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Abstract 
Ontology structure-based measures, like path length, have 

been used successfully for semantic similarity in various 

application domains.  In bioinformatics, path length was 

used with the Gene Ontology (GO), using annotation 

terms, for gene similarity and clustering.  In this paper, 

we propose to use the path length using GO annotations 

of proteins as a measure of protein similarity for scoring 

protein-protein interactions (PPIs). Proteins that interact 

with each other tend to have similar functions and be 

involved in similar biological processes compared to 

proteins that have no interactions. So, with the existence 

of a reliable well-established ontology, like GO, semantic 

similarity measures should be able to distinguish between, 

and rank, fairly well, the interacting and non-interacting 

protein pairs. The proposed method has been evaluated 

using datasets of positive and negative protein 

interactions from human and yeast proteomes. The 

evaluation results show that this method fares well when 

used to estimate similarity of interacting and non-

interacting proteins. 

 

 

1. Introduction 

Protein-Protein interaction PPI is a very active topic of 

research in bioinformatics [1, 9, 11, 12, 13, 16]. Large 

number of projects and publications have been published 

in the past two decades with fairly interesting and 

impressive outcomes [12, 13, 16]. Studying and tackling 

the PPI problem in the context of gene ontology (GO) and 

using GO annotations of the proteins has opened more 

possibilities of casting this problem at different levels [7].  

GO is considered the most established and structured 

form of describing gene and protein functions and 

localization irrespective of the species [7].   

In general, interacting proteins are more likely to have 

higher similarity than non-interacting proteins in terms of 

their molecular functions and the biological processes that 

they are involved in.  Therefore, an effective similarity 

measure should be able to distinguish fairly well between 

interacting and non-interacting protein pairs. For example, 

proteins that have relatively similar GO annotation terms 

from the cellular component CC aspect of GO are likely 

to have interactions and will show relatively higher 

semantic similarity values [1, 9, 12].  Path length as an 

ontology structure-based measure has been used 

successfully as a measure of distance and similarity in 

various application domains including bioinformatics [3, 

5, 10, 17].  In bioinformatics, path length was used in GO, 

using annotation terms, for gene similarity, gene 

clustering, and gene disease relationships [17].  In this 

paper, we present the path length technique using GO 

annotations of proteins as a measure of semantic 

similarity between proteins for scoring protein-protein 

interactions. Graph based methods for semantic similarity 

have been used and applied in many bioinformatics tasks. 

However, path length has never been investigated in the 

context of protein-protein interactions, as to our 

knowledge. The presented method has been evaluated 

using datasets of positive and negative interactions from 

human and yeast protein-proteins interactions PPIs 

datasets. The evaluation results show that the proposed 

method fares well as a measure to estimate and assess the 

protein interactions.   

 

2. Related Work 

Gene Ontology: The gene ontology is the primary and 

most comprehensive source of information for studying 

and working with gene functions and localizations [10, 

17, 1, 3].  GO is a tree-like hierarchical structure, or 

DAG, where each node represents a term or concept 

related to gene functions, processes, and locations. So, it 

is a controlled and structure vocabulary of terms and each 

term is a node in the DAG. GO is divided into three 

orthogonal sub ontologies: Molecular function MF, 

biological processes BP, and cellular component CC. 

Gene ontology annotations GOA of a protein are terms in 

the ontology annotated or assigned to that protein. Two 

proteins are similar if their annotation terms are close. 

The annotation terms, GOA, of a protein pi describe the 

functions, processes, and locations that pi is involved in. 

 

Similarity measures: a similarity measure is a function, 

e.g., sim(), that quantifies the similarity (or likeness) 

between two items, sim(px, py), as a numeric value.  For 

example, if a given target protein px is more similar to 

some protein pi than to pj then an effective similarity 

function sim() should output that: sim(px, pi) > sim(px, pj).  

Semantic similarity measures can be roughly divided into 



two groups: ontology-based measures, information 

theoretic based measures [3, 10]. Ontology structure 

based measures are those measures that rely on ontology 

structure features like path length between node and node 

depth. On the other hand, information-theoretic based 

measures, like information content IC, rely on the 

information revealed by a given node or term in the 

ontology. Semantic similarity measures have been 

investigated for long time in different disciplines and 

applications including natural language processing and 

bioinformatics [3]. 

In [5], Al-Mubaid et al. (2007) proposes a semantic 

similarity approach for similarity of biomedical terms 

across multiple ontologies and within a unified 

framework like UMLS [2].  

In [2], Pesquita et al. (2009) presents a review study of a 

number of similarity measures applied to biomedical 

ontologies. They classify these measures based on various 

aspects such as edge based versus node based, or pair-

wise versus group-wise, and so on [2]. 

  

PPI: A huge volume of research has been devoted to 

studying and investigating PPI from different perspectives 

in the past two decades [1, 9,11,12,13,16].  Jain and Bader 

(2010) [1] proposed a new semantic similarity method 

based on topological clustering semantic similarity for 

scoring PPIs. Their method performed well on interaction 

data sets from human and yeast. Their method relies on 

the fact that different depths of biological knowledge in 

the various branches of the ontology, viz. GO, may 

contribute differently into the semantic similarity of the 

concepts [1]. Several other PPI research studies have used 

GO as their knowledge resource for protein interaction 

analysis and prediction [9,11,12,13] 

 

3. Semantic Similarity and PPI 

The relationship between semantic similarity measures 

and protein-protein interactions is straightforward as 

follows. The semantic similarity value, computed by a 

semantic similarity measure, for a pair of interacting 

proteins, in general, is relatively higher than that of a pair 

of non-interacting proteins. To compute the similarity 

between proteins we use the GO annotations [1, 9, 12]. In 

the following we discuss a few semantic similarity 

measures and then we explain the path length measure.  

 

3.1 Semantic Similarity Measures 
The most common and most basic information theoretic 

based semantic similarity measure is the Resnik measure 

[14].  Resnik computes the similarity of two terms as the 

information content IC of their least (or lowest) common 

ancestor LCA as follows: 

       sim(t1, t2) = IC(ti) ………………....(1) 

          where ti is the least common ancestor LCA of t1 and 

t2; and the IC is computed as follows: 

         IC(ti)= −log p(ti)……………(2) 

     where P(ti) is the probability of term ti in the gene 

ontology annotation (GOA) dataset for this task. In other 

tasks, the probability of term ti can be computed 

differently, for example, from a text corpus. Resnik’s 

measure has been used extensively in the bioinformatics 

domain [1, 9, 10, 11]. In this task, the probability of a GO 

term tx is the number of proteins annotated with the term 

tx plus number of proteins annotated with all of its 

descendants.  For example, suppose the term tx has only 

two descendants ti and tj  (i.e., tx has two child terms that 

are leaves) and there are 100 proteins annotated with tx. 

Also, let there be 200 and 300 proteins annotated with ti 

and tj respectively, and the total number of annotated 

proteins is10000 in the entire dataset. Then the probability 

p(tx) of term tx is: p(tx)=(100+200+300)/10000 = 0.06.  

Another important semantic similarity measure is Lin’s 

measure which is also, like Resnik’s measure, based on 

IC [6]: 

sim(t1, t2) = 
                  

                 
 ……….. (3) 

Moreover, Leacock and Chodorow [10] proposed an 

ontology structure based measure that relies on the 

distance (path length) between nodes and max depth of 

the ontology structure as follows: 

sim(t1, t2) =      
           

   
 ………..(4) 

where D is the max depth of the ontology and dist(t1, t2) is 

the shortest path length between t1 and t2. 

The semantic distance measure of Jiang and Conrath [77] 

is based on the information content of the nodes and their 

LCA: 

 

Dist (t1, t2) = IC(t1) – IC(t2) – 2* IC (LCA(t1, t2))………(5) 

 

where semantic distance Dist() can be converted to 

semantic similarity value using some simple direct 

mapping function as the semantic similarity is the inverse 

of semantic distance. 

 

3.2 Path Length Measure 
In a given taxonomy or ontology, the basic approach to 

compute the similarity of two nodes (concepts) is using 

the shortest path length (PL) which is the minimum 

number of links between the two nodes. Rada et al. (1989) 

were the first to use path length as a measure of similarity 

between two concept nodes in a given ontology in the 

biomedical domain and they applied it to the MeSH 

ontology [4];  while [5] were the first to apply PL as a 

measure onto the gene ontology GO [5].  

In this work, we use PL as a similarity method as 

proposed in our previous work [3, 5, 17] in which the 

 



 

  iea+ iea− 

Human 

BP 1435 1204 

MF 1421 1268 

CC 1410 1037 

(a) Human 

 

  iea+ iea− 

Yeast 
MF 3753 3481 

CC 4469 4425 

(b) Yeast 
 

Table 1: Number of protein-protein interaction pairs used in our evaluation (positive interactions) 

for (a) human and (b) yeast. BP biological process, MF molecular function, and CC 

cellular component. iea+: records with evidence code iea are included; iea−: records 

with iea evidence code are not included. 

 

 
similarity sim(  ,   ) between two proteins    and    is 

defined as follows:  

 

Sim(  ,,   ) =                   ………..…… (6) 

 

 where the path length PL(  ,   ) between the two 

proteins   ,     is computed based on their GO annotation 

terms, and f is a tuning parameter (f=0.20 in this 

evaluation). The path length between two proteins is 

computed as follows:  

PL(  ,  ) = 
     

       
      

 
   

   

    
  ………… (7) 

such that:    
  and    

 
 are the annotation terms of 

proteins   ,  and     respectively. Now, the path length 

PL(go1, go2) between two GO terms go1 and go2 is 

computed as follows: 

 

PL(go1, go2 ) = the minimum path length in the GO 

graph between the terms go1 and go2 

 

Two proteins px, py are considered similar if their Sim() 

value, as computed in equation (6), is above certain cutoff 

value. 

  

3.3 PPI with PL Measure 
For a given set of protein-protein interactions PPIs, we 

compute the similarity of the two proteins in every pair. 

For a given cutoff value, for example 0.70, if the 

similarity value of the two proteins in a pair is equal or 

above the cutoff 0.7 then we consider that these two 

proteins are similar. The similarity between proteins is 

computed using GO annotation terms in the three aspects 

Biological Process BP, Molecular Function MF, and 

Cellular Component CC.  We assume that if two proteins 

have interaction, then it is highly likely that they exist in 

similar or same cellular regions, and so, their CC 

annotation terms should be close thus their semantic 

similarity using their CC annotation terms should be 

relatively high. On the other hand, if two proteins have 

high similarity value based on their CC terms then this 

indicates that they exist in close areas within the cellular 

structure and so there is high likelihood that they will 

interact with each other [1].  Therefore, we expect to 

observe higher semantic similarity between the proteins 

that have interactions than randomly selected proteins 

with no interactions between them. 

 

4. Experiments and Evaluation 

The gene ontology downloads and all GO annotations of 

yeast and human proteins are downloaded from the 

official gene ontology site and the SGD website [7, 8]. 

The datasets of protein interactions PPIs were 

downloaded from [1] which were extracted from the 

Database of Interacting Proteins DIP website [1]. The PPI 

datasets and number of protein pairs in every dataset are 

presented in Table 1. Since the annotation terms assigned 

to protein with evidence code iea (inferred from 

electronic annotation) are not experimentally proven 

annotations and many researchers exclude those iea terms, 

we created two versions of every data set one with iea 

annotations included (we call it iea+) and another with 

excluding all iea annotation terms (we call it iea−). A 

dataset of interacting proteins PPIs comprise a set of 

protein pairs with interaction between proteins in every 

pairs and thus we call it positive PPI dataset. For every 

positive PPI dataset, we created a dataset of similar size 

of randomly selected proteins having no interactions 

between them we call it negative dataset. That is, in the 

negative set, proteins in every pair are paired randomly 

with no interactions between them. Table 1 includes 

number of proteins pairs in every positive PPI dataset. For 

example, as shown in Table 1, the {human BP iea+} 



dataset contains 1435 PPI pairs (pairs of interacting 

proteins from human proteome) such that each protein in 

this dataset is annotated with at least one BP term and iea 

terms are included. These protein pairs will be examined 

for similarity using their BP terms.  

 

Evaluation metrics and settings: for every PPI positive 

dataset there is also a negative dataset with protein pairs 

having no interactions. In general, the PPI dataset and the 

negative dataset are similar size in number protein pairs. 

For a given cutoff (threshold) value ts , we compute four 

metrics: true positive TP, true negative TN, false positive 

FP and false negative FN as follows: TP is number of  

protein pairs in the positive PPI dataset having similarity 

equal or greater than ts; TN: number proteins pairs in the 

negative set having similarity less than ts; FP: number of 

proteins in the negative set having similarity equal or 

above ts; and FN: number of proteins in the positive PPI 

dataset having similarity < ts.  Then precision is:               

P = 
  

     
 

Recall (also called true positive rate TPR) is:  

TPR = R = 
  

     
 

False positive rate: FPR =  
  

     
 

F1-score: F1 = 
     

   
 

The receiver operating characteristics (ROC) curve 

represents the relation between FPR and TPR as shown in 

Figure 1. Then we calculated area under curve (AUC) for 

every ROC curve.  F1 score, or simply F-score, is a 

commonly used evaluation metric for analyzing the 

retrieval quality. F-score is basically a harmonic mean of 

precision and recall; and it is considered more reliable 

indicator than precision or recall in evaluation.  We used 

these metrics for performance analysis and evaluation of 

the results of the proposed method.  

 

Experiments and results and discussion: We used six 

datasets of protein-protein interactions PPIs from human 

proteome, as shown n Table 1. From yeast proteome, we 

used four datasets of PPIs as shown in Table 1 (b). We 

computed protein similarity using GO annotation terms 

for every protein involved in PPI interactions. We 

computed the area under ROC curve (AUC) for all 

experiments and results are in Table_2.  In the human 

PPIs we notice that the best AUC results (0.82 and 0.81) 

are obtained using the BP terms (Table 2 (a)). The AUC 

results in the yeast PPIs show that using CC terms 

produces higher AUC values. The ROC curves for human 

PPIs experiments are illustrated in Figure 1. Table 3 

presents the F-score results for both human and yeast PPIs 

using iea evidence code (iea+) while Table 4 shows the 

results of iea− when records with iea codes are excluded . 

The F-score results of human iea+ experiments with three 

aspects BP, CC, MF are illustrated in Figure 2. Table 5 

contains detailed results of similarity for scoring protein 

interactions for human proteins using BP terms and 

excluding iea annotations iea-. These results, in Table 5,   

 
GO 

aspect 
iea+ iea− 

Human 

BP 0.82 0.81 

MF 0.79 0.76 

CC 0.75 0.78 
 

(a) Human 

 
 

 
GO  

aspect 
iea+ iea− 

Yeast 
MF 0.72 0.71 

CC 0.79 0.79 
 

(b) Yeast 
 

Table 2: AUC results of the PL method using (a) 

Human data, (b) Yeast data 

 

include accuracy, TPR, P, and F-score at every cutoff 

from 0 to 1.0 with 0.1 step. These results obtained from 

on 2408 protein pairs where half of them (1204 protein 

pairs) are interacting proteins (positive PPIs) and the 

other half (1204 protein pairs) are non-interacting and 

randomly selected from human proteins. The best F-score 

0.739 was at 0.6 cutoff (Table 5) which makes sense as 

the similarity value of 0.6 indicates that the two proteins 

in a PPI pair are fairly similar. Further, at cutoff 0.6 and 

positive set accuracy is almost 87% which means at 87% 

of the interacting protein pairs have similarity value of 0.6 

of higher.  These results support that concept of scoring 

and ranking protein pairs in support of protein 

interactions. Moreover, the accuracy of GO annotations of 

human or yeast proteins have significant impact on the 

performance of protein similarity. 

 

5. Conclusion 

We presented an ontology structure based semantic 

similarity measure to examine the semantic similarity 

of protein pairs from the human and yeast PPI 

networks. It has been shown in the literature that 

interacting proteins are more similar in terms of their 

characteristics than randomly selected non-

interacting proteins from the proteome. We used the 

gene ontology as our source of knowledge for 

measuring protein similarity. We examined the three 

aspects of GO with and without including the iea 

annotations. The evaluation results are encouraging 

in the direction of using our similarity measure for 

scoring and ranking PPI pairs and supporting PPI 



findings. In the future of this research, we plan to 

examine other ontology structure based features to 

augment our measure. For example, we would like to 

investigate the relative depth of the sub-graph that 

includes the terms to be measured. 
 

 

 

iea+ 
cutoff 

0.6 0.7 0.8 

Human 

BP 0.76 0.58 0.29 

MF 0.68 0.55 0.38 

CC 0.67 0.73 0.73 

Yeast 
BP 0.60 0.52 0.44 

CC 0.67 0.70 0.74 

 

Table 3: F-score results of PL method: iea+  
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iea− 
cutoff 

0.6 0.7 0.8 

Human 

BP 0.74 0.57 0.34 

MF 0.68 0.55 0.39 

CC 0.67 0.72 0.74 

Yeast 
MF 0.60 0.52 0.43 

CC 0.67 0.70 0.74 

 

Table 4: F-score results of PL method: iea− 

 

 

  

 

 

 

No. of PPI 
pairs 

(1) (2) (3) (4) (5) (6) 

cutoff 
Pos. 

Accuracy 
Neg. 

Accuracy 
TPR 

(recall) 
P F-Score 

Pos = 1204 
 
Neg = 1204 

0 1.000 0.000 1.000 0.500 0.667 

0.1 1.000 0.000 1.000 0.500 0.667 

0.2 1.000 0.009 1.000 0.502 0.669 

0.3 0.998 0.033 0.998 0.508 0.673 

0.4 0.992 0.085 0.992 0.520 0.682 

0.5 0.982 0.199 0.982 0.551 0.706 

0.6 0.867 0.521 0.867 0.644 0.739 

0.7 0.422 0.931 0.422 0.860 0.566 

0.8 0.205 0.990 0.205 0.954 0.338 

0.9 0.145 0.998 0.145 0.989 0.253 

1.0 0.120 0.998 0.120 0.986 0.215 

 

Table 5: Detailed results of the experiment Human BP iea−. The columns (1) thru (6) are as follows:  

Column (1) is cutoff, column (2) is the accuracy in positive set (which includes 1204 interacting 

proteins PPIs), column (3) shows the accuracy of the negative set which includes 1204 non-

interacting protein pairs. Columns (4) – (6) show TPR, P, F-score respectively for each cutoff. 



 
 

(a) CC  iea+ 

 

 

 
 (c) CC iea- 

 
(b) BP iea+ 

 

 

 

 
(d) BP  iea- 

Figure 1: Illustration of ROC curves for experiments on human PPI data 

 

 

 

 
Figure  2: F-score for Human iea+ experiments 
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