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ABSTRACT 
The Gene Ontology has been used extensively for measuring 
the functional similarity among genes of various organisms. All 
the existing gene similarity methods use either molecular 
function or biological process taxonomies in computing gene 
similarity. In this paper, we apply an algorithm for combining 
graphs to connect the molecular function (F) and biological 
process (P) taxonomies into one FP taxonomy graph. We then 
measure the functional similarity of two genes using the 
resulting FP graph with path length function. The two aspects 
of GO, molecular function and biological process, are 
combined by connecting F nodes with P nodes using gene 
ontology annotation, GOA, databases. By combining two GO 
graphs, we can have more comprehensive way to explore the 
functional relationships between genes. We conducted the 
evaluation on a dataset of OMIM disease phenotypes to 
estimate the similarity of disease proteins from various 
diseases. 
 
Categories and Subject Descriptors 
E.1 [Graph and Networks]: trees. J.3 [Computer and 
Applications]: Life and Medical Sciences – Medical information 
systems.  
 
General Terms 
Algorithms, Experimentation. 
 
Keywords 
Gene functional similarity, gene ontology, ontology integration. 
 

1. INTRODUCTION 
The gene ontology is used in all research related to gene and 
protein functional similarity [1, 6, 7]. It is effectively the central 
source of information on functions, processes, and localizations 
of gene products [7]. The gene ontology (GO) have been studied 
and investigated extensively for decades, for computing gene 
similarity and relationships among gene products in various 
organisms [10, 11, 12]. Moreover, most of the approaches for 
discovering new gene functions and identifying gene disease 
associations are also based on GO. Gene ontology is a structured 
vocabulary of gene functions and related information at the 
molecular level, biological process and cellular localization.  
Therefore, GO is composed of three orthogonal sub-ontologies: 
molecular function (F), biological process (P), and cellular 
component (C). The existing techniques for measuring the 
functional similarity of genes and proteins rely on the gene  
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ontology annotation (GOA) terms of the target genes from 
either molecular function (F) or biological process (P) 
independently as there are no links inter-ontology 
relationships between the molecular function and biological 
process ontologies [6, 10, 12]. Table 1 includes an example of 
GOA annotation terms for four genes. In this paper, we want 
to explore the functional relationship between two genes given 
their GOA terms from the molecular function (F) and 
biological process (P) graphs combined [1, 6, 12]. However, 
there has not been any work that explores the functional 
relationships between gene products in terms of their F and P 
annotation terms combined. For that, we introduce an 
algorithm for combining two graphs based on given shared 
knowledge sources. The algorithm assumes that the graphs 
represent knowledge sources from certain domain. It connects 
the nodes from the two disconnected graphs, with disjoint 
vertex sets, based on a given tuple set that summarizes domain 
knowledge from the same domain of the graphs.  
Usually, a graph represents an aspect or a branch (e.g., 
molecular function) of knowledge base (e.g., gene ontology) 
and the edges represent the relationships (e.g. is_a) between 
the knowledge terms or entities which are represented by the 
nodes.  The set of tuples, which is the shared domain 
knowledge, is used to connect the nodes from the two graphs, 
see example in Figure 1.  Such edges are called bridge-edges, 
see Figure 2.  Figure 2 shows a bridge-edge epq that connects 
node tp from one graph to node tq in another graph. The path 
between two nodes in two graphs can pass through one or 
more bridge-edges. Figure 3 shows two graphs, G1 and G2, 
connected by four bridge-edges. This method of connecting 
two graphs, or two knowledge sources, will enable us to 
explore and understand the degree of relatedness of the nodes 
in two graphs based on a given domain knowledge 
summarized in the set of tuples.      

 

2. COMBINING ONTOLOGY 
In this section, we explain how two ontology graphs (e.g., 
molecular function and biological process of GO) will be 
combined based on a shared set of knowledge tuples; see 
example set of tuples in Figure 1. In general, an ontology 
graph consists of nodes where each node is a term, and the 
edges depict the relationships, e.g. is_a, between the nodes. 
The GO graphs are directed acyclic graph (DAG).  A DAG is 
a graph that has no cycles and each edge has a direction. A 
GO graph like the molecular function (F) graph has root node, 
internal nodes, and leaf nodes [7]. As we go down the graph 
from the root towards the leaves, the nodes, or terms, become 
more specific and the root is the most general knowledge 
term. Connecting nodes from two graphs: The nodes from 
two graphs will be connected using shared domain knowledge 
presented as a set of tuples TP ={P1, .., Pn}.  



 
 
 
 
Figure 1: A small tuple set represented in the example graph 

in Figure 3. 
 

Each tuple Pi (i=1, .., n) is a set of terms Pi={t1,…,tk}. 
Moreover, each tuple Pi includes terms (nodes) from both 
graphs (e.g., F and P). That is, Pi={…,tp,….,tq,…} where tp is 
a node in graph F whereas tq is a node in graph P. Since the 
pair (tp, tq) is in a single tuple, we draw an edge epq to connect 
nodes tp and tq , i.e., connecting graph F with graph P.  The 
edge epq is called bridge-edge because it has one endpoint in 
F and the other in P, as shown in Figure 2 and Figure 3. 
Figure 3 shows four bridge-edges connecting G1 with G2. 
These bridge-edges were created based on the tuple set in 
Figure 1. Notice here the term bridge-edge is used differently 
than its use in graph theory (in graph theory, a bridge edge is 
an edge that its removal will disconnect the graph). 
The GOA databases contain a huge amount of gene 
annotation information for large number of model organisms 
[9]. If we used GOA database as a shared knowledge source, 
we can connect F nodes with P nodes. Table 1 contains 
biological process GOA terms (P terms) and molecular 
function terms (F terms) for a sample of four genes. For 
example, if a gene product gi is annotated with F term tf and P 
term tp then we can assume that this is one (inter-ontology) 
relation between tf and tp nodes. Each link between F and P 
has a b_count (bridge count) value as follows: 

  b_count(tp, tq) = number of genes in the GOA annotated 
with both terms tp and tq  …(1)  

Also each bridge-edge has a weight w() defined as follows: 

w(epq) = b_count(tp,tq)
max(b_count())

…………….(2) 

Thus the weight of each bridge-edge epq is: 
 0 < w(epq) ≤ 1. Based on a predetermined threshold (thrs) value, 
we remove all bridge-edges with weight less than the thrs. In 
this work we use thrs=0.50. This thrs value (0.50) was selected 
experimentally after extensive tests with multiple GOA 
databases for various organisms. 

 

3. PATH LENGTH SIMILARITY 
A number of similarity measures based on the Gene Ontology 
(GO) annotation terms have been proposed and applied in the 
past several years for measuring the functional similarity of 
genes and proteins [1, 6, 12]. Path length measure (PL) is a 
direct technique that relies on the ontology structure for 
computing the similarity of genes [12]. In this measure, PL, we 
compute path length (PL) between GO terms and between 
genes/proteins.The path length between two GO terms in the 
same graph is computed straight forward by edge counting. If 
there is more than one path, then the shortest path is taken as 
follows: 

PL(t1, t2) = the shortest path length between nodes 
t1 and t2, ……….…...…(3) 

where t1 and t2 are two GO terms in a single ontology graph; in 
this case, either F (molecular function) or P (biological process). 
If the two nodes belong to two ontology graphs, then each path 
between them passes through a bridge-edge. Define a path  
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Figure 2: bridge edge and bridge nodes 

 
length between two nodes belonging to two ontology graphs as 
follows: If nodes ti and tj are not in the same ontology graph 
then:  
        PL(ti, tj) = PL(ti, tp) + PL(tj, tq) + 1/w(epq) …………(4) 
where tp is a bridge node in the path from ti to the root, and 
similarly tq is a bridge node in the path from tj to the root; and 
w() is weight function shown in equation (2).  The path length 
between two proteins is computed as average of PL of all GO 
terms of the two proteins as follows: 

PL (Pp, Pq) = 
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n

i

m

j

j
q

i
p gogoPL

×

∑∑
= =1 1

),(
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where goi
p and goj

q are annotation terms of proteins Pp and Pq 
respectively. The similarity between two proteins is based on a 
PL similarity method proposed in previous work [4].  The 
transfer function for mapping the PL distance into similarity 
value as follows:  

Sim(p1, p2) = e−  f *PL(p1,p2) ……(6) 

where PL(p1,p2) is the path length between the two proteins p1, 
p2 based on their GO annotation terms and f is a tuning 
parameter (f=0.20 in this research). 
 

4. EVALUATION AND DISCUSSION 
We conducted the evaluation on a dataset of 100 disease 
phenotypes from the OMIM database [13] and UniprotKB 
[www.uniprot.org/help/uniprotkb].  Each disease phenotype is 
associated with several proteins. The GO annotation terms of 
human proteins associated with these diseases are taken from 
Human UniProtKB GOA database [14]. In the evaluation, we 
created two sets each containing 50 pairs of proteins selected 
randomly. Each pair in the first set includes two proteins taken 
from the same disease (we call it set S1) while each pair in the 
second set contains two proteins taken from two different 
diseases (we call it set S2). We applied the method to measure 
the similarity between the two proteins in every protein pair 
using the annotation terms from molecular function (F), 
biological process (P), or FP combined. The results are shown in 
Table 2 for set S1 and in Table 3 for set S2.  
We measured the similarity between two proteins in every pair 
using the PL similarity measure explained in Section 3. For each 
pair of proteins, the similarity is measured using their GOA 
terms using (1) molecular function (F) terms only (2) biological 
process (P) terms only, or (3) F and P terms combined, and we 
call them SIM_F, SIM_P, and SIM_FP_combd respectively; see 
Tables 2 and 3. The average similarity SIM_F (using only F 
terms) of proteins in S1 (0.40) is higher than that of set S2 (0.29) 
as expected. Similarly, the average SIM_P and SIM_FP_combd 
for S1 (0.31 and 0.22) are higher than for S2 (0.23 and 0.18) as 
shown in Tables 2 and 3. These results are also illustrated in 

P1 = {tc, tg} 
P2 = {tc, td, tg} 
P3 = {te, th, ti} 
P4 = {ta, tc, te} 
P5 = {te, th} 
 



Figure 4. This proves that combining F and P ontologies with 
the proposed approach produces similarity that is streamlining 
with similarity pattern using only F terms or only P terms.  
Furthermore, Table_2 shows that the mean value of 
SIM_FP_combd is 0.22 which is lower than the mean SIM_F 
and mean SIM_P and this is expected. When we use the path 
length between all F and P terms of both proteins in the 
combined FP graph, we will get larger path length values and 
hence lower similarity values. There is a clear difference 
between the mean value of SIM_FP_combd between S1 (same 
disease proteins) which is 0.22 and set S2 (different disease 
proteins) which is 0.18. The average path length between same 
disease proteins (set S1) is 7.90 while for different-disease 
proteins (set S2) is 8.63.  
Clearly, the idea of combining two GO graphs into one is novel. 
In this work, we used a limited shared knowledge to combine 
the GO graphs. We used the GOA data on 100 OMIM diseases. 
In total, we had 100 diseases, and on average, each disease is 
associated with about less than 5 proteins for a total of 445 
proteins. From the GOA annotation data of these proteins, we 
removed all the cellular components (C) term. The total F and P 
gene ontology annotation terms for all the proteins are 8255 with 
an average of 18.5 terms per protein.  From these GOA data our 
method was able to create 30594 bridge-edges between F and P 
graphs. 86.7% of the bridge-edges have b_count() = 1.The 
system found only 31 bridges-edges with weight ≥ 0.5. The 
max(b_count()) of all bridge-edges is 26 which is the bridge-
edge connecting the F term protein binding (GO:0005515) with 
the P term blood coagulation (GO:0007596). That is, among the 
445 proteins associated with these 100 diseases, there are 26 
proteins (almost 6%) associated with both protein binding and 
blood coagulation.  
 

5. CONCLUSION 
We presented an approach for combining two GO graphs, the 
molecular function and biological process ontology graphs. The 
functional similarity of proteins is measured from the GO terms 
using the combined graph. All the existing approaches for 
measuring the similarity between genes and proteins rely on GO 
annotation terms from either molecular function or biological 
process ontology. The approach is based on an algorithm for 
combining graphs using shared knowledge. We used the GOA 
database as the shared knowledge to combine the molecular 
function and biological process graphs. Clearly, the idea of 
merging these two GO graphs is novel and will enable for more 
comprehensive way of estimating the degree of relationship 
between genes using their function terms and process terms 
combined.  Also, connecting the two graphs can enable more 
comprehensive viewing, exploring, and understanding of the 
knowledge with its both aspects. The external knowledge is 
represented as a set of tuples to allow for determining bridge 
nodes and creating bridge-edges between the graphs. The 
evaluation was conducted on two datasets of proteins pairs 
related to 100 disease phenotypes extracted from OMIM. We 
used path length based similarity measure applied to the GO 
function and process combined graph.  
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Figure 3: Four bridge-edges between G1 and G2 
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Table 2: Similarity values of 50 pairs of same-disease proteins (set S1). 
 
 

Disease Protein 1 Protein 2 SIM_F SIM_P SIM_FP_combd 
FANCONI ANEMIA P51587 Q9BXW9 0.45 0.25 0.24 
NEURAL TUBE DEFECTS, FOLATE-SENSITIVE P42898 P11586 0.39 0.38 0.25 
STREPTOMYCIN OTOTOXICITY Q969Y2 Q8WVM0 0.22 0.67 0.17 
PEROXISOME BIOGENESIS DISORDERS P56589 O60683 0.58 0.55 0.20 
ADENOCARCINOMA OF LUNG Q9Y238 P15056 0.44 0.30 0.26 
RENAL CELL CARCINOMA 2 P49789 P11362 0.25 0.11 0.12 
LEBER OPTIC ATROPHY P03915 P00846 0.17 0.28 0.17 
FAMILIAL HYPERTROPHIC  CARDIOMYOPATHY Q9UM54 P56539 0.33 0.19 0.15 
FANCONI ANEMIA Q9NPI8 P51587 0.42 0.33 0.29 
FAMILIAL HYPERTROPHIC  CARDIOMYOPATHY P10916 P56539 0.37 0.18 0.14 
FAMILIAL HYPERTROPHIC  CARDIOMYOPATHY Q9H1R3 P56539 0.32 0.19 0.15 
CFC SYNDROME P01116 P15056 0.23 0.21 0.17 
IDIOPATHIC HYDROPS FETALIS P04062 P08236 0.39 0.30 0.22 
PAPILLARY CARCINOMA OF THYROID P06753 Q16204 0.56 0.45 0.31 
MYASTHENIC SYNDROME, CONGENITAL, SLOW-
CHANNEL 

P02708 P11230 0.32 0.30 0.23 
LEIGH SYNDROME Q12887 P00846 0.19 0.18 0.11 
MOLYBDENUM COFACTOR DEFICIENCY O96033 Q9NQX3 0.43 0.61 0.22 
BARDET-BIEDL SYNDROME Q6ZW61 Q9H0F7 0.37 0.20 0.16 
RETINITIS PIGMENTOSA P29973 P82279 0.31 0.32 0.24 
RENAL TUBULAR DYSGENESIS P12821 P00797 0.30 0.22 0.17 
NEONATAL ADRENOLEUKODYSTROPHY O43933 Q92968 0.45 0.25 0.17 
CATARACT, AUTOSOMAL DOMINANT P02489 Q13515 0.51 0.22 0.22 
MITOCHONDRIAL COMPLEX IV DEFICIENCY Q15526 Q12887 0.39 0.26 0.15 
STREPTOMYCIN OTOTOXICITY O75648 Q969Y2 0.25 0.74 0.16 
GLYCINE ENCEPHALOPATHY P23378 P48728 0.36 0.55 0.23 
MYASTHENIC SYNDROME, CONGENITAL, 

SSOC   C C O  C O  
 

Q04844 P11230 0.33 0.32 0.18 
MATURITY-ONSET DIABETES OF THE YOUNG Q13562 P19835 0.24 0.18 0.14 
NEONATAL ADRENOLEUKODYSTROPHY Q92968 O43933 0.45 0.25 0.16 
CATARACT, AUTOSOMAL DOMINANT P43320 Q13515 0.59 0.26 0.28 
WILLIAMS-BEUREN SYNDROME Q9Y4P3 Q9UIG0 0.45 0.28 0.29 
PROTOCADHERIN-BETA GENE CLUSTER Q9Y5E3 Q9Y5F3 1.00 0.48 0.44 
WILLIAMS-BEUREN SYNDROME P15502 Q9UIG0 0.32 0.18 0.20 
PAPILLARY CARCINOMA OF THYROID P07949 Q16204 0.28 0.43 0.29 
MULTIPLE SULFATASE DEFICIENCY P15289 Q8NBK3 0.28 0.32 0.27 
SQUAMOUS CELL CARCINOMA P04637 Q9UK53 0.35 0.33 0.20 
PROTOCADHERIN-BETA GENE CLUSTER Q9Y5E5 Q9Y5F3 1.00 0.48 0.44 
EPIDERMOLYSIS BULLOSA LETALIS Q13751 Q13753 0.32 0.41 0.28 
NONINSULIN-DEPENDENT  DIABETES MELLITUS O15357 Q9HC96 0.28 0.21 0.17 
MELAS SYNDROME P03923 P03905 0.67 0.34 0.30 
PROTOCADHERIN-BETA GENE CLUSTER Q9Y5F1 Q9Y5F3 1.00 0.55 0.56 
ADENOCARCINOMA OF LUNG P00533 P15056 0.27 0.21 0.16 
PHEOCHROMOCYTOMA P40337 P21912 0.43 0.18 0.15 
FAMILIAL ATYPICAL MYCOBACTERIOSIS P42224 P42701 0.33 0.28 0.24 
LACRIMOAURICULODENTODIGITAL SYNDROME P21802 P22607 0.30 0.24 0.18 
RHEUMATOID ARTHRITIS Q9UBC1 Q9UM07 0.34 0.14 0.13 
INFLAMMATORY BOWEL DISEASE 5 Q9HC29 Q9UM07 0.23 0.13 0.11 
MITOCHONDRIAL COMPLEX IV DEFICIENCY P00414 Q12887 0.39 0.27 0.14 
PAPILLARY CARCINOMA OF THYROID Q16204 Q8TBA6 0.31 0.41 0.25 
WILLIAMS-BEUREN SYNDROME Q9BQE9 Q9UIG0 0.28 0.28 0.26 
BARDET-BIEDL SYNDROME Q9H0F7 Q8TAM1 0.47 0.23 0.19 

 Average 
  

0.40 0.31 0.22 



Disease Protein 1 Disease 2 Protein 2 SIM_F SIM_P SIM_FP_
bd RETINITIS PIGMENTOSA O43186 CONGENITAL NONBULLOUS 

 
 

O75342 0.27 0.27 0.18 
PARKINSON DISEASE O43464 CONGENITAL ONDINE 

 
P07949 0.26 0.25 0.19 

AUTOIMMUNE DISEASE O43918 RETINITIS PIGMENTOSA Q12866 0.29 0.30 0.23 
AUTOIMMUNE DISEASE O43918 BARDET-BIEDL SYNDROME Q9H0F7 0.43 0.22 0.22 
PROSTATE CANCER O96017 USHER SYNDROME, TYPE I Q96QU1 0.26 0.23 0.18 
LEBER OPTIC ATROPHY P00414 PITUITARY DWARFISM III Q9UBX0 0.25 0.20 0.13 
CFC SYNDROME P01116 ZELLWEGER SYNDROME Q7Z412 0.36 0.16 0.21 
SHORT STATURE, IDIOPATHIC, 

 
P01241 LEBER OPTIC ATROPHY P03891 0.20 0.17 0.13 

MELAS SYNDROME P03886 MYASTHENIC SYNDROME, 
 

 

P02708 0.20 0.26 0.19 
SEVERE COMBINED 

 
P04234 BLADDER CANCER P22607 0.29 0.24 0.17 

THROMBOPHILIA VENOUS 
 

P05121 TRICHOTHIODYSTROPHY, 
 

Q6ZYL4 0.35 0.17 0.15 
CONGENITAL ONDINE CURSE P07949 SUSCEPTIBILITY TO HUMAN 

  
  

P41597 0.21 0.21 0.16 
IDIOPATHIC HYDROPS FETALIS P10746 ANGELMAN SYNDROME P51608 0.30 0.19 0.20 
RHEUMATOID ARTHRITIS P11021 USHER SYNDROME, TYPE I Q13402 0.34 0.17 0.17 
FAMILIAL HYPERTROPHIC  

 
P12883 IDIOPATHIC HYDROPS 

 
P69905 0.29 0.20 0.14 

DILATED  CARDIOMYOPATHY 1A P12883 MATURITY-ONSET DIABETES 
   

Q13562 0.26 0.19 0.18 
ISCHEMIC STROKE P16109 FAMILIAL ATYPICAL 

 
P29460 0.37 0.23 0.20 

FAMILIAL HYPERTROPHIC  
 

P19429 ISCHEMIC STROKE P24723 0.30 0.21 0.20 
RENAL CELL CARCINOMA, 

 
P19532 PROTOCADHERIN-BETA 

  
Q9UN67 0.30 0.26 0.24 

PHEOCHROMOCYTOMA P21912 FAMILIAL HYPERTROPHIC  
 

Q9UM54 0.25 0.19 0.15 
AUTOSOMAL RECESSIVE CUTIS 

 
P28300 PAPILLARY CARCINOMA OF 

 
O15164 0.27 0.18 0.16 

MYASTHENIA GRAVIS P28329 MEDULLOBLASTOMA P25054 0.17 0.24 0.18 
FAMILIAL ATYPICAL 

 
P29460 PARKINSON DISEASE Q9BXM7 0.26 0.19 0.16 

SURFACTANT METABOLISM 
   

P32927 PROTOCADHERIN-BETA 
  

Q9Y5E9 0.23 0.39 0.26 
ENDOMETRIAL CANCER P43246 PHEOCHROMOCYTOMA P40337 0.32 0.19 0.14 
AMYLOIDOSIS P61626 MITOCHONDRIAL COMPLEX I 

 
O15239 0.20 0.26 0.17 

MONILETHRIX P78385 PAPILLARY CARCINOMA OF 
 

O15164 0.37 0.16 0.20 
MYASTHENIC SYNDROME, 

  
Q04844 HYPOKALEMIC PERIODIC 

 
Q13698 0.30 0.25 0.14 

JUVENILE MYELOMONOCYTIC 
 

Q06124 SHORT STATURE, 
  

P10912 0.33 0.20 0.18 
SUSCEPTIBILITY TO HEPATITIS 

  
Q08334 AUTOSOMAL RECESSIVE 

  
Q9UBX5 0.36 0.33 0.33 

RETINITIS PIGMENTOSA Q12866 LEBER OPTIC ATROPHY P00846 0.16 0.25 0.15 
LEIGH SYNDROME Q12887 SUSCEPTIBILITY TO 

   
P01903 0.16 0.16 0.12 

LEIGH SYNDROME Q12887 SEVERE COMBINED 
 

P04234 0.19 0.16 0.12 
CATARACT, AUTOSOMAL 

 
Q13515 FAMILIAL HYPERTROPHIC  

 
P10916 0.30 0.22 0.20 

PSEUDOHYPOPARATHYROIDIS
   

Q5JWF2 WAARDENBURG-SHAH 
 

P14138 0.26 0.22 0.19 
BARDET-BIEDL SYNDROME Q6ZW61 MYASTHENIA GRAVIS Q04844 0.11 0.27 0.13 
PAPILLARY CARCINOMA OF 

 
Q8IUD2 MELAS SYNDROME P03886 0.29 0.23 0.21 

FANCONI ANEMIA Q8IYD8 ENDOMETRIAL CANCER P43246 0.20 0.32 0.14 
WALKER-WARBURG 

 
Q8WZA1 MATURITY-ONSET DIABETES 

   
O14901 0.17 0.30 0.13 

WILLIAMS-BEUREN SYNDROME Q9BQE9 PAPILLARY CARCINOMA OF 
 

Q8IUD2 0.39 0.42 0.34 
BARDET-BIEDL SYNDROME Q9BXC9 FANCONI ANEMIA Q9NVI1 1.00 0.29 0.28 
WILLIAMS-BEUREN SYNDROME Q9UHL9 FAMILIAL HYPERTROPHIC  

 
Q14896 0.34 0.26 0.22 

RHEUMATOID ARTHRITIS Q9UM07 JUVENILE MYOCLONIC 
 

O00305 0.13 0.13 0.10 
RHEUMATOID ARTHRITIS Q9UM07 MOLYBDENUM COFACTOR 

 
O96007 0.35 0.19 0.17 

FAMILIAL HYPERTROPHIC  
 

Q9UM54 FANCONI ANEMIA O15287 0.31 0.24 0.18 
MEDULLOBLASTOMA Q9UMX1 ZELLWEGER SYNDROME Q13608 0.32 0.17 0.16 
PROTOCADHERIN-BETA GENE 

 
Q9Y5E1 BARDET-BIEDL SYNDROME Q8NFJ9 0.37 0.27 0.24 

PROTOCADHERIN-BETA GENE 
 

Q9Y5E7 FAMILIAL HYPERTROPHIC  
 

P13533 0.16 0.24 0.18 
PROTOCADHERIN-BETA GENE 

 
Q9Y5E7 PHEOCHROMOCYTOMA P21912 0.28 0.21 0.18 

PROTOCADHERIN-BETA GENE 
 

Q9Y5F0 FAMILIAL HYPERTROPHIC  
 

O15273 0.27 0.24 0.21 
Average 0.29 0.23 0.18 

Table 3: Similarity values of 50 pairs of different-disease proteins (Set S2). 
 



 
 

 
(a) Similarity value using only F terms (SIM_F) for set S1 and S2 

 
 

 
(b) Similarity using P terms 

 
 

 
(c)Similarity using FP-combined terms 

 
Figure 4: Illustration of the similarity values using F-term, P-terms and FP-combined 
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