assumed to be due to a momentary lapse and
not due to user ignorance regarding the spelling of “sight.” Second, we
assume that, for any erroneous word instance introduced by a context-based
spelling error, the text also contains an instance of the correct word. The
two assumptions are mostly but not always satisfied. For example, a person
may confuse some words and make some errors repeatedly. For example,
such confusion could exist about “its” versus “it’s” or “complement” versus
“compliment.” As a second example, a word may occur just once in a text,
and that single occurrence may be mistyped or misspelled. Toward the end
of the chapter, in Sections 4 and 5, we describe extensions of the method that
do not require the two assumptions.

In contrast to spell checkers, a syntax checker may possibly detect a context-
based spelling error. However, there is no guarantee of such detection, since,
among other reasons, the parts-of-speech of the erroneous word may permit
an acceptable parsing of the sentence. For example, if “site” displaces “sight”
in the sentence “It was a beautiful sight,” then the resulting sentence “It was
a beautiful site” has an acceptable parsing. Indeed, the latter sentence is
meaningful and by itself gives no clue that the word “site” is out of place.
Here are a few additional examples of intended and erroneous words: bay–pay,
fair–fare, for–four, its–it’s, lead–led, quiet–quite, them–then, there–three.

Error detection by a syntax checker likely is difficult if the text contains
many special terms, symbols, formulas, or conventions whose syntactic con-
tribution cannot be established without a complete understanding of the text;
examples are mathematical TEX or LATEX texts. For such texts, as well as
for texts that do not contain such complicating aspects, this chapter offers
an effective technique for identifying the majority of context-based spelling
errors without the need to fully understand the text. The main results are
as follows.

(1) A new way of encoding, for a given occurrence of a word w, the structure
of the neighborhood of the occurrence and the connection with other
occurrences of w and their neighborhoods. The encoding uses the text
under investigation as well as a second text that acts as a reference text.



Data Mining & Knowledge Discovery Based on Rule Induction 3.

(2) A new way of learning from prior, correct text how context-based spelling
errors can be recognized. This step uses the encoding of (1) and an
existing data mining algorithm. It produces a set of logic formulas that
contain insight into context-based spelling errors.

(3) A new way of employing the logic formulas of (2) to identify likely
context-based spelling errors in testing texts. The scheme accepts both
small and large testing texts, and it handles unusual cases such as erro-
neous words never seen in the learning phase.

The method is called Ltest (Logic test) as it uses logic formulas to test for
errors. Ltest has been added to an existing spell and syntax checking system.
We have conducted tests involving mathematical book chapters typeset in
TEX, technical papers typeset in LATEX, and newspaper texts in two subject
areas. For the learning step we randomly selected prior texts from the given
domain. These texts averaged 30,012 word instances. The testing texts
consisted of some large texts averaging 7,138 word instances and some small
texts averaging 105 word instances. The latter texts were introduced to see
if the method can find context-based spelling errors when a testing text does
not provide much insight into the usage pattern of words. Although the
average prior text had about four times the size of the average large testing
text, roughly half the word usage in the testing texts was not sufficiently
represented in the prior texts to allow learning of such usage and subsequent
error checking. Such representation does not require much: If Ltest is to
learn the difference between a given word and a given erroneous word, then
both words must occur at least three times in both the training text and the
history text, which Ltest obtains by splitting the prior text. Though this
requirement is mild, for the average large text just 3,162 possible error cases
out of a total of 7,360 possible error cases, or 43%, could be tested. For the
average small text, 12 possible error cases out of a total of 28 possible error
cases, or 43%, could be tested. It is shown later that these percentages can
be boosted close to 100% by a suitable augmentation of the training text
and the history text. We did not carry out such augmentation for the tests
since such a change might have introduced a bias. Instead, we evaluated the
performance of Ltest on the possible error cases for which the prior texts
had allowed learning. We introduced such errors randomly into the testing
texts. On average, Ltest detected 68% of these errors in large texts and 87%
in small texts. The testing texts with the errors were also checked by the
syntax checker of the system, in a separate step. The syntax checker, by
itself, performed poorly, finding only 12% of the errors in large texts and 4%
in small texts. Combined use of Ltest and the syntax checker—which is the
way the entire process has been implemented—boosted the detection rate for
large texts to 72%, but did not improve the rate of 87% for small texts. The
difference in performance between samll and large texts is due to two factors:
– large texts normally involve numerous special terms, symbols, formulas, and
conventions that make error detection more complicated than small texts, –



4. Data Mining & Knowledge Discovery Based on Rule Induction

small testing texts are examined by the classifiers that are created for large
testing texts, so classifiers perform better on the small texts.

Define a diagnosis to be false-positive if the method estimates a correct
word instance to be in error. Clearly, user acceptance of the method requires
that at most a few false-positive diagnoses are made. This requirement was
satisfied in the test cases, since false-positive diagnoses occurred on average
for 23 word instances, or 0.7% of the 3,162 tested instances of a large text,
and for 1 word instance of a small text. The 1 false-positive diagnosis for the
average small testing text represents 8% of the tested instances, which is high
but not important since the number of such cases, which is 1, is small. We ran
another experiment on the method using texts for which the two leading prior
methods, which are BaySpell (Golding (1995)) and WinSpell (Golding and
Roth (1999)), had produced results. In the experiment, Ltest outperformed
both methods by classifying 95.6% of the considered word instances correctly.
BaySpell and WinSpell achieved 89.9% and 93.5% accuracy, respectively.
Testing time is very low in these experiments: in the order of 2 minutes for
large texts, and in order of 10 seconds for small texts, more details in Section
4 and in tables 3 and 6.

Taken together, the high detection rates and the low number of false-
positive diagnoses for both large and small texts make the method an effective
tool.

The rest of the chapter proceeds as follows. Section 2 discusses previous
work. Section 3 describes the method. Section 4 discusses the implementation
of the method and the computational results. Section 5 outlines extensions.
Section 6 summarizes the main points of the chapter. Appendices A to D
contain technical details of some of the steps.

2. PREVIOUS WORK

A number of methods have been developed for the detection of context-based
spelling errors. The research up to 1992 is covered in the survey by Kukich
(1992). The methods proposed since then use a Bayesian approach (Golding
(1995)) that may be combined with part-of-speech trigrams (Golding and
Schabes (1996)), transformation-based learning (Mangu and Brill (1997)),
latent semantic analysis (Jones and Martin (1997)), differential grammars
(Powers (1997)), lexical chains (St-Onge (1995), Hirst and St-Onge (1995),
Budanitsky (1999), Budanitsky and Hirst (2001)), and Winnow-based tech-
niques (Golding and Roth (1996, 1999), Roth (1998)). The two leading prior
methods are the statistics-based BaySpell (Golding (1995)) and the Winnow-
based WinSpell (Golding and Roth (1999)).

The Bayesian method (Golding (1995)) handles context-based spelling cor-
rection as a problem of ambiguity resolution. The ambiguity is modeled by
confusion sets. The Bayesian method uses decision lists to choose the proper
word from the confusion set. It also relies on classifiers for two types of
features: context-words and collocations. The method learns these features



Data Mining & Knowledge Discovery Based on Rule Induction 5.

from a training corpus of correct text. The testing process starts with a
list of features sorted by decreasing strength and traverses the entire list to
combine evidences from all matching features in a given context and target
word. In the experiment reported in Golding (1995), 18 confusion sets are
used. The performance ranges from 45% to 98% with an average of 82%
of the words classified correctly. Golding uses 1-Million-Word Brown corpus
and the 3/4-Million-Word corpus of the Wall Street Journal.

The Winnow approach of Golding and Roth (1996) uses a multiplicative
weight update algorithm that achieves a good accuracy and handles a large
number of features. The method learns large set of features with the cor-
responding weight. The method performs better than Bayesian. The mul-
tiplicative weight update algorithm represents the members of a confusion
set as clouds of simple nodes corresponding to context words and collocation
features. Winnow requires confusion sets to be known in advance. In the
training phase, a feature extractor learns a set of features and produces a
huge list of all features in the training text. Statistics of occurrence of fea-
tures are also collected. Pruning is applied to eliminate unreliable features.
The algorithm has been applied to 21 confusion sets taken from the list of
“Words commonly confused” in the back of the Random House dictionary
(Flexner (1983)).

3. DETAILS OF Ltest

For a given domain of texts, Ltest carries out two steps called the learning
step and the testing step. In the learning step, Ltest learns from prior text
that is known to be error-free how context-based spelling errors may manifest
themselves. Ltest splits the prior text into a training text and a history text.
We cover the splitting process in a moment.

The idea of training text and history text is based on the following intuitive
idea. Suppose we are not experts in some field, say in law. We are given
some correct legal document to read. As we scan the text, we may not really
understand the sense in which some words are used. But we can learn how
words are used in connection with other words. Next, we are given another
legal document and are asked to check it for errors. Strictly speaking, we
cannot do so since we are not experts. But we can read the second text and
see whether some words are used out of context, relative to the word usage
in the first text.

In terms of this intuitive discussion, let us view the history text as the first
document and the training text as the second one. The reader may object
to the latter choice since the training text is correct, as is, of course, the
history text. But that changes now. We introduce errors into the training
text, one at a time, and try to see how we could locate that error using both
the training text and the history text. Using data mining, we compress that
knowledge about finding errors into logic formulas. Later, when a new text
that is not known to be correct is tested for errors, we analyze that new text



6. Data Mining & Knowledge Discovery Based on Rule Induction

using these logic formulas. At that time, the new text plays the role of the
training text, while the history text plays the same role as before.

Throughout this section, w is a word that by a typical spelling or typing
error may become another word, which we denote by v. We call the correct
word w the intended word, while any incorrect v that is produced instead of
w by a typical spelling or typing error, is an error word for w. We collect
the error words v for a given intended word w in the confusion set for w.
For example, if the intended word w is there, then the possible error words
v for w are three and their, and hence {three, their} is the confusion set for
there.

We call the possible alteration of w to v a substitution and denote it by
v←w. The substitutions linking the just-mentioned correct there and the er-
ror words their and three are three←there and their←there. Other example
substitutions are must←just and its←it’s. To streamline the presentation,
we skip here details of the construction of the substitutions. Those details
are covered in Appendix A.

We employ the notation vi to represent the ith instance of the word v in
the given text. In connection with a given substitution v←w, we use the
adjectives good and bad in the obvious way. For example, if an instance vi

of v in a text was intended to be an instance wj of w, then we say that the
instance vi is bad and that the instance wj is good.

Next we discuss the learning step.

3.1 Learning Step

First, Ltest splits the prior text into a training text and a history text
by assigning each sentence of the prior text to one of the two texts. The
assignment is done by a heuristic method described in Appendix B. The
method has the goal that, for each substitution v←w for which both v and w
occur in the prior text, the training text and the history text contain about
the same number of instances of v as well as w. Of course, that goal may not
be reached for a particular v and w, due to the way these words may occur
in the sentences of the prior text. But according to experiments, the method
typically gets close to that goal.

With the training text and history text at hand, the learning step carries
out the following process for each substitution v←w. For each instance vi

of v in the training text, a characteristic vector is computed. The vector
has a total of 18 ±1 entries. The entries relate the words, parts-of-speech of
words, punctuation marks, and special symbols near a given instance vi in
the training text to the words, parts-of-speech of words, punctuation marks,
and special symbols near other instances vj of v in either the training text
or the history text. In terms of the earlier, intuitive discussion, the entries of
the characteristic vector record the usage of the word v in the context of the
training text and the history text.

For example, suppose that the instance vi of v is preceded by two words
p1 and p2, say in the sequence p2 p1 vi. If some other instance vj of v in



Data Mining & Knowledge Discovery Based on Rule Induction 7.

the training text is preceded by the same two words, in the same sequence,
that is, p2 p1 vj , then the 4th entry of the characteristic vector is +1. If
no such sequence p2 p1 vj exists in the training text, then the 4th entry is
−1. Analogously, if the history text contains a sequence p2 p1 vj , then the
13th entry of the characteristic vector is +1. If no such sequence exists in
the history text, then that entry is −1. To unclutter the presentation, we
omit here a detailed discussion of the remaining entries of the characteristic
vector. Details are included in Appendix C.

The reader may wonder why we do not use 0 instead of −1 to record
absence of the sequence p2 p1 vj . The reason is the encoding convention of
the data mining tool Lsquare introduced shortly. That tool interprets +1 to
mean that a certain fact, say X, holds, −1 to mean that fact X does not
hold, and 0 to mean that it is unknown whether fact X holds, Felici and
Truemper (2002).

Suppose the characteristic vectors for each instance vi of v have been com-
puted. Then, for each instance wj of w in the training text, wj is replaced
temporarily by an instance vr of v, and a characteristic vector for that vr is
computed. Consistent with the earlier use of the terms good and bad, we are
justified to call each vi good and each vr bad.

At this point, we have two classes of characteristic vectors. The first class
consists of the vectors representing features of the good occurrences of v. Let
us call this class G(v). The second class consists of the vectors representing
features of the bad occurrences of v generated from the occurrences of w
in the text. Let us call the second class Bv←w(v). The subscript v←w in
the notation Bv←w(v) is needed since the second class is the set of vectors
of bad occurrences of v generated from occurrences of w according to the
substitution v←w.

With the two classes G(v) and Bv←w(v) at hand, the learning step uses the
data mining algorithm Lsquare to compute a set of logic formulas Lv←w(v)
that correctly classify each characteristic vector as being in one of the two
classes G(v) or Bv←w(v). Details of Lsquare are given in the chapter “Learn-
ing Logic Formulas and Related Error Distributions” included in this volume.
Thus, we only sketch here the features of Lsquare needed for the situation at
hand.

Lsquare accepts as input two sets A and B of {0,±1} vectors, all having
the same length, say n. An entry +1 means that a certain fact, say X, is
known to hold, −1 means that fact X is known not to hold, and 0 means that
it is unknown whether fact X holds. For the cases considered in this chapter,
the vectors are the above defined characteristic vectors, and thus do not
contain any 0s and are {±1} vectors. Lsquare outputs a set of 20 disjunctive
normal form (DNF) logic formulas and 20 conjunctive normal form (CNF)
logic formulas, each of which uses some subset of logic variables y1, y2, . . . ,
yn. To classify an arbitrary {±1} vector x of length n, Lsquare first assigns
True/False values to y1, y2, . . . , yn according to the rule yi = True if xi = 1
and yi = False if xi = −1. The True/False values are used to evaluate



8. Data Mining & Knowledge Discovery Based on Rule Induction

each of the 20 DNF and 20 CNF formulas. If a formula evaluates to True
(resp. False), then we say that the formula produces a vote of 1 (resp. −1).
Summing up the 40 votes produced by the 40 logic formulas, we get a vote-
total that is even and may range from −40 to 40. Lsquare guarantees that,
for each vector x of A (resp. B), the vote-total is positive (resp. negative).
When A and B are randomly drawn from two populations A and B, then
a vote-total for a record of A ∪ B close to 40 means that the vector is in
A with high probability and thus is in B with very low probability. As the
vote-total decreases from +40 and eventually reaches −40, the probability of
membership in A decreases while that of membership in B increases.

We interrupt the discussion of the training step for a moment and sketch
how the constructed logic formulas Lv←w(v) are used in the testing step.
Suppose we have a testing text with instances of v and w. We want to know
whether, relative to the substitution v←w, an instance vk of v is good or
bad. We compute, for that instance, a characteristic vector t(vk) using the
testing/history texts instead of the training/history texts, and apply to that
vector the set of logic formulas of Lv←w(v). Suppose the vote-total exceeds
an appropriately selected threshold. We then estimate the vector t(vk) to be
in the class G(v), which plays the role of A in the above discussion about
Lsquare. Thus, we have evidence that the instance vk may be good. On the
other hand, if the vector t(vk) is declared to be in the class Bv←w(v), then
this is evidence that the instance vk may be bad.

We continue the discussion of the training step. So far, we have learned to
differentiate between good and bad instances of v relative to the substitution
v←w. Next, the learning step trains how to classify the other word of the
substitution, w, as good or bad. Analogously to the case of v, the training
step constructs two classes of vectors for w. The first class, G(w), contains
one vector for each good occurrence of w in the training text. The second
class, Bv←w(w), includes one vector for each bad occurrence of w generated
from one occurrence of v in the training text. Once more, we use Lsquare
to determine a set of 40 logic formulas Lv←w(w) that, using vote-totals,
correctly assign the vectors to their sets G(w) and Bv←w(w). One may
employ Lv←w(w) for testing a text that contains both v and w, as follows.
Take an instance vk of v in the text. To see whether vk was intended to
be a w, temporarily replace vk by an instance of w; let that instance be wq.
Compute a characteristic vector fv←w(wq) for wq, and apply Lv←w(w) to the
vector fv←w(wq). If fv←w(wq) is declared to be in G(w) (resp. Bv←w(w))
according to some appropriately selected threshold, then we have evidence
that wq likely is good (resp. bad) and thus vk likely is bad (resp. good).

Here is an example, for the substitution there←three. We assume that the
training text contains instances of there and instances of three. The learning
step builds four classes of characteristic vectors: G(there), Bthere←three(there),
G(three), and Bthere←three(three). Using the first two classes, Lsquare cre-
ates the set of logic formulas Lthere←three(there). This set is used to classify
new vectors of there into the set G(there) or Bthere←three(there). Using the



Data Mining & Knowledge Discovery Based on Rule Induction 9.

next two classes, namely G(three) and Bthere←three(three), Lsquare builds
the set of logic formulas Lthere←three(three). The latter set is used to classify
vectors of three into the set G(three) or Bthere←three(three). Note that the
class G(there) consists of the vectors of the good occurrences of there, while
the class Bthere←three(there) consists of the vectors of the bad occurrences
of there generated from the occurrences of three.

The above discussion several times explicitly or implicitly refers to appro-
priately selected thresholds for various vote totals. The computation of these
thresholds is part of the testing step, which we cover next.

3.2 Testing Step

We assume that the testing text has been processed by a spell checker and
that, therefore, it does not contain any illegal words. For each word v of
the text, we find all possible words w that by misspelling or mistyping may
become v. That is, we construct the confusion set for v. We process each
substitution v←w so determined as follows. If the text does not contain w,
we cannot test the instances vk with respect to the substitution v←w. So
assume that at least one instance of w is present. The processing depends
on how often v occurs in the testing text. Declare the case to be regular if v
occurs at least twice in the testing text, and define it to be special otherwise.
We first treat the regular case.

3.2.1 Testing regular cases
If we do not have both sets Lv←w(v) and Lv←w(w) of logic formulas, then

the learning step did not provide sufficient insight into the relationship be-
tween v and w. Accordingly, we ignore each instance vk of v in the testing
text with respect to the substitution v←w. We call each such ignored vk

instance relative to v←w a discarded v(v←w) instance.
Now suppose that both Lv←w(v) and Lv←w(w) are available. For each

instance vk of v in the testing text, we construct a characteristic vector t(vk)
from the testing/history texts. For each instance wl of w in the testing
text, we replace wl temporarily by vp and construct a characteristic vector
fv←w(vp). We handle each instance wl of w in the testing text analogously
to vk. Thus, for each wl, we construct a characteristic vector t(wl). For
each vk of the testing text, we replace vk temporarily by wq and construct
a characteristic vector fv←w(wq). At this point, we have the characteristic
vectors t(vk), fv←w(vp), t(wl), and fv←w(wq).

Let us assume that among the instances vk in the testing text there is at
most one in error. We make the corresponding assumption for w. Given
these assumptions, we expect that, for all vectors t(vk) except at most one,
the vote-total r(t(vk), Lv←w(v)) produced by Lv←w(v) is positive. Corre-
spondingly, we expect that, for all vectors fv←w(vp) except at most one,
the vote-total s(fv←w(vp), Lv←w(v)) computed via Lv←w(v) to be negative.
Thus, we expect that there is a threshold value αv←w(v) such that almost
all, if not all, vote-totals for the vectors t(vk) are greater than αv←w(v), and



10. Data Mining & Knowledge Discovery Based on Rule Induction

such that almost all, if not all, vote-totals for vectors fv←w(vp) are less than
αv←w(v).

We calculate an odd-valued threshold αv←w(v) using the above consid-
erations; the details of the computations are given in Appendix D. Given
αv←w(v), we estimate an instance vk of the testing text to be bad if its
vote-total is less than the threshold, i.e.,
r(t(vk), Lv←w(v)) < αv←w(v) and estimate vk to be good otherwise. In the
former case, the difference d1(vk) between the vote-total of t(vk) and the
threshold is a reasonable measure of the likelihood that vk is bad. That is, a
large difference corresponds to a high likelihood.

We utilize Lv←w(w) in analogous fashion. Each instance vk is temporar-
ily replaced by an instance wq of the word w, and we get the vote-total
s(fv←w(wq), Lv←w(w)) for the characteristic vector fv←w(wq) of the gener-
ated wq. The vote-total is computed by Lv←w(w). If the vote-total is above
the threshold αv←w(w), then the generated occurrence wq likely is good, the
instance vk is estimated to be bad, and the difference d2(vk) between the
vote-total and the threshold is a measure of the likelihood that vk is bad.
If the vote-total is less than the threshold, then the generated occurrence
wq likely is bad, and thus the instance vk is estimated to be good. Notice
that the threshold αv←w(w) is computed analogously to αv←w(v) described
above.

The tests involving the two thresholds may produce agreeing or conflicting
estimates for a given instance vk. If at least one of the two tests estimates
vk to be good, then we estimate vk to be good. On the other hand, if both
tests estimate vk to be bad, then we estimate vk to be bad and take the
sum ds(vk) of d1(vk) and d2(vk) to be a measure of the likelihood that the
estimate of vk being bad is indeed correct. Accordingly, we sort all such
bad instances vk using their ds(vk) values. The vk with the largest ds(vk) is
the most likely one to be bad. In the implementation of the method, that
instance vk is posed to the user as a questionable word. If the user declares
vk to be correct, we assume that the other instances of v that we estimated
to be bad, are actually good as well. On the other hand, if the user agrees
that the vk with largest ds(vk) is indeed bad, then we pose to the user the
case of the vk with the second largest ds(vk) as potentially bad and apply
the above rule recursively.

3.2.2 Testing special cases
We have completed the discussion of the regular case where each of v and

w occurs at least twice in the testing text. Now, we discuss two special cases
where v occurs exactly once in the testing text. Since v occurs just once,
it may well be that this instance of v is bad. Hence, this situation calls for
careful analysis. Here are the two cases.

Case (1) The word v occurs exactly once but w occurs at least twice in
the testing text: We construct for each instance wl the characteristic vec-
tor t(wl), apply Lv←w(w), and get the vote-total r(t(wl), Lv←w(w)). Next,



Data Mining & Knowledge Discovery Based on Rule Induction 11.

we temporarily replace the single vk by wq, construct the characteristic vector
fv←w(wq), and apply Lv←w(w). If the resulting vote-total s(fv←w(wq), Lv←w(w))
for the generated wq is greater than the smallest of the r(t(wl), Lv←w(w)),
then we estimate the wq that replaced vk to be good and thus estimate vk to
be bad; otherwise, we estimate vk to be good.

Case (2) The word v occurs exactly once and w occurs only once in the
testing text: We would like to construct a characteristic vector t(vk) for vk

as in the regular case, apply Lv←w(v), and make a decision based on the
vote-total. However, the rules for construction of t(vk) demand that vk oc-
curs at least twice in the testing text, which does not hold here. Hence, t(vk)
cannot be computed. We overcome this difficulty by a seemingly inappro-
priate step where the testing text is for the moment replaced by the history
text appended by vk and its neighborhood of the testing text. That tem-
porary substitution allows computation of t(vk), since existence of Lv←w(v)
implies that v occurs at least three times in the history text. We apply
Lv←w(v) to the vector t(vk), get a vote-total r(t(vk), Lv←w(v)), and esti-
mate vk to be good or bad using a threshold of αv←w(v) = −19. That is,
if r(t(vk), Lv←w(v)) < −19, then vk is estimated to be bad. Otherwise, it is
estimated to be good. The threshold choice is driven by the consideration
that vote-totals below −19 almost always show vk to be bad.

3.2.3 An example
Let us discuss an example where the word there is examined in a given

testing text. First, Ltest constructs the set of confusion words for there.
Let that set be {three, their}. Thus, we have two substitutions involving
there: there←three and there←their. Each occurrence of there is examined
twice. Once, there is examined relative to the substitution there←three. The
second time, there is examined relative to the substitution there←their. Let
us discuss the first case. When there is examined relative to the substitution
there←three, each occurrence therek of there in the testing text is tested
twice as follows:
(i) Compute the vector for therek. Based on the testing technique described
above, the occurrence therek is estimated to be good or bad.
(ii) Replace therek by an occurrence threeq of the word three, and construct
a vector for that generated occurrence threeq. Then threeq can be classified
as good (resp. bad), and thus the occurrence therek is estimated as bad
(resp. good). If the two tests (i) and (ii) estimate therek as bad, then the
occurrence therek is declared bad; otherwise therek is declared good.

Declare each instance of v that in the testing step is ignored relative to a
substitution v←w to be a discarded v(v←w) instance. If an instance of v is
not discarded relative to a substitution v←w, declare it to be a tested v(v←w)
instance. By these definitions, an instance of v may be discarded relative to
a substitution v←w and may be tested relative to another substitution v←z.

Let Nd (resp. Nt) be the total number of discarded (resp. tested) v(v←w)
instances encountered in all iterations through the testing step. If the ratio



12. Data Mining & Knowledge Discovery Based on Rule Induction

Nt/(Nd + Nt) is close to 1, then the learning step has produced most of the
logic formulas needed for checking the given testing text. On the other hand,
a ratio close to 0 implies that the learning step has produced few of the logic
formulas that are relevant for the testing text. For this reason, we call the
ratio Nt/(Nd + Nt) the relevance ratio of the given prior text and the given
testing text. Section 5 shows that relevance ratios close to 1 can be achieved
by a suitable augmentation of the given training and history texts.

4. IMPLEMENTATION AND COMPUTATIONAL
RESULTS

The learning step and the testing step of Ltest have been added to an ex-
isting software system for spell and syntax checking called Laempel. In this
section, we review that system, describe how the method has been inserted,
and report computational results that include a comparison with the prior
methods BaySpell and WinSpell.

The spell checker of Laempel is described in Zhao and Truemper (1999).
The key feature setting it apart from other spell checkers is the high proba-
bility with which Laempel suggests correct replacement words for misspelled
words (96% for the top-ranked replacement word) and recognizes correct
words that are not in the dictionary, as correct (82%). Laempel achieves
this performance by learning user behavior and using that insight to make
decisions.

The syntax checker of Laempel is covered in Zhao (1996). It consists of
three steps. In the first step, the given text is cleaned up by a screening
process. In the second step, two logic modules check the cleaned text for
local syntactic errors. A total of 27 different cases are considered. The third
step is applied to each sentence that does not contain any local syntactic
errors. A reasoning process involving 18 logic modules analyzes each such
sentence for global syntactic errors. If no such error is determined, the process
attempts to parse the sentence. We say “attempts” since the process gives
up on parsing if the sentence is so complex that the 18 logic modules become
bogged down in the parsing process. In tests, the percentage of sentences
that were parsed by the syntax checker ranged from 100% for simple texts
and 76% for a mathematical text to 61% for a TV network news text. For the
sentences that have been parsed, Laempel records for each word the assigned
part-of-speech. That information is utilized later to estimate whether a given
word has a dominant part-of-speech.

We are ready to discuss the implementation of the learning step of Ltest.
Recall that the learning algorithm splits the prior text into a training text
and a history text, and then deduces from these two texts a collection of
logic formulas. Prior to the computation of the formulas, Laempel carries
out spell checking and syntax checking for the two texts and asks the user to
make corrections as needed. The learning algorithm processes the corrected



Data Mining & Knowledge Discovery Based on Rule Induction 13.

texts to obtain the collection of logic formulas.
We turn to the implementation of the testing step of Ltest. Let a test-

ing text be given. Laempel first checks the text for spelling and syntax er-
rors. Once the user has made appropriate corrections, the testing algorithm
searches the text for context-based spelling errors. Whenever the algorithm
has produced a list of likely errors for a substitution v←w, Laempel poses
the top-ranked instance of the list to the user as possibly in error. If the user
declares the instance to be correct, Laempel assumes that all other instances
of the list are correct as well. On the other hand, if the user declares the
instance to be in error, Laempel records that fact, removes the instance from
the list, and applies the above rule recursively; that is, Laempel poses the
currently top-ranked instance to the user as possibly being in error, and so
on. Once a testing text has been checked for context-based spelling errors,
Laempel records all sentences that do not contain any error acknowledged by
the user. When the text is processed again after changes by the user, those
sentences are presumed to be correct, and checking focuses on modified or
new sentences. This rule reduces subsequent processing times of the testing
file.

We have evaluated the performance of Ltest. The texts consisted of math-
ematical book chapters formulated in TEX, technical papers in LATEX, and
newspaper texts covering health and politics. Table 1 tells the number of
words, the number of word instances of the texts, and the classification as
training, history, or testing text. Note that the first group of texts consisting
of texts 1–1 to 1–4 contains two history texts 1–2 and 1–3. The smaller of
the two history texts, 1–2, has 8,291 word instances, while the larger history
text, 1–3, has 16,443 instances. We see in a moment how the difference in
size of the two history texts affects the learning of logic formulas.

Recall from the learning step that for a given substitution v←w we attempt
to derive two sets Lv←w(v) and Lv←w(w) of logic formulas, by first replacing
each instance of w by v, and then replacing each instance of v by w. Denote
the first replacement by v–w and the second one by w–v. We need this
notation for the next table, which summarizes the results of applying the
learning algorithm to the combinations of training/history texts shown in
Table 2. The statistics include the number of replacements v–w evaluated,
the distribution of the number of instances of v in the training text connected
with the replacements v–w, the total number of logic formulas learned from
the texts, and the execution time. Computations were done on a Sun Ultra 1
(167 MHz) workstation, which by current standards is slow.

The training time ranges from 1h 17m to 6h 14m, with an average of 3h
43m. Most of that time is required for the computation of logic formulas by
Lsquare.

On present day computers, say with 1000 MHz, training time would be at
most 1h.

Line 1 of Table 2 shows that training text 1–1 and history text 1–2 led
to learning of 4,760 logic formulas for 119 replacements. In contrast, the



14. Data Mining & Knowledge Discovery Based on Rule Induction

Table 1: Text statistics

Used Number of Number of
Text for Type different words word instances
1–1 training math book 1,922 2,4581
1–2 history chapters 1,143 8,291
1–3 history in 1,827 1,6443
1–4 testing TEX 1,100 9,744
2–1 training math book 1,826 1,6444
2–2 history chapters in 1,715 1,5098
2–3 testing TEX 1,216 6,491
3–1 training technical 2,029 1,8773
3–2 history papers in 2,817 2,5881
3–3 testing LATEX 1,318 6,456
4–1 training newspaper 1,968 6,645
4–2 history articles about 1,925 5,854
4–3 testing health 1,334 4,667
5–1 training newspaper 2,054 8,837
5–2 history articles about 2,086 8,645
5–3 testing politics 1,590 5,726

Table 2: Learning cases

Distribution of
Texts number of instances of v

Number in training text Number
Train- Hist- of re- for replacements v–w (%) of logic Training

ing ory placements 3 11 21 51 101 formulas time
v–w to to to to to learned

10 20 50 100 200 >200
1–1 1–2 119 11 13 17 27 18 14 4,760 4h 3m
1–1 1–3 176 27 16 15 18 13 11 7,040 5h 58m
2–1 2–2 178 24 16 21 19 12 8 7,120 3h 4m
3–1 3–2 250 31 19 15 18 6 10 10,000 6h 14m
4–1 4–2 48 40 15 33 2 6 4 1,920 1h 17m
5–1 5–2 64 30 23 25 8 11 3 2,560 1h 40m

Avrg. 139 27 17 21 15 11 8 5,567 3h 43m

same training text paired with history text 1–3 results in learning 7,040 logic
formulas for 176 replacements, an increase of 48%. The large increase in
learned information is due to the larger size of history text 1–3 compared with
history text 1–2. Note that on average 27% of the training samples contained
3 to 10 instances of v in the training text, while 17% of the training samples
contained 11 to 20 instances. Thus, roughly half of the training samples had



Data Mining & Knowledge Discovery Based on Rule Induction 15.

Table 3: Large testing text cases

Number of Number of
Texts discarded tested Number of Testing

v(v←w) v(v←w) false-positive time
Testing Training History instances instances diagnoses

1–4 1–1 1–2 5,324 4,610 (46%) 18(0.4%) 2m 0s
1–4 1–1 1–3 4,535 5,399 (54%) 24(0.4%) 2m 35s
2–3 2–1 2–2 3,777 3,061 (45%) 28(0.9%) 2m 2s
3–3 3–1 3–2 2,911 3,258 (53%) 33(1.0%) 2m 32s
4–3 4–1 4–2 3,404 891 (21%) 20 (2.2%) 1m 6s
5–3 5–1 5–2 5,239 1,756 (25%) 17 (1.0%) 1m 25s

Average 4,198 3,162 (43%) 23.4(0.7%) 1m 57s

at most 20 instances.
Once training was completed, the testing algorithm was applied to both

large and small testing texts in the domains of the training/history texts. The
cases of large testing texts are given in Table 3. For each testing text, the
table includes the related training/history texts, the number of discarded and
tested v(v←w) instances, and the number of false-positive diagnoses incurred
when algorithm processes the text. The percentage given with the number of
tested v(v←w) instances is the relevance ratio, which in Section 3 is defined
to be the number of tested v(v←w) instances divided by the total number of
discarded and tested v(v←w) instances. For testing text 1–4, the relevance
ratio is 46% when 1–1/1–2 are used as training/history texts. The ratio
increases to 54% when 1–1/1–3 are used instead. The improvement is due
to the fact that history text 1–3 leads to increased learning when compared
with history text 1–2, as discussed in connection with Table 2. The average
relevance ratio, which is 43%, is an undesirably small number that results
from the random selection of training and history texts. In Section 5 it is
described how relevance ratios close to 1 can be achieved by an appropriate
augmentation of the training texts and history texts. We did not carry out
such manipulation for the tests of this section so that the test results are
unbiased.

The percentage listed in Table 3 with the number of false-positive diagnoses
is the ratio of that number divided by the number of tested v(v←w) instances.
That percentage is small and ranges from 0.4% to 2.2%, with an average of
0.7%. Much more important from a user standpoint is the fact that the
number of false-positive diagnoses is uniformly small, ranging from 17 to 33,
with an average of about 23. The testing time is on the order of 2m for each
case. On current computers, that time would be on the order of 20s.

Into each large testing text of Table 3, we randomly introduced context-
based spelling errors and, for each such error, checked if the syntax checker
or Ltest detected that error and posed it to the user as top-ranked candi-
date. Thus, the results characterize the error detection capability of Ltest



16. Data Mining & Knowledge Discovery Based on Rule Induction

Table 4: Error detection for large testing texts

Texts Number of Number of errors detected by
errors syntax Ltest syntax

Testing Training History generated checker alone checker
alone and Ltest

1–4 1–1 1–2 37 3 (8%) 26 (70%) 26 (70%)
1–4 1–1 1–3 163 16 (10%) 114 (70%) 120 (74%)
2–3 2–1 2–2 47 7 (15%) 34 (72%) 35 (74%)
3–3 3–1 3–2 53 9 (17%) 38 (72%) 39 (74%)
4–3 4–1 4–2 47 5 (11%) 27 (57%) 32 (68%)
5–3 5–1 5–2 33 5 (15%) 20 (61%) 22 (67%)

Average 63.3 7.5 (12%) 43.2 (68%) 45.7 (72%)

Table 5: Small testing texts

Number of Number of
Text different words word instances
1–4′ 81 184
1–4′′ 58 110
2–3′ 36 50
3–3′ 51 80
4–3′ 78 106
5–3′ 85 102

for cases where learning is possible from the training/history texts. Table 4
summarizes the performance. The percentage figures in parentheses repre-
sent the portion of generated errors detected by the syntax checker or Ltest,
as applicable. Note that the syntax checker on average found only 12% of the
errors, while Ltest identified 68%. Combined, the two checks located 72% of
the errors.

We extracted several small testing texts consisting of at most a few sen-
tences from the large testing texts. Table 5 contains the statistics about
these small testing texts. The names of the texts are derived from those of
the large ones by adding one or two primes. For example, the small testing
texts 1–4′ and 1–4′′ are derived from the large testing text 1–4.

Table 6 lists the training/history texts used in conjunction with the small
testing texts and provides statistics analogously to Table 3. The average
relevance ratio is 43% and thus equal to that for large testing texts. The
number of false-positive diagnoses ranges from 0 to 2, with an average of 1.
The average false-positive rate is 8%. That percentage may seem high, but
this is not important since the number of false-positive diagnoses is small.
The execution times of Table 6 are far below the roughly 2m required for
large testing texts and average 6s. On current (2001) computers, the average
time would be about 1s.



Data Mining & Knowledge Discovery Based on Rule Induction 17.

Table 6: Small testing text cases

Number of Number of
Texts discarded tested Number of Testing

v(v←w) v(v←w) false-positive time
Testing Training History instances instances diagnoses

1–4′ 1–1 1–2 43 32 (43%) 0 (0%) 12s
1–4′′ 1–1 1–3 11 20 (65%) 1 (5%) 7s
2–3′ 2–1 2–2 3 3 (50%) 2 (67%) 4s
3–3′ 3–1 3–2 7 4 (36%) 1 (25%) 5s
4–3′ 4–1 4–2 23 7 (23%) 2 (29%) 3s
5–3′ 5–1 5–2 7 7 (50%) 0 (0%) 5s

Average 16 12 (43%) 1 (8%) 6s

Table 7: Error detection for small testing texts

Texts Number of Number of errors detected by
errors syntax Ltest syntax checker

Testing Training History generated checker alone alone and Ltest
1–4′ 1–1 1–2 8 0 (0%) 6 (75%) 6 (75%)
1–4′′ 1–1 1–3 10 2 (20%) 10 (100%) 10 (100%)
2–3′ 2–1 2–2 8 0 (0%) 6 (75%) 6 (75%)
3–3′ 3–1 3–2 6 0 (0%) 5 (83%) 5 (83%)
4–3′ 4–1 4–2 6 0 (0%) 6 (100%) 6 (100%)
5–3′ 5–1 5–2 2 0 (0%) 2 (100%) 2 (100%)

Average 6.7 0.3 (4%) 5.8 (87%) 5.8 (87%)

As for the cases of large testing texts, we randomly inserted context-based
spelling errors and determined how many of these errors were identified by
the syntax checker or by Ltest. Table 7 contains the results. On average,
the syntax checker finds only 4% of the errors, while Ltest locates 87%. In
contrast to the large testing texts, the syntax checker does not help at all
since Ltest finds all errors determined by the syntax checker.

Table 8 summarizes the performance of the leading prior methods BaySpell
(Golding (1995)) and WinSpell (Golding and Roth (1999)) and Ltest on the
same prior text and testing text. D. Roth kindly made these texts available.
They were obtained by a 80/20 split of the 1-Million-Words Brown corpus
(Kuc̆era and Francis (1967)). The figures in the table represent the percent-
ages of correctly classified word instances for the specified confusion sets. On
average, Ltest achieved the best performance with 95.4% accuracy, compared
with 89.9% for BaySpell and 93.5% for WinSpell. The testing times used by
Ltest for the cases in Table 8 are comparable and very close to those reported
in Table 3.

The detection rate of 95.4% for Ltest is much higher than the 68% found
earlier for large texts. How is this possible? First, the two rates concern



18. Data Mining & Knowledge Discovery Based on Rule Induction

Table 8: Performance of Ltest compared with BaySpell and WinSpell

Confusion set BaySpell WinSpell Ltest
accept, except 92.0 96.0 94.0
affect, effect 98.0 100 97.9
being, begin 95.2 97.9 98.7
cite, sight 73.5 85.3 81.3
country, county 91.9 95.2 94.1
its, it’s 95.9 97.3 98.3
lead, led 85.7 91.8 98.0
passed, past 90.5 95.9 94.7
peace, piece 92.0 88.0 92.6
principal, principle 85.3 91.2 94.7
quite, quiet 89.4 93.9 98.5
raise, rise 87.2 89.7 98.2
weather, whether 98.4 100 98.7
your, you’re 90.9 97.3 95.9

average 89.9 93.5 95.4

different statistics. The 95.4% rate covers classification of correct words as
correct and of erroneous words as incorrect. The 68% rate covers only the
detection of erroneous words as incorrect. If we are to compare numbers,
we must combine the 68% rate with the rate for classifying correct words as
correct. The latter rate is 1−(false-positive rate) = 1−0.007 = 99.3%. Using
a 50/50 weighting to combine rates, we see that (0.68 + 0.993)/2 = 83.7%
should be compared with 95.4%. From our computational experience with
Ltest, the gap between 83.7% and 95.4% is due to four factors:

– First, the test using the Brown corpus relies on much larger training texts
than we used in the earlier tests.

– Second, most confusion words of Table 8 are content words—that is,
nouns, verbs, adjectives, and adverbs. We have found confusion sets involving
such words to be much easier to handle than sets involving function words
such as prepositions, connectives, and articles. Such words were part of the
earlier tests. Indeed, the tests even check for some errors in mathematical
formulas such as misspelled mathematical variables.

– Third, some of the large testing texts considered earlier involve numer-
ous special terms, symbols, formulas, and conventions, which complicate the
search for errors.

– Fourth, the constraint of very low false-positive rate imposed on Ltest
makes detection of errors much more difficult. It would be interesting to see
how the two leading prior methods perform when they are adapted so that
they take all of these aspects into account.



Data Mining & Knowledge Discovery Based on Rule Induction 19.

The experiments reported show that Ltest finds the majority of context-
based spelling errors, provided the error instances vk can be tested. This is so
if two conditions are satisfied: (1) For each erroneous instance vk, the correct
word must occur in the testing text. (2) Logic formulas for the applicable
substitutions v←w must have been learned.

The first condition is typically met in large testing texts, but is not nec-
essarily satisfied in small testing texts. There is a simple way to avoid this
shortcoming for small testing texts. We take an additional, large text in the
same domain area, test it, and correct it if necessary. Let us call the result-
ing text the core text. Whenever a small text is to be tested, we adjoin it to
the core text and test the resulting large expanded text. If an instance of v
occurs in the small text portion, and if an instance of w occurs anywhere in
the expanded text, then v is tested for possibly being the result of a context-
based spelling error. As a result, almost any v that should be tested is indeed
tested.

The second condition is satisfied if the training/history texts are represen-
tative of the testing texts. This is not the case for the above tests due to our
random selection of training/history texts. In the next section, we see how
representative texts can be obtained, as part of several extensions.

5. EXTENSIONS

Significant improvements in the error detection rate can be attained by a
better syntax checker, since, in our tests, quite a few context-based spelling
errors resulted in syntactically incorrect sentences that were not flagged by
the Laempel syntax checker. A better syntax checker would also lower the
false-positive rate, for the following reason. Let v←w be the currently pro-
cessed substitution in the testing step. Suppose the testing step tentatively
replaces an instance of v by w. If the syntax checker determines that the
modified sentence is syntactically incorrect, then we need not consider v as
a possibly misspelled or mistyped w, and thus eliminate a potential false-
positive diagnosis. We tried this idea using the Laempel syntax checker and
found that it reduced the number of false-positive diagnoses insignificantly.
A better syntax checker should produce substantially better results.

Another improvement produces a relevance ratios very close to 1. Suppose
we have sufficient text to determine the entire vocabulary used in the given
domain. We compute the confusion set for each word of that vocabulary.
Given a training text and a history text, we check if each of these texts
contains, for each word occurring in one of the confusion sets, at least three
instances each. If this is not the case for a given word, we add sentences from
general text material to the training or history text, as needed, until each
word is reasonably represented, say, by 10-20 instances. When training is
done using the expanded training and history texts, then logic formulas are
produced for each word of each confusion set. Accordingly, testing achieves
a relevance ratio of close to 1.



20. Data Mining & Knowledge Discovery Based on Rule Induction

It is possible that a person makes an error repeatedly, for example, by
confusing “its” and “it’s” or “complement” and “compliment.” Such behavior
is contrary to one of the two assumptions made in Section 1, and it affects the
reliability with which errors are detected via thresholds. One may remedy
this shortcoming of Ltest as follows. Whenever an error involving a given
substitution v←w is found to occur more than once in a testing text, then
that case is recorded as part of the performance history of the person who
created the text. In subsequent tests, that fact is taken into account when
characteristic vectors are constructed in connection with the substitution
v←w and evaluated via logic formulas. Space constraints prevent a detailed
discussion, but the main idea is that, for the evaluation of v←w, each sentence
with an instance of v is viewed as separate small text, and that v is tested
for correctness as described in Section 4 using a core text. The use of a
performance history of a person may seem far-fetched. But the spell and
syntax checker of the Laempel System, of which Ltest is now part, already
uses such history information, with good results.

This section discussed some of the future research directions which can be
summarized as follows: –Improving the syntax checker to reduce the number
of false-positive cases as mentioned earlier in this section. –Devise methods
to derive certain generic formulas to be used whenever training is not possible
due to small number instances. –Explore the usage of some core good text
(see the last two paragraphs in section 4) to be adjoined to small testing texts
where there may not be enough word instances to collect sufficient features
of these words in the characteristics vector.

6. SUMMARY

The chapter describes the method Ltest for finding context-based spelling
errors. The key elements are as follows.

(1) An encoding of the relationships of an instance of a word to other in-
stances of that word, using the text under investigation and a history
text that acts as a reference text for both training and testing. The en-
coding is based on neighborhoods of word instances and, if applicable,
on the dominant parts-of-speech of such instances.

(2) Representation of the relationships between words instances and cor-
rect/incorrect use by logic formulas that are extracted by a data mining
algorithm.

(3) A voting system based on the logic formulas.
(4) A calibration of the voting system via thresholds for each testing text.

Ltest has been added to an existing system for checking spelling and syntax
errors. A number of tests have proved that the resulting system is effective
and robust. It detects the majority of context-based spelling errors while
committing few false-positive diagnoses. Execution times of the system are
moderate for the learning step and are small for testing even large texts.



Data Mining & Knowledge Discovery Based on Rule Induction 21.

REFERENCES

Al-Mubaid, H., Identifying Inadvertent Semantic Errors in English Texts,
Ph.D. Thesis, University of Texas at Dallas, 2000.

Bruce, R., and Wiebe, J., Word-sense disambiguation using decomposable
models, Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics (ACL-94), 1994, 139–146.

Bruce, R., and Wiebe, J., Decomposable modeling in natural language pro-
cessing, Computational Linguistics, 25 (1999) 195–207.

Budanitsky, A., Lexical semantics relatedness and its application in natural
language processing, Technical Report CSRG-390, University of Toronto,
1999.

Budanitsky, A., and Hirst, G., Semantic distance in WordNet: An exper-
imental, application-oriented evaluation of five measures, Workshop on
WordNet and Other Lexical Resources, Second Meeting of the North Amer-
ican Chapter of the Association of Computational Linguistics, Pittsburgh,
June, 2001.

Felici, G., Sun, F., and Truemper, K., A method for controlling errors in two-
class classification, Proceedings of the 23rd Annual International Computer
Software & Applications Conference COMPSAC 99, Phoenix, AZ, 1999,
186–191.

Felici, G., and Truemper, K., A Minsat approach for learning in logic do-
mains, INFORMS Journal on computing, 14(1) 2002, 20–36.

Golding, A. R., A Bayesian hybrid method for context-sensitive spelling
correction, Proceedings of the Third Workshop on Very Large Corpora,
Cambridge, MA, 1995, 39–53.

Golding, A. R., and Roth, D., Applying Winnow to context-sensitive spelling
correction, Machine Learning: Proceedings of the Thirteenth International
Conference, San Francisco, CA, 1996, 182–190.

Golding, A. R., and Roth, D., A Winnow-based approach to context-sensitive
spelling correction, Machine Learning, Special Issue on Machine Learning
and Natural Language Processing, (34) 1999 107–130.

Golding, A. R., and Schabes, Y., Combining Trigram-based and feature-
based methods for context-sensitive spelling correction, Proceedings of the
34th Annual Meeting of the Association for Computational Linguistics,
Santa Cruz, CA, 1996, 71–78 .

Hirst, G., and St-Onge, D., Lexical chains as representations of context for
the detection and correction of malapropisms, Christaine Felbaum, editor,
WordNet, MIT Press, MA, 1995.



22. Data Mining & Knowledge Discovery Based on Rule Induction

Jones, M. P., and Martin, J. H., Contextual spelling correction using latent
semantic analysis, Proceedings of the 5th Conference on Applied Natural
Language Processing, Washington, DC, 1997.

Kuc̆era, H., and Francis, W. N., Computational Analysis of Present-Day
American English, Brown University Press, Providence, RI, 1967.

Kukich, K., Techniques for automatically correcting words in text, ACM
Computing Survey, 24 (1992) 377–439.

Mangu, L., and Brill, E., Automatic rule acquisition for spelling correction,
Proceedings of the International Conference on Machine Learning, 1997,
734–741.

Pedersen, T., Search techniques for learning probabilistic models of word
sense disambiguation, Working Notes of the AAAI Spring Symposium on
Search Techniques for Problem Solving Under Uncertainty and Incomplete
Information, Palo Alto, CA, 1999.

Pedersen, T., and Bruce, R., Knowledge lean word-sense disambiguation,
Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI-98), Madison, WI, 1998.

Pedersen, T., Bruce, R., and Wiebe, J., Sequential model selection for word
sense disambiguation, Proceedings of the 1997 Conference on Applied Nat-
ural Language Processing (ANLP-97). Washington, DC, 1997, 388–395.

Powers, D., Learning and application of differential grammars, Proceedings
of the ACL Special Interest Group in Natural Language Learning, Madrid,
1997.

Roth, D., Learning to resolve natural language ambiguities: A unified ap-
proach, Proceedings of National Conference on Artificial Intelligence, 1998,
806–813.

St-Onge, D., Detecting and correcting malapropisms with lexical chains, MS
Thesis, University of Toronto, Department of Computer Science, 1995.

Webster’s Ninth Collegiate Dictionary, Merriam-Webster, Inc., and High-
lighted Data, Inc., Macintosh CD-ROM edition, 1989.

Zhao, Y., Intelligent text processing, Ph.D. Thesis, University of Texas at
Dallas, 1996.

Zhao, Y., and Truemper, K., Effective spell checking by learning user be-
havior, Applied Artificial Intelligence, 13 (1999) 725–742.



Data Mining & Knowledge Discovery Based on Rule Induction 23.

Appendix A: Construction of substitutions

Recall that the substitution v←w represents that the word w may by mis-
spelling or mistyping become v. In this appendix, we summarize how, given
v, all words w that may give rise to a substitution v←w are computed. For
complete details of the construction rules, see Al-Mubaid (2000).

We collect the misspelling cases in four groups that involve the following
situations. For each situation, we include some examples.

• vowel combinations producing similar sounds: by↔buy, fair↔fare,
week↔weak.

• consonants having similar sounds: bay↔pay, cine↔sine, hid↔hit.

• silent characters and substrings: knee↔nee, right↔rite, sight↔site,
where↔were.

• apostrophe use: he’s↔his, it’s↔its, let’s↔lets, they’re↔there.

A total of 61 rules create all cases of these four groups. We determined
these rules as follows. First, in a combination of manual and computer search,
we extracted from Webster’s Ninth Collegiate Dictionary (1989) a number
of classes of different words with identical or nearly identical pronunciation.
Second, we manually eliminated rare words. Third, we represented the re-
maining classes by rules. It turned out that 61 rules suffice to represent those
classes. Due to space constraints, we omit a detailed listing of the rules; they
are included in Al-Mubaid (2000). We use the shorthand notation v↔w for
the substitutions v←w and w←v.

The mistyping cases are taken from Zhao and Truemper (1999). Define
a neighbor letter to be any letter that on the keyboard is close to a given
letter. Then the typing errors considered in the cited reference are as follows:
transposing two letters, repeating a letter, omitting a letter, inserting a letter
that is a neighbor of a given letter, and typing an incorrect letter that is a
neighbor of the required letter. Here are some examples for each type of
error.

1. Transposing two letters: bye↔bey, form↔from, goal↔gaol, trial↔trail.
2. Repeating a letter: latter←later, tiller←tiler.
3. Omitting a letter: cam←scam, met←melt, see←seem, tale←table.
4. Inserting a letter that is a neighbor of a given letter: defined←define,

care←car,
trash←rash.

5. Typing an incorrect letter that is a neighbor of the required letter:
for↔foe, high↔nigh, into↔onto, just↔must.



24. Data Mining & Knowledge Discovery Based on Rule Induction

Appendix B: Construction of training and history texts

Suppose we have a database of correct texts for the given domain. For
example, the database may consist of a large number of working papers on
graph theory, or of papers published in a combinatorics journal, or of some
books on matrix algebra, or of a large collection of legal documents in one
area of law. We assume that the words used in the database constitute the
entire or almost entire vocabulary of the testing texts we intend to process in
the same domain area. From the database, we want to derive reasonably sized
training and history texts so that the learning step applied to them produces
the logic formulas needed in subsequent testing of texts. The construction
of the training text and history text from the given database proceeds as
follows.

Construction of training/history texts

INPUT: A database of texts for the given domain area.
OUTPUT: Training/history texts for the domain area.

1. Initialize the training text and history text as empty texts. Determine
the number n(v) of instances of each word v in the database.

2. Derive all substitutions v←w for which both v and w occur in the
database, and collect the words v and w of these v←w in a set V . Sort
the words of V using the counts n(·) so that the topmost word has the
smallest n(·) value.

3. Process the words v of V one by one and in the order determined in
Step 2, as follows. Randomly select sentences of the database that contain
at least one instance of v, and assign each selected sentence to the training
text or the history text, whichever has at that time the fewest number
of instances of v. Stop the processing of v when all sentences of the
database containing instances of v have been assigned, or when both the
training text and the history text contain at least 1,000 instances of v
each.

4. Output the training/history texts on hand, and stop.



Data Mining & Knowledge Discovery Based on Rule Induction 25.

Appendix C: Structure of characteristic vectors

Both the learning step and the testing step use characteristic vectors to en-
code the relationships connecting a given word instance with other instances
of the same word. The characteristic vectors are based on two texts. The
first text is the training text or testing text, depending on whether we are in
the learning step or in the testing step, respectively. We denote either one of
the two texts by T . The second text is the history text, regardless of whether
we are in the learning step or in the testing step. We denote that text by
H. It acts as a correct reference text during both the learning step and the
testing step.

Define a non-word token to be any symbol that occurs in text T or H
that is not a word. Examples are the period, comma, exclamation mark,
question mark, semicolon, colon, forward and backward slash, plus, minus,
ampersand, and the signs for pound and dollar.

Define the neighborhood of an instance xm of a word x in text T or H to
consist of the two words or tokens immediately preceding xm and of the two
words or tokens immediately following xm. Let p1, p2, f1, and f2 denote
words or tokens. Then xm and its neighborhood in the text T or H may be
depicted as a sequence p2 p1 xm f1 f2 of words or tokens in the text. The
neighborhood definition is modified in the obvious way if xm occurs at or
near the beginning or end of the text. That is, p1 and p2, or just p2, or f1

and f2, or just f2 are then absent from the sequence.

Define a part-of-speech of a word to be the dominant part-of-speech of the
word if in past usage of the word in the given domain that part-of-speech
was the correct syntactic interpretation at least 90% of the time. In our
implementation, we use the output of the Laempel syntax checker to estimate
whether a part-of-speech is dominant. Below, we assume that we have that
estimate available.

Both the learning step and the testing step require characteristic vectors
for instances xm of words x in text T . Such a vector, denoted by Zxm , has 18
entries encoding 18 different features of that particular instance. The first half
of the entries is produced from text T , while the second half is generated from
text H. All but four of the entries of Zxm relate tokens of the neighborhood
of the instance xm of a given word x to the tokens of the neighborhood of
other instances xn of x. The remaining four entries of Zxm link the parts-of-
speech of words in the neighborhood of xm to the parts-of-speech of words
in the neighborhood of instances xn. The 18 features are the result of a long
series of experiments involving many different rule sets. In those experiments,
we started out with elaborate rule sets. We discovered that such sets tend
to produce erratic detection results and are unsuitable when both large and
small texts are to be processed. By gradual simplification we arrived at the
current rule set. Here are the details.



26. Data Mining & Knowledge Discovery Based on Rule Induction

Construction of the characteristic vector

Each of the entries Zxm
1 , Zxm

2 , . . . Zxm
18 is equal to ±1. The rules below

list explicitly for each entry the condition under which an entry takes on
the value 1. If that condition is not satisfied, then the entry implicitly has
the value −1. We use the above notation for neighborhoods—that is, p2 p1

xm f1 f2—to denote the tokens immediately preceding or following a given
instance xm in a sentence. Here are the definitions.
1. (p1 or p2 in text T , word case) Define Zxm

1 = 1 if (a) or (b) below hold.
(a) p1 is a word and, for another instance xn of x, the sequence p1 xn

occurs in text T .
(b) p1 is a non-word token and p2 is a word, and, for another instance xn

of x and for another non-word token q, the sequence p2 q xn occurs
in text T .

2. (f1 or f2 in text T , word case) Define Zxm
2 = 1 if (a) or (b) below hold.

(a) f1 is a word and, for another instance xn of x, the sequence xn f1

occurs in text T .
(b) f1 is a non-word token and f2 is a word, and, for another instance xn

of x and for another non-word token q, the sequence xn q f2 occurs
in text T .

3. (p1 and f1 in text T , word case) Define Zxm
3 = 1 if both p1 and f1 are

words and if, for another instance xn of x, the sequence p1 xn f1 occurs
in text T .

4. (p1 and p2 in text T , word case) Define Zxm
4 = 1 if both p1 and p2 are

words and if, for another instance xn of x, the sequence p2 p1 xn occurs
in text T .

5. (f1 and f2 in text T , word case) Define Zxm
5 = 1 if both f1 and f2 are

words and if, for another instance xn of x, the sequence xn f1 f2 occurs
in text T .

6. (p1 in text T , non-word token case) Define Zxm
6 = 1 if p1 is a non-word

token and if, for another instance xn of x, the sequence p1 xn occurs in
text T .

7. (f1 in text T , non-word token case) Define Zxm
7 = 1 if f1 is a non-word

token and if, for another instance xn of x, the sequence xn f1 occurs in
text T .

8. (p1 in text T , part-of-speech case) Define Zxm
8 = 1 if the following two

conditions are satisfied. First, p1 must be a word and is estimated to
have a dominant part-of-speech. Second, a sequence q xn must occur in
text T where xn is another instance of x and where q is a word having
an estimated dominant part-of-speech equa

9. (f1 in text T , part-of-speech case) Define Zxm
9 = 1 if the following two

conditions are satisfied. First, f1 must be a word and is estimated to
have a dominant part-of-speech. Second, a sequence xn q must occur in



Data Mining & Knowledge Discovery Based on Rule Induction 27.

text T where xn is another instance of x and where q is a word having
an estimated dominant part-of-speech equal to that estimated for f1.

10.–18. (Text H) Define Zxm
10 –Zxm

18 like Zxm
1 –Zxm

9 except that, in each case,
the specified sequences must be in text H instead of text T .

The characteristic vectors of the sets G(v), Bv←w(v), G(w), and Bv←w(w)
are constructed by the above rules when one takes xm of the above rules
to be vi, vj , wj , and wi, respectively, and selects the applicable texts. The
characteristic vectors needed in the testing step are constructed analogously.

Some previous work in word sense disambiguation (for example, see Bruce
and Wiebe (1994, 1999), Pedersen, Bruce, and Wiebe (1997), Pedersen and
Bruce (1998), Pedersen (1999)) uses similar encodings where words, parts-of-
speech, and morphological features near a given word instance are recorded.
Here, our list of parts-of-speech has 46 items that accommodate all morpho-
logical subcases. Ignoring that minor variation, the main difference between
the cited methods and the one proposed here is the use of dominant parts-
of-speech instead of just parts-of-speech, the use of a reference text for both
learning and testing, and the way the characteristic vectors are evaluated.



28. Data Mining & Knowledge Discovery Based on Rule Induction

Appendix D: Classification of characteristic vectors

We describe how the set Lv←w(v) (resp. Lv←w(w)) is used to estimate
whether a given characteristic vector is in G(v) or Bv←w(v) (resp. G(w) or
Bv←w(w)). It suffices to examine how Lv←w(v) is applied to the characteristic
vector t(vk) of an instance vk of v. The set Lv←w(v) consists of 20 disjunctive
normal form (DNF) logic formulas and 20 conjunctive normal form (CNF)
logic formulas. Each of the 40 formulas produces for t(vk) a vote of +1 or
−1. A +1 (resp. −1) indicates that the logic formula estimates t(vk) to
be in G(v) (resp. Bv←w(v)). Let the sum of these 40 votes be the vote-
total r(t(vk), Lv←w(v)). Since each vote is equal to +1 or −1, the vote-total
r(t(vk), Lv←w(v)) is even and may range from −40 to 40. Furthermore, if
r(t(vk), Lv←w(v)) is close to 40 (resp. −40), then t(vk) is likely to be in G(v)
(resp. Bv←w(v)). For example, a vote-total r(t(vk), Lv←w(v)) equal to 40
means that all of the 40 formulas has estimated t(vk) to be in G(v). But
how are positive or negative vote-totals near 0, or 0 itself, to be interpreted?
The data mining algorithm Lsquare estimates probability distributions for
the vote-totals that one may be tempted to use for the answer. But such use
assumes that the testing text comes, statistically speaking, from the same
population as the training text. But we only know that these two texts
are in the same domain area. Thus, the two texts are not guaranteed to
satisfy the assumption. A few test cases have confirmed that the assumption
may indeed not be satisfied. For this reason, we do not make use of the
probability distributions. Instead, we compute from the testing text an odd
integer threshold αv←w(v), −40 < αv←w(v) < 40, to decide if t(vk) should
be declared to be in G(v) or Bv←w(v). Recall that r(t(vk), Lv←w(v)) is even,
so r(t(vk), Lv←w(v)) = αv←w(v) is not possible. We estimate t(vk) to be in
G(v), and thus to be good, if r(t(vk), Lv←w(v)) > αv←w(v), and estimate
t(vk) to be in Bv←w(v), and thus to be bad, if r(t(vk), Lv←w(v)) < αv←w(v).
The computation and use of αv←w(w) mimics that of αv←w(v), so we only
discuss the case of αv←w(v).

Given a substitution v←w, for each instance vk of a word v in the given
testing text, the testing step determines a characteristic vector t(vk). Fur-
thermore, for each instance wl of a word w in the given testing text, wl

is temporarily replaced by vp and a characteristic vector fv←w(vp) is com-
puted. Finally, the testing step applies Lv←w(v) to each t(vk) and to each
fv←w(vp), getting vote-totals r(t(vk), Lv←w(v)) and s(fv←w(vp), Lv←w(v)),
respectively. The threshold is derived from these vote-totals. Before we de-
scribe the computations, let us try to predict the behavior of the vote-totals.

Suppose no instance v or w in the testing text involves a context-based
spelling error. Then the instances vk are good, and the instances vp, which
are derived from instances wl, are bad. The learning step has created logic
formulas that produce positive vote-totals for good instances and negative
vote-totals for bad instances. Assuming that the testing text is similarly
structured as the training text, we therefore expect that the vote-totals



Data Mining & Knowledge Discovery Based on Rule Induction 29.

r(t(vk), Lv←w(v)) for the instances vk are positive and that the vote-totals
s(fv←w(vp), Lv←w(v)) for the instances vp are negative. Of course, this need
not be so. But at least one may reasonably expect that most if not all
r(t(vk), Lv←w(v)) values are greater than most if not all s(fv←w(vp), Lv←w(v))
values.

The above discussion supposes that no v or w involves a context-based
spelling error. In Section 1, we assumed that such errors are rare, so we may
suppose rather reasonably that at most one instance of v and at most one
instance of w is involved in a context-based spelling error. Regardless of the
specific situation, any such error most likely involves a vk with smallest vote-
total r(t(vk), Lv←w(v)) or a vp with largest vote-total s(fv←w(vp), Lv←w(v)).
Of course, we do not know if such an error is present. But we do not want the
threshold computations to be affected by such errors. So, as a precautionary
measure, we delete the smallest vote-total from the list of r(t(vk), Lv←w(v))
and sort the remaining entries. We end up with a sorted list of vote-totals,
say, r1, r2, . . . rm with r1 largest, and know that these vote-totals very likely
correspond to good instances of v. Similarly, we delete the largest vote-total
from the list of s(fv←w(vp), Lv←w(v)) and sort the remaining entries. We
end up with a sorted list of vote-totals, say, s1, s2, . . . sn with s1 largest,
and know that these vote-totals very likely correspond to bad instances of
v. Note that the above arguments crucially depend on the assumption of
Section 1 that errors involving a given word are rare. There may be situations
where a person makes the same error repeatedly. For example, the person
may repeatedly confuse “it” and “it’s” or “complement” and “compliment.”
In that case, the threshold computed next may still allow such errors to be
caught. But the probability that this will take place is reduced. In Section 5, a
modification of Ltest is described that, over time, leads to improved detection
of such systematic errors.

Recall that the testing step estimates an instance of v to be good (resp.
bad) if the vote-total is above (resp. below) the threshold αv←w(v). Hence,
if the smallest ri, which is rm, is larger than the largest sj , which is s1, then
we pick αv←w(v) about halfway between rm and s1. If rm ≤ s1, we want
a compromise value for αv←w(v) that minimizes the sum of the number of
ri below αv←w(v) and the number of sj above αv←w(v). The computations
below reflect these ideas, but also rely on the notion that, in case several
threshold values equally well achieve the stated goal, then, among these, the
threshold value closest to 0 is preferred.

The above computations can be carried out only if each of the words v
and w occurs at least twice in the testing text. In the situations where the
testing step requires thresholds, two instances of v are guaranteed to exist.
However, w may occur just once, and thus the vote-totals s1, s2, . . . sn

may not exist. In that exceptional case, the single instance of w may itself
constitute a context-based spelling error, and we are reluctant to rely on that
instance to make decisions regarding the instances of v. Instead, we define
the threshold αv←w(v) to be equal to −39. This means that we are very



30. Data Mining & Knowledge Discovery Based on Rule Induction

conservative in estimating an instance of v to be in error and that we do so
only if the vote-total is equal to −40.

Computation of threshold

INPUT: Sorted vote-totals r1, r2, . . . rm and possibly s1, s2, . . . sn.
OUTPUT: Threshold αv←w(v).

1. If s1, s2, . . . sn do not exist, define αv←w(v) = −39, and stop.
2. If rm > s1: Define αv←w(v) = (rm + s1)/2. Reduce (resp. increase)

αv←w(v) by 1 if (rm + s1)/2 is even and greater than (resp. less than or
equal to) 0. Stop.

3. (rm ≤ s1) Select an odd-valued αv←w(v) so that the number of ri below
αv←w(v) plus the number of sj above αv←w(v) is minimum. If there is
a choice, pick among them the value closest to 0. Stop.



Index

context-based spelling error, 1–5,
20

history text, 3, 5, 6, 12, 13, 15, 19

Laempel, 12, 13, 25
Ltest, 1, 3, 5, 6, 13, 20, 29

parts-of-speech, 1, 6, 25

spell checker, 1, 2, 9, 12
syntax checker, 1, 3, 12, 15, 19

testing text, 1, 3, 4, 9, 10, 12, 18,
20

training text, 3, 5, 6, 13, 28

31.


