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     Abstract—The existing volumes of biomedical texts 
available online drive the increasing need for automated 
techniques to analyze and extract knowledge from these 
information repositories. Recognizing and classifying 
biomedical terms in these texts is an important step for 
developing efficient techniques for knowledge discovery and 
information extraction from the literature.  This paper 
presents a new technique for biomedical term classification in 
biomedical texts.  The method is based on combing successful 
feature selection techniques (MI, X2) with machine learning 
(SVM) for biomedical term classification. We utilize the 
advances in feature selection techniques in IR and use them 
to select the key features for term identification and 
classification.  We evaluated the method using Genia 3.0 
corpus with about 3,000 to more than 34,000 biomedical term 
instances. The technique is effective, achieving impressive 
accuracy, precision, and recall; and with F-score approaching 
~90%, the method is superior or very competitive with the 
recently published results.  
 
 

I. INTRODUCTION 
 

The research productions in the biomedical and 
bioinformatics fields are very high, and the resulting 
data and literature volumes are extremely huge and still 
growing in very high rates [1, 5, 7, 8].  For example, 
MedLine contains about 14 million abstracts [22].  The 
knowledge embedded in the literature is really massive 
which drives a great need to discover and extract more 
useful and significant knowledge, information, and 
relations to benefit the field. There is a need for effective 
techniques from machine learning, text mining, and 
natural language processing (NLP) to analyze these texts 
and extract significant knowledge for the advancement 
of the science [1, 10, 13].  In the past two decades, 
significant amount of research projects have been 
devoted to problems related to biomedical terms and 
entity names including named entity recognition (NER), 
term identification and classification, and gene/protein 
name disambiguation in biomedical literature [2, 3, 6].  
These tasks are really important for knowledge 
extraction systems as resolving terms and entity names 
(gene names, protein names, disease names, chemical 
compounds,…etc) is a necessary step for developing 
efficient computational bioinformatics systems and tools 
[11].  For example, in the problem of bio-terms 
disambiguation, resolving ambiguity between genes and 
proteins is especially critical due to their importance in 
biological and medical fields. On the other hand, their 
disambiguation is difficult since many proteins and 

genes have identical names, and only few instances are 
explicitly disambiguated by authors in the biomedical 
texts. A common example of gene and protein name 
ambiguity (discussed in [5, 6, 9]) can be seen in the 
following two sentences: 

– “By UV cross-linking and immunoprecipitation, we show 
that SBP2 specifically binds selenoprotein mRNAs both in 
vitro and in vivo.” 
– “The SBP2 clone used in this study generates a 3173 nt 
transcript (2541 nt of coding sequence plus a 632 nt 3’ 
UTR truncated at the polyadenylation site).” 
 

The term SBP2 in the first sentence is a protein, whereas in 
the second sentence SBP2 is used as a gene name. 
In term identification and classification task we want to 
recognize the term and determine its boundaries in a given 
biological text, and then classify it into the correct class. 
For example, in this sentence: ‘p53 protein suppresses 
mdm2 expression’ in an article on human signal 
transduction [25], the term identification step will find the 
term boundaries for the two entities of interest (p53 protein 
and mdm2). Then, the classification step determines that 
the first entity (p53 protein) is a protein, while the second 
entity, “mdm2”, is classified as a gene. Notice here that the 
first term is already classified/disambiguated by the author 
while the second term (mdm2) is ambiguous.  This paper 
presents a new method to identify and classify technical 
terms in biomedical texts.  The proposed method is based 
on machine learning and can be viewed as a word 
classification task. We utilize the advanced in feature 
selection techniques in Information Retrieval (IR) and use 
them (MI and X2) to select the key features in the contexts 
of the target terms. The method was evaluated extensively 
with a large number of experiments and achieved 
impressive performance, the details in the Sections II and 
III. 
 
Related work 
 

Most of the biomedical term identification and recognition 
techniques target certain specific entities (mostly gene and 
protein names) and this way term identification and term 
classification are integrated as one task [25].  A number of 
machine learning and statistical based approaches have 
been proposed for this task in the past two decades [17, 24, 
25]. For example, Morgan et. al. (2003) [17], used HMMs 
based on local context and simple orthographic and case 
variations and reported F-measure of 75% for the 
recognition of Drosophila gene names.  Moreover, in [14] 
Shen et. al. (2003) used POS tags and noun heads as 
features and achieved F-scores of 16.7% to 80% depending  
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TABLE 1 

Results of the JNLPBA-2004 competition of Bio-Entity recognition: (recall/precision/F-score) results of each one of 
the participating systems and the baseline (BL), taken from Kim et. al. (2004) [24]. 

 
 1978-1989 set 1990-1999 set  2000-2001 set  S/1998-2001 set  Total 

[Zho04]  75.3/69.5/72.3  77.1/69.2/72.9  75.6/71.3/73.8  75.8/69.5/72.5  76.0/69.4/72.6 
[Fin04]  66.9/70.4/68.6  73.8/69.4/71.5  72.6/69.3/70.9  71.8/67.5/69.6  71.6/68.6/70.1 
[Set04]  63.6/71.4/67.3  72.2/68.7/70.4  71.3/69.6/70.5  71.3/68.8/70.1  70.3/69.3/69.8 
[Son04]  60.3/66.2/63.1  71.2/65.6/68.2  69.5/65.8/67.6  68.3/64.0/66.1  67.8/64.8/66.3 
[Zha04]  63.2/60.4/61.8  72.5/62.6/67.2  69.1/60.2/64.7  69.2/60.3/64.4  69.1/61.0/64.8 
[Rös04]  59.2/60.3/59.8  70.3/61.8/65.8  68.4/61.5/64.8  68.3/60.4/64.1  67.4/61.0/64.0 
[Par04]  62.8/55.9/59.2  70.3/61.4/65.6  65.1/60.4/62.7  65.9/59.7/62.7  66.5/59.8/63.0 
[Lee04]  42.5/42.0/42.2  52.5/49.1/50.8  53.8/50.9/52.3  52.3/48.1/50.1  50.8/47.6/49.1 

BL  47.1/33.9/39.4  56.8/45.5/50.5  51.7/46.3/48.8  52.6/46.0/49.1  52.6/43.6/47.7 
 
 
 
on the class (overall F-score 66.1%; the protein class F-score 
was 70.8%), and reported that POS tags (obtained by a 
tagger trained on the biomedical domain) proved to be 
among the most useful features.  A number of approaches 
employed SVM for term identification and recognition. For 
example, Kazama et. al. [16] trained SVMs on the Genia 
corpus for multi-class classification. They annotated the 
training data class label and with B, I, and O labels to 
indicate that a term is beginning, inside, or outside the term 
(for example, the label ‘B-Gene’ indicates that the word is in 
the beginning of a gene name). They used position-
dependent features (POS, prefix, suffixes, …etc.) [16]. 
Moreover, Takeuchi and Collier [18] used head-noun 
features in combination with orthographic features the 
reported performance was encouraging (F-score of 74.2% 
for ten classes).  
The JNLPBA-2004 competition [19] included eight systems 
for the Bio-Entity recognition task [24]. The competition 
was an open challenge, and the participants were allowed to 
use whatever techniques and data resources they like. 
However, the systems were evaluated using a common 
evaluation methodology and a common datasets. Four types 
of classification models where used in these eight systems: 
SVMs, HMM, MEMM, and CRFs. The overall results 
(Table 1) showed the recall ranges from 50.8% to 76.0%, 
precision from 43.6% to 69.4%, and F-score from 47.7% to 
72.6% [19, 24]. The work presented in this paper is most 
similar to this competition [19, 24] as we focus on 
biomedical term classification rather than recognition. We 
assume that the terms/entity names are already recognized 
and labeled and we attempt to classify them into their correct 
classes. 
The rest of the paper is organized as follows. Next section 
explains our method. Section III describes the experiments 
and discusses the results. Finally, Section IV presents the 
conclusion and future work. 
 
 
 

II. THE METHOD 
 
A number of previous related methods use the words 
around the terms of interest as features for term 
identification or classification [5, 6, 9].  In our method, we 
also use word features to represent the biomedical terms, 
but the words in the context of the term are not used 
directly as features. Instead, we select as features only 
those words having high ‘discriminating’ capabilities 
between the various classes of terms. These word features 
are used to represent each instance (example) of the terms 
in the training and testing. The method then uses machine 
learning (SVMs) to train classifiers with labeled (training) 
examples. So, some already labeled terms (annotated with 
class labels) are used as labeled training examples. The 
classifiers will then be used to classify unseen and 
unlabeled examples in the testing (classification) phase. 
One of the contributions of this work is the way we select 
features for learning and classification. 
 
A. Feature Selection 
 

   Feature selection is a key issue in the efficiency of the 
learning and classification of such methods as the one 
presented here. A lot of research work has been devoted to 
feature selection in machine learning and data mining, 
particularly in text categorization research, see for 
example [26, 4, 15].  
   Assume that we have two sets C1 and C2 of labeled 
examples extracted from biomedical texts. Let C1 contains 
examples of biomedical term instances and their contexts 
from one category/class (C1), whereas C2 includes 
examples with their contexts from another biomedical 
category (C2). We want to classify terms from C1 and C2 
into their correct classes.  The term, which belongs to 
either C1 or C2, is what is to be classified in this case, and 
the words preceding and following the term are its context 
words. So each example in the set C1 or C2 can be 
represented as: 
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pn… p3  p2  p1 <term> f1  f2  f3….fn
 

where the words p1 , p2 , p3 ,…. , pn  and  f1 , f2  , f3 ,….., fn are 
the preceding and following words (context words) 
surrounding the term, and n is called the window size (w). 
From the examples in C1 and C2, we extract all these p and f 
context words into the set W such that: W = {w1 ,w2 ,    … ,wm}  
Now, each such context word wi∈W may occur in contexts 
from either C1 or C2 or both with different frequency 
distributions. We want to determine that if we see a context 
word wi in an ambiguous example to what extent this 
occurrence of wi suggests that this example belongs to C1 or 
C2.  Thus, we select those words wi from W which are highly 
associated with either C1 or C2 (the highly discriminating 
words) as features. We utilize and apply the feature selection 
techniques mutual information (MI) and chi-square (X2) ([4, 
15]) to select the highly discriminating context words from 
W. These feature selection techniques, MI and X2, were used 
successfully for feature selection in text categorization and 
information retrieval [26, 4, 15, 16].   We explain, in the rest 
of this section, how we use MI and X2 to determine which 
context words from W to be selected as features.  
   Let us first define the notions of a, b, c, and d:  From the 
training examples, we calculate four numeric values a, b, c, 
and d for each context word wi ∈W as follows:  
 

a = number of occurrences of wi in C1  
b = number of occurrences of wi in C2  
c = number of examples of C1 that do not contain wi 
d = number of examples of C2 that do not contain wi 

 

Then, the mutual information (MI) is defined as: 
 

MI = 
)(*)(

*
caba

aN
++

  

 

where N is the total number of examples in C1 and C2.  
And Chi-Square (X2) is computed as:  

 

X2 = 
)(*)(*)(*)(

)(* 2

dcbadbca
cbadN

++++
−  

 

again N is the total number of examples in C1 and C2.  
When using the MI technique for feature selection, we 
calculate MI values for each wi ∈W, then we choose the top  
 

TABLE 2 
 Words with the top MI values 

 

Context words 
wi  

MI 

activate 
process 
sample 
deliver 
inhibit 
went 
generate 
smear 
diagnose 
clear 
… 

1.92 
1.90 
1.87 
1.86 
1.68 
1.56 
1.48 
1.33 
1.33 

    1.27 
    … 

 

 
v words wi ∈W with the highest MI values as features in 
this term’s feature vectors.  In our experiments we tested 
on v values of 10, 20, 30, 50, and 100. For example, if 
v=10, then each training example is represented by a 
vector size of 10 entries (thus, v: vector size) such that the 
first entry represents the word with the highest MI value, 
the second entry represents the word with the second 
highest MI value, and so on. Then for a given training 
example, the feature vector entry is set to 1 if the 
corresponding feature word occurs in that training example 
and set to 0 otherwise.  
Consider the following example, let W = {w1 ,w2 ,  … ,wm} 
be the set of all context words. We compute MI for each 
wi∈W and sort the words wi according to their MI values in 
descending order as shown in Table 2. Table 2 contains the 
top 10 context words with the highest MI values. These 10 
words will be used to compose the feature vectors for 
training or testing examples of the term to be 
disambiguated. For example, the following feature vector: 
 

0 1 1 0 0 0 1 0 0 0
 
represents an example containing the 2nd, 3rd and 7th feature 
words (i.e., process, sample, and generate) occurring  in 
the context of the term in that example within certain 
window size. Additionally, if the window size is 4, then 
that example may look like: 
 

—   generate —   — <the-term> —  sample  — process   
 
   That is, three of the 10 feature words are occurring 
within the window of size 4 of the term. In this case, 
window size is 4 and the vector size is 10. Notice also that, 
we do not encode positional information of the feature 
words in the feature vector. For example the word 
‘generate’, occurred as third preceding word in the term 
context but it is translated to a ‘1’ in the seventh entry of 
the feature vector. 
 
B. Learning and Classification  
 

As we have seen, we generate feature vectors from the 
training examples using the top words selected using MI or 
X2.  Then, we use a well-established learning technique 
Support Vector Machines (SVM) [20, 21] to train 
classifiers with the training vectors. SVM is an inductive 
learning technique for two-class classification. Significant 
theoretical and empirical justifications exist in the 
literature to support SVM [20, 21].  In our method, for 
each class of biomedical terms, we construct one feature 
vector for each training example. Then we take two classes 
at a time and apply SVM to train on these two classes and 
a classifier (model) is produced. The classifier will then be 
used in the testing/classification phase to classify testing 
instances. We use SVM-light (svmlight.joachims.org) 
with the default parameters except that we adjust the cost 
factor (j parameter) by which training errors on positive 
examples outweigh errors on negative examples (default 
j=1).  
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TABLE 3 

 The 36 terminal classes of Genia 3.0. 
 

Class names 
 amino_acid_monomer  DNA_domain_or_region  atom    
 peptide  DNA_family_or_group  carbohydrate   
 protein_N/A  DNA_molecule  lipid    
 protein_complex  DNA_substructure  virus    
 protein_domain_or_region  RNA_N/A  mono_cell    
 protein_family_or_group  RNA_domain_or_region  multi_cell   
 protein_molecule  RNA_family_or_group  body_part    
 protein_substructure  RNA_molecule  tissue    
 protein_subunit  RNA_substructure  cell_type    
 nucleotide  other_organic_compound  cell_component   
 polynucleotide  organic  cell_line    
 DNA_N/A  inorganic  other_name 

 
 
 
 
 

TABLE 4 
 The set of class pairs selected for our evaluations and includes 30 class pairs. 

 

No. Class 1 [C1] 
C1

 instances Class 2 [C2] 
C2

instances
C1 + C2  

instances 
Training 

80% 
Testing 

20%
1  amino_acid_monomer    780 protein_domain_or_region 990 1770 1418 352 
2  peptide    518 RNA_molecule 557 1075 861 214 
3  DNA_substructure    106  protein_substructure    127 233 187 46 
4  carbohydrate    97  protein_substructure    127 224 180 44 
5  nucleotide    236  RNA_family_or_group    332 568 455 113 
6  mono_cell   222  nucleotide   236 458 367 91 
7  polynucleotide   258  RNA_family_or_group   332 590 473 117 
8  mono_cell   222  polynucleotide   258 480 385 95 
9  other_artificial_source   207  polynucleotide   258 465 373 92 

10  inorganic   255  RNA_family_or_group   332 587 471 116 
11  atom   340  RNA_family_or_group   332 672 539 133 
12  lipid   2357  virus   2117 4474 3580 894 
13  lipid   2357  multi_cell   1745 4102 3283 819 
14  multi_cell   1745  virus   2117 3862 3091 771 
15  cell_component   662  tissue   678 1340 1073 267 
16  protein_family_or_group  8247  virus  2117 10364 8292 2072 
17  protein_family_or_group  8247  tissue  678 8925 7141 1784 
18  protein_family_or_group  8247  lipid  2357 10604 8484 2120 
19  protein_family_or_group  8247  atom  340 8587 6871 1716 
20  protein_molecule  21511  virus  2117 23628 18903 4725 
21  protein_molecule  21511  tissue  678 22189 17752 4437 
22  DNA_domain_or_region  7810  virus  2117 9927 7943 1984 
23  DNA_domain_or_region  7810  tissue  678 8488 6792 1696 
24  DNA_domain_or_region  7810  lipid  2357 10167 8135 2032 
25  other_organic_compound 4081  peptide  518 4599 3680 919 
26  cell_type  7021  nucleotide  236 7257 5806 1451 
27  cell_type  7021  lipid  2357 9378 7503 1875 
28  cell_type  7021  peptide  518 7539 6032 1507 
29  cell_line  3846  lipid  2357 6203 4963 1240 
30  cell_line 3846  peptide" 518 4364 3492 872 

Total  142,638  30481 173119 138525 34594
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III. EXPERIMENTS AND RESULTS 
 
We implemented and evaluated the proposed method with a 
large number of experiments using the data from the Genia 
3.0 corpus. In this section, we describe the datasets, the 
experimental design, and then we discuss the results. 
 
A. Dataset 
 

The data for training and testing are taken from the Genia 
corpus version 3.0 [23].  This corpus is used as benchmark 
in most of the biomedical term/entity name related problems 
[18, 19, 24].  The Genia corpus was developed at University 
of Tokyo and constructed from Medline [22] by querying 
using terms  'human', 'blood cells' and 'transcription factors'. 
From this search process, 2,000 abstracts were selected for 
the corpus. The identified terms, in these selected 
documents, were hand annotated with 36 classes/types, these 
classes are shown in Table 3. The corpus contains a total of 
75,108 term occurrences.  
 
B. Experimental Design 
 

We selected for testing 30 pairs of classes such that we want 
each pair to contain two classes having equal or close 
number on instances. These classes are shown in Table 4. 
The total number of term instances in these 30 class pairs is 
173,119 instances of which 34,594 instances were used for 
the testing (Table 4). We used 5-fold cross validation, such 
that, we divided the data into 5 equal folds and repeated each 
experiment five times. Each time we leave one fold (20% of 
the data) out for testing and use the remaining 4 folds (80%) 
for training.  In the text preprocessing step, the training and 
testing texts were preprocessed as follows: (1) We changed 
all the letters into lower case (2) Word stemming: all words 
converted to their stems using Porter’s stemming algorithm 
[12]. (3) Stopword removal: we removed all the function 
words (stopwords) like ‘the’, ‘of’, ‘in’, ‘for’, ‘on’, …etc.  For 
performance metrics we use accuracy, precision, Recall, and 
F1-score.  
 
C. Results and Discussion 
 

Firstly we conducted a variety of experiments using feature 
selection techniques MI and X2 to compare their 
performance. In these experiments we changed window size 
w, with varying vector size v as well. We initially 
experimented with a smaller dataset of 15 class pairs, shown 
in Table 5.  The total number of instances in these 15 class 
pairs is 20,900 instances and number of testing instances is 
4,164; Table 5 contains the numbers of instances in each 
class. Before we delve into the details of the results we 
present little more details about the experimental procedure.  
Consider the first class pair in Table 5 
[amino_acid_monomer, protein_ domain_or_region]. The 
first class (amino_acid_monomer) includes 780 annotated 
terms from this class, whereas the second class 
(protein_domain_or_region) contains 990 annotated terms, 
and the total is 1,770 terms (Table 5).  Of these 1,770 

instances, 80% (1,418 instances; 4 folds) were used for 
training and the remaining 20% (354 instances; 1 fold) are 
used for testing. This step is repeated 5 times by changes 
the training/testing folds. We record accuracy, precision, 
and recall for each round, and then we take the average 
accuracy, precision, and recall of the five rounds. This 
procedure is done for each one of the 15 pairs.  Finally we 
take the microaverage of accuracy, precision, and recall 
for all of the 15 testing pairs.  Table 6 shows the results of 
the first set of experiments (using the data in Table 5) in 
which we changed the window size w, vector size v with 
the two feature selection techniques MI and X2. In this 
table, we notice that using windows size w=3, and vector 
of size v=30 with X2 for feature selection produces the 
highest accuracy (75.17%) and F1 (75.55%) results, while 
the best precision (81.48%) was produced with MI when 
w=3 and v=30.  In the second set of experiments on the 
data of Table 5 (the smaller dataset), we examined the 
performance with three text preprocessing steps: word 
stemming, stopword removal, and converting all letters 
into lowercase; the results are in Table 7.   Table 7 
indicates that word stemming and stopword removal did 
improve the performance but only slightly.  Table 8 
contains the results when the preprocessing steps are done 
in combinations, window size w=10, X2 for feature 
selection, and two different vector sizes v=20 and v=30. 
These results in Table 8, indicate that using all the three 
preprocessing steps with v=30 gives the best results: 
62.23% accuracy and 64.07% F1 score. Next, we 
conducted the main experiments using the main and larger 
dataset (Table 4) that includes 30 class pairs and more than 
173,000 term instances. The results are in Table_9 when 
no preprocessing is done. We notice that these results are 
significantly higher than the results on the first set of class 
pairs.  We examined only X2 (and not MI) because X2 was 
giving better results than MI in most cases. This 
performance with accuracy ranging between 82.87% to 
85.07% and F1 from 88.23% to 90.24% (Table 9) is higher 
that the results of the similar work as reported earlier in 
this paper (Section I & Table 1). Next, we examined the 
performance after the preprocessing steps; we firstly 
applied the preprocessing steps one at a time and the 
results are in Table 10.  Then, combinations of 
preprocessing steps were applied in the third set of 
experiments and the results are in Table 11. 
These results clearly demonstrate that our technique for 
biomedical term classification produces impressive 
performance results proven by a large number and variety 
of experiments. For example, each line in tables 9, 10, and 
11 represents the average accuracy/precision/recall/F1 of 
five experiments (5-fold CV), each experiment is done on 
34,594 testing instances. Moreover, we notice that the 
strength of the proposed method lies mostly on the feature 
selection technique and the learning/classification process. 
We have seen that the preprocessing steps (Table 10 and 
Table 11) did not improve the performance results of 
Table_9 significantly, because the strength comes from the 
way the features selected and the way training/testing is 
done rather than from preprocessing steps. Moreover, the 
discussion about the related work (Section I) provides 
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some results from the published similar work 
[14][16][18][19][24] which indicate that our method 
outperform most of these methods. For example, Tables 9, 
10, and 11 show that our method is capable of giving F1 
scores close to or exceeding 90% whereas the best F1 in 
Table 1 is 73.8% [24].  Hence, we can conclude that the 

strength of the method (and the contribution of this work) 
comes from the unique combination of the successful 
feature selection techniques (MI, X2) with one of the best 
performers in machine learning (SVM) for this task. To the 
best of our knowledge, these results are among the best 
published performance results for this particular task. 

 

 
TABLE 5 

 The smaller dataset of class pairs, selected for the preliminary testing, and contains 15 class pairs. 
 

No. Class 1 [C1] 
C1

 instances Class 2 [C2] 
C2

 instances 
C1 + C2

 instances 
Training 

80% 
Testing 

20% 
1  amino acid monomer   780  protein domain or region   990 1770 1418 352
2  peptide    518  RNA molecule 557 1075 861 214
3  DNA substructure    106  protein substructure   127 233 187 46
4  carbohydrate    97  protein substructure   127 224 180 44
5  nucleotide    236  RNA family or group   332 568 455 113
6  mono cell   222  nucleotide  236 458 367 91
7  polynucleotide   258  RNA family or group  332 590 473 117
8  mono cell   222  polynucleotide  258 480 385 95
9 other artificial source   207  polynucleotide  258 465 373 92
10  inorganic   255  RNA family or group  332 587 471 116
11  atom   340  RNA family or group  332 672 539 133
12  lipid   2357  virus  2117 4474 3580 894
13  lipid   2357  multi cell  1745 4102 3283 819
14  multi cell   1745  virus  2117 3862 3091 771
15  cell component   662  tissue  678 1340 1073 267
 Total 10362  10538 20900 16736 4164 

 
 
 
 

TABLE 6 
Results of the first set of experiments using different feature 
selection (f.s.) techniques, window size (w), and vector sizes (v). 
 

Experiment 

f.s. w v 
A P R F1 

3 10 54.63 26.39 41.37 32.22 
3 20 55.86 56.84 44.08 49.65  

MI 
3 30 57.23 81.48 47.12 59.71 
3 10 69.07 70.79 69.83 70.31 
3 20 71.93 73.71 70.36 72.00 X2

 
3 30 75.17 76.09 75.01 75.55 
5 10 54.59 25.34 44.38 32.26 
5 20 54.78 41.5 44.82 43.10 

MI 
 

5 30 55.48 66.62 43.23 52.43 
X2 5 10 58.91 64.27 51.13 56.95 

10 10 54.66 28.12 44.55 34.48 
10 20 55.02 55.55 45.37 49.95 MI 
10 30 55.09 60.54 45.52 51.97 
10 10 57.66 66.08 46.63 54.68 
10 20 52.57 67.26 9.15 16.11 X2

10 30 53.96 72.74 11.72 20.19 
f.s.: feature selection, w:  window size, v: vector size,   
A: accuracy, P: precision, R: recall, and F1: F1-score. 

 
 
 

 
 

TABLE 7 
Results of the second set of experiments using X2 for feature 

selection, and the three preprocessing steps, one at a time. 
 

Experiment 
Preprocessing w v 

A P R F1 

10 20 57.42 58.54 54.03 56.19 Stemming 
(Porter’s) 10 30 58.12 61.66 48.85 54.51 

10 20 54.08 89.45 8.75 15.94 Stopword 
removed 10 30 54.25 81.98 10.30 18.30 

10 20 52.57 67.26 9.15 16.11 Convert to 
lowercase 10 30 53.96 72.74 11.72 20.19 

 
 

TABLE 8 
 Results of using combinations of preprocessing steps. In these 
experiments w=10, and f.s. is X2. 
 

Experiment 

Preprocessing  v 
A P R F1 

20 60.09 68.12 51.88 51.88 lowercase + 
stopword removed 30 60.09 68.12 51.88 51.88 

20 56.80 56.28 55.93 55.93 lowercase + word 
stemming  30 57.69 61.10 48.92 48.92 

20 57.78 64.25 47.73 47.73 stopword removed + 
word stemming  30 59.10 66.77 50.52 50.52 

20 57.42 63.27 47.04 47.04 lower case + 
stopword removed + 

word stemming  30 62.23 65.86 64.07 64.07 

Average 58.90 64.22 52.25 52.25 
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TABLE 9 

Results of the main/larger dataset, using w=5,10; v = 20, 30; and 
feature selection (f.s) is X2 [no preprocessing steps] 

 

Experiment 

f.s. w v 
A P R F1 

5 20 84.53 85.20 94.25 89.50 
5 30 85.07 85.67 95.33 90.24 

10 20 82.87 84.28 92.56 88.23 
X2

10 30 84.30 85.54 93.08 89.15 
 
 

 
 

TABLE 10 
Results using the main/larger dataset, w=5; v=20, 30; and 

feature selection (f.s) is X2 with preprocessing steps (one at a 
time). 

 

Experiment 

Preprocessing w v 

A P R F1 

5 20 84.14 84.17 95.86 89.63 Word stemming

5 30 84.38 84.71 95.16 89.63 
5 20 83.85 85.22 92.42 88.67 Stopword remvd

5 30 84.20 85.74 92.42 88.96 
5 20 84.07 87.37 90.37 88.85  lowercase 

5 30 84.56 74.94 78.25 76.56 

TABLE 11 
 Results of the set of experiments with the main dataset, using 
combinations of  preprocessing steps. In these experiments window 
size w=5, vector size v=20, 30,  and  f.s. is X2. 
 

Experiment 

Preprocessing  v 
A P R F1 

20 84.34 86.27 93.18 89.59 lowercase + 
stopword removed  30 84.65 86.39 93.58 89.84 

20 84.17 84.19 95.83 89.63 lowercase + word 
stemming  30 84.33 84.66 95.16 89.60 

20 84.21 84.68 95.36 89.71 stopword removed + 
word stemming  30 84.36 84.89 95.20 89.75 

20 84.19 84.82 95.09 89.66 lower case + 
stopword removed + 

word stemming 30 84.38 84.91 95.12 89.72 
Average 84.33 85.10 94.81 89.69 

 

 
IV.  CONCLUSION AND FUTURE WORK 

 
We have presented an approach for biomedical term 
classification. The experimental results showed that the 
method is effective in classifying biomedical terms using 
few surrounding context words as features. We borrowed 
from the IR and TC domains two successful feature selection 
techniques (viz. mutual information and Chi-square), and 
proved with a variety of experiments the effectiveness of the 
approach. The strength of the method comes from the unique 
combination of successful feature selection techniques with 
one of the top machine learners (SVM) into the biomedical 
term classification problem. The experimental results clearly 
demonstrated that the approach is very impressive. In the 
future endeavor of this research, we plan to explore more 
feature selection techniques into this task like information 
gain (IG). We also plan to evaluate the method with more 
datasets, and investigate the possibility of using the concept 
of information content (IC) in the training and classification 
process. 
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