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Abstract 
Word sense disambiguation, WSD, task has been investigated extensively within the natural language 
processing domain. In the biomedical domain, word sense ambiguity is more widely spread with 
bioinformatics research effort devoted to it is not commensurate and is allowing for more 
development. In this paper, we present and evaluate a machine learning based approach for WSD. The 
main limitation with supervised methods is the requirement for manually disambiguated instances of 
the ambiguous word to be used for training. However, the advances in automatic text annotation and 
tagging techniques with the help of the plethora of knowledge sources like ontologies and text 
literature in the biomedical domain will help lessen this limitation. Our approach has been evaluated 
with the benchmark dataset NLM-WSD with three settings. The accuracy results showed that our 
method performs better than recently reported results of other published techniques.  
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1. Introduction 
If a word has more than one sense then the task of 
determining the sense of that word in a given text 
is defined as word sense disambiguation. Within 
the natural language processing (NLP) domain, the 
word sense disambiguation (WSD) problem has 
been studied and investigated extensively over the 
past few decades [1, 2].  In the biomedical domain, 
WSD is more widely spread in the biological and 
medical texts and sometimes with more severe 
consequences. However the research efforts in the 
biomedical domain to solve WSD are not 
proportional to the extent of the problem. As an 
example, in the biomedical texts, the term “blood 
pressure” has three possible senses according to 
the Unified Medical Language System (UMLS) 
[7] as follows: organism function, diagnostic 
procedure, and laboratory or test result. Word 
sense disambiguation has important applications 
and uses in the text mining, information extraction 
and information retrieval systems [1-3]. It also is 
considered a key component in most intelligent 
knowledge discovery and text mining applications.  
The main classes of approaches of word sense 
disambiguation includes supervised methods and 
unsupervised methods. The supervised methods 
rely on training and learning phases that require a 

dataset or corpus that includes manually 
disambiguated instances to be used to train the 
system [17, 18]. The unsupervised methods, on the 
other hand, are based on knowledge sources like 
ontology (UMLS) or text corpora [2, 3, 5, 8]. The 
approach presented in this paper is a supervised 
approach.  In this paper, we present and evaluate a 
supervised method for biomedical word sense 
disambiguation. The method is based on machine 
learning and uses feature extraction techniques in 
constructing feature vectors for the words to be 
disambiguated.   We evaluated the method with the 
NLM-WSD benchmark corpus from the 
biomedical domain. The evaluation results proved 
the competitiveness of our method as it 
outperforms some recently published techniques 
including supervised techniques.  
Related Work:- A number of methods have been 
presented in the bioinformatics literature for 
biomedical word sense disambiguation [1-3, 6, 8, 
9].   In [9], Humphrey et al. (2006) uses UMLS as 
knowledge source for assigning the correct sense 
for a given word. They used journal descriptor 
indexing of the abstract containing the term to 
assign a semantic type from UMLS metathesaurus 
[7, 9].  Agirre et al. (2010) present a graph-based 
method which is considered unsupervised but 
relies on UMLS [2]. The concepts of UMLS are 



represented as a graph and WSD is done using 
personalized page rank algorithm [2].  The work in 
[1] uses supervised learners with linguistic features 
extracted from the context of the word in 
combination with MeSH terms for disambiguation. 
In [3], Jimeno-Yepes and Aronson (2010) 
presented a review and evaluation of four 
approaches that rely on UMLS as the source for 
knowledge for disambiguation.  
 

 2. A Method for WSD 
A word sense disambiguation method is an 
algorithm that assigns the most accurate sense to a 
given word in a given context. Our method is a 
supervised method that requires a training text that 
contains manually disambiguated instances of the 
word. The method is based on a word 
classification and disambiguation technique that 
we have proposed in a previous work [4]. It relies 
on representing the instances of the word to be 
disambiguated, w, as a feature vector and the 
component of this vector are neighborhood context 
words in the training instances. In the context of 
the target word, w, we select the word with the 
high discriminating capabilities as the components 
of the vectors.  We use the manually 
disambiguated instances in the training corpus as 
labeled training examples.  The classifiers will 
then be used to disambiguate unseen and unlabeled 
examples in the testing phase.  That is, during the 
training phase, the constructed feature vectors of 
the training instances will be used as labeled 
exampled to train classifiers. The classifier (model) 
will be then used to disambiguate new, unseen, 
and unlabeled examples in the testing phase. One 
of the main strength of this method is the features 
are selected for learning and classification. 
Feature Selection:-  The features selected from the 
training examples have great impact on the 
effectiveness of the machine learning technique. 
Extensive research efforts have been devoted to 
feature selection in machine learning research [10-
13].  The labeled training instances will be used to 
extract the word features for the feature vectors. 
Suppose the word wx has two senses s1, s2, and let 
the set C1 be the set of wx instances labeled with s1 
and C2 contains instances of wx labeled with sense 
s2. So each instance of wx labeled with sense s1 or 
s2 (i.e., in the set C1 or in the set C2) can be viewed 
as: 

pn… p3 p2 p1 < wx; si > f1 f2 f3….fn 
where the words p1 , p2 ,…. , pn and f1 , f2 , ,….., fn 
are the context words surrounding this instance, 

and n is the window size. Next, we collect all the 
context words pi and fi of all instances in C1 and C2 
in one set W (s.t. W = {w1 ,w2 , … ,wm}). Each 
context word wi ∈ W may occur in the contexts of 
instances labeled with s1 or with s2 or combination 
and in any distribution. We want to determine that, 
if we see a context word wi in an ambiguous 
instance, to what extent this occurrence of wi 
suggests that this example belongs to C1 or to C2. 
Thus, we use as features those context words wi 
that can highly discriminate between C1 and C2.  
For that, we use feature selection techniques such 
as mutual information (MI) [11, 12] as follows. 
For each context word wi ∈W in the labeled 
training examples, we compute four values a, b, c, 
and d as follows: 
a = number of occurrences of wi in C1 
b = number of occurrences of wi in C2 
c = number of examples of C1 that do not contain wi 
d = number of examples of C2 that do not contain wi 
Therefore, the mutual information (MI) can be 
defined as: 

MI = N∗a
(a+b)∗(a+c)

       …..(1) 

and N is the total number of training examples. 
Moreover, we define another method, M2, for 
selecting the words as features to be included in 
the feature vectors as follows: 

M2 = a+d  
b+c

                  …..(2) 

Then, MI (or M2) value is computed for all context 
words wi ∈W. Then the context words wi are 
ordered based on their MI values and the top k 
words wi with highest MI values are selected as 
features.  In this research, we experimented with k 
values of 200 and 300. With k=100, for example, 
each training example will be represented by a 
vector of 100 entries such as the first entry 
represent the context word wi with the highest MI 
value, the second entry represents the context word 
with the second highest MI value and so on. Then 
for a given training example, the feature vector 
entry is set to 1 if the corresponding feature 
(context) word occurs in that training example and 
set to 0 otherwise.  Table 1 shows the top 10 
context words with the ten highest MI values for 
the ambiguous word ‘cold’ in the NLM-WSD 
benchmark corpus explained in Section 3.  These 
10 words will be used to compose the feature 
vectors for training or testing examples of the 
terms to be disambiguated. For example, this 
feature vector   

[0 0 1 0 1 0 0 1 0 0 ] 



represents an example containing the 3rd, 5th and 
8th feature words in the context of the word within 
certain window size. 
The Training Step:- From the labeled training 
examples of the word we build the feature vectors 
using the top context words selected by  MI or M2 
as features. After that, we use the support vector 
machine (SVM) [14] as the learner to train the 
classifier using the training vectors. SVM is one of 
the most successful and efficient machine learning 
algorithms, and is well founded theoretically and 
experimentally [4, 5, 10, 14]. The applications of 
SVM are abound; in particular, in NLP domain 
like text categorization where SVM proved to be 
the best performer. We use SVM-light 
(svmlight.joachims.org) implementation with the 
default parameters and with the RBF kernel. 
The Disambiguation Step:- in the testing step we 
want to disambiguate an instance wq of the word w. 
We construct a feature vector Vq for the instance 
wq the same way as in the training step. Then we 
apply the classifier on Vq to classify it (assign wq) 
to one of the two senses.    

 
3. Evaluation and Experiments  
Dataset:- We used the benchmark dataset NLM-
WSD  for biomedical word sense disambiguation 
[15]. This dataset was created as a unified and 
benchmark set of ambiguous medical terms that 
have been reviewed and disambiguated by 
reviewers from the field. Most of the previous 
work on biomedical WSD uses this dataset [1-3]. 
The NLM-WSD corpus contains 50 ambiguous 
terms with 100 instances for each term for a total 
of 5000 examples. Each example is basically a 
Medline abstract containing one or more 
occurrences of the ambiguous word. The instances 
of these ambiguous terms were disambiguated by 

 
Context words wi 
import 
understand 
ischemia 
reperfus 
respons 
stor 
arteri 
attempt 
repres 
quantit 

Table1: Context words with the top MI values for 
the ambiguous word ‘cold’ 

11 annotators who assigned a sense for each 
instance [15]. The assigned senses are semantic 
types from UMLS. When the annotators did not 
assign any sense for an instance then that instance is 
tagged with ‘none’. Only one term ‘association’ 
with all of its 100 instances were annotated none 
and so dropped from the testing.  
Text Preprocessing:- On this benchmark corpus, we 
have carried out some text preprocessing steps: 
− Converting all words to lowercase. 
− Removing stopwords: removing all common 
function words like ‘is’ ‘the’ ‘in’, ..etc. 
− Performing word stemming using Porter 
stemming algorithm [16]. 
Moreover,  unlike other previous work, words with 
less than 3 or more than 50 characters are not 
ignored currently (unless dropped by the stopword 
removal step). Also words with parentheses or 
square brackets are not ignored and Part-of-speech 
is not used. 
After the text preprocessing is completed, for each 
word we convert the instances into numeric feature 
vectors. Then we use SVM for training and testing 
with 5-fold cross validation such that 80% of the 
instances are used for training and the remaining 
20% are used for testing and this is repeated five 
times by changing the training-testing portions of 
the data. The accuracy is taken as the mean 
accuracy of the five folds and the accuracy is 
computed as  

Accuracy = 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑠𝑒𝑛𝑠𝑒𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

 

We also use the baseline method which is the most 
frequent sense (mfs) for each word. 

Experiments:- initially we evaluated our WSD 
method with all the 49 words (excluded 
association as mentioned previously) such that, a 
word is included in the evaluation only if it has at 
least two or more senses with each sense has at 
least two instances annotated with it. This lead to a 
total of 31 words tested in this evaluation and 18 
words were dropped because they do not have at 
least two instances annotated for each one of two 
senses. For example, the word ‘depression’ has 
two senses: Mental or Behavioral Dysfunction and 
functional concept. Out of the 100 instances of 
depression, 85 instances are tagged with the first 
sense and remaining 15 instances are tagged with 
‘None’ (i.e., no instances tagged with a second 
sense) and so it was excluded in this evaluation. 
Likewise the word ‘discharge’ was not tested as 
has only one instance tagged with the first sense, 
74 instances tagged with the second sense, and 25 



instances tagged with None. We used k=200 and 
the window size is 5. The accuracy results of this 
first evaluation (EV1) are shown in Table 2. The 
detailed results of this evaluation are included in 
Table 3. 
In the second evaluation (EV2) and third 
evaluation (EV3) we changed the parameter and 
the word/features selection formula. In EV2 we set 
k=300 and window size is still 5. In EV3, we kept 
k=300, window=5, and changed the word/feature 
selection formula to M2 defined in equation (2). 
Table 3 contains the results of EV2 and EV3. To 
judge on performance of our method and compare 
our results with similar techniques, we included 
several reported results from three recent 
publications from 2008 to 2010 [1, 2, 3] with our 
results in Table 4. 

 
4. Discussion and Conclusion 

The main weakness of the supervised and machine 
learning based methods for WSD is their 
dependency on the annotated training text which 
includes manually disambiguated instances of the 
ambiguous word [2, 4]. However, over the time, 
the increasing volumes of text and literature in 
very high rates and the new algorithms and 
techniques for text annotation and concept 
mapping will alleviate this problem. Moreover, the 
advances in ontology development and integration 
in the biomedical domain will facilitate even more 
the process of automatic text annotation. 
In this paper we reported a machine learning 
approach for biomedical WSD.  The approach was 
evaluated with a benchmark dataset, NLM-WSD, 
to facilitate the comparison with the results of 
previous work. The average accuracy results of our 
method, compared to some recent reported results 
(Table_4), are promising and proving that our 
method outperforms those recently reported 
methods. Table 4 contains the results for 11 
methods: baseline method (mfs), our method (last  
 

  Accuracy 
Fold 1 0.912 
Fold 2 0.931 
Fold 3 0.917 
Fold 4 0.897 
Fold 5 0.862 

Average 0.903 
Table 2: Accuracy results of the first evaluation, 

EV1, where each sense has to have at 
least two instances tagged with it. 

column), and 9 other methods from recent work 
published in 2008 to 2010 (from Refs [1][2][3]). 
The average accuracy of our method is the highest 
(90.3%) and the closest one is NB (86.0%). Our 
method also outperforms all 10 other methods in 
12 out of 31 words followed by NB which 
outperforms the rest in 7 words.  
Stevenson et al. (2008) in their paper [1] report 
extensive accuracy results of their method (we call 
it Stevenson-2008) along with four other methods 
including Joshi-2005 and McInnes-2007, with 
various combinations of words from NLM-WSD 
corpus used for testing. For example, Joshi-2005 
tested their system on 28 words (out of the whole 
set 50 words) and other techniques used 22 words, 
15 words, or the whole set [1].  In Table 4, the 
results of the three methods (Joshi-2005, McInnes-
2007, and Stevenson-2008) are taken from 
Stevenson et al. (2008) [1]. These three methods 
are supervised methods and used various machine 
learning algorithm and wide sets of features. For 
example, Stevenson-2008 used linguistic features, 
CUI’s, MeSH terms, and combination of these 
features. They employed three learners VSM 
(vector space model), Naïve Bayes (NB) and 
SVM. The results included in Table 4 are their best 
results with VSM and (linguistic + MeSH) features 
[1]. The method of Joshi-2005 uses five supervised 
learning methods and collocation features while 
McInnes-2007 uses NB [1].  
Our evaluation is done on 31 words (as explained 
in Sec 3).  We obtained the results of the other 
methods on these 31 words from the references 
shown in Table 4 to allow for direct comparison. 
The best result reported in their paper is 87.8% 
using all words with VSM model and for McInnes 
85.3% also with the whole set [1]. The best result 
of Stevensons-2008 for subsets was 85.1% using a 
subset of 22 words defined by Liu et al. (2004) [1]. 
The results of the three methods (Single, Subset, 
Full) in Table 4 are taken directly from Agirre et 
al. (2010) [2]. As shown in Table 4, the average 
accuracy of these three methods (68.8%, 59.7%, 
63.5%) on the 31 words are significantly lower 
than our method (90.3%). Also the average 
accuracy of their method on the whole set (65.9%, 
63.0%, and 65.9%); we note that their method is 
unsupervised and does not require tagged instances 
[2].  In another work, Jimeno-Yepes and Aronson 
(2010) evaluate four unsupervised methods on the 
whole NLM-WSD set [3] as well as NB and 
combination of the four methods. The accuracy of 
the four methods ranges from 58.3% to 88.3% 
(NB) on the whole set, and NB found to be the best 



performer followed by CombSW (76.3%) [3].  The 
average accuracy results of NB and two 
combinations (NB, CombSW, CombV) on our 31 
word subset are 86%, 73.1%, 72.1%  respectively 
which are lower than our results; see Table 4.  
These results suggest that our technique is fairly 
successful and promising and thus more research 
work should be exerted to carry out and further 
improve the performance of this technique.  
 
  

 
 

Word Baseline 
(mfs) EV1 EV2 EV3 

adjustment 0.67 0.99 0.96 0.93 
blood_ 
pressure 0.54 0.98 0.80 0.83 

cold 0.91 0.94 0.92 0.95 
condition 0.98 0.95 0.95 0.95 
culture 0.89 0.87 0.96 0.94 
degree 0.97 0.93 0.93 0.93 
evaluation 0.50 0.98 0.82 0.85 
extraction 0.94 0.94 0.93 0.94 
failure 0.86 0.83 0.83 0.83 
fat 0.97 0.93 0.93 0.93 
ganglion 0.93 0.93 0.91 0.93 
glucose 0.91 0.90 0.90 0.93 
growth 0.63 0.92 1.00 0.96 
Immune 
suppression 0.59 0.98 0.88 0.87 

implantation 0.83 0.91 0.96 0.87 
japanese 0.92 0.92 0.97 0.92 
lead 0.93 0.84 0.84 0.84 
man 0.63 0.98 0.90 0.92 
mosaic 0.54 0.99 0.77 0.87 
nutrition 0.51 0.94 0.70 0.88 
pathology 0.86 0.79 0.96 0.92 
radiation 0.62 0.83 0.93 0.89 
reduction 0.82 0.63 0.63 0.63 
repair 0.76 0.92 0.91 0.96 
sex 0.80 0.94 0.97 0.88 
support 0.80 0.67 0.67 0.67 
surgery 0.98 0.95 0.95 0.95 
ultrasound 0.84 0.93 0.93 0.91 
variation 0.80 0.86 0.94 0.89 
weight 0.55 0.83 0.57 0.85 
white 0.54 1.00 0.69 0.77 

Mean 
Accuracy 0.775 0.903 0.87 0.88 

 

Table 3: Detailed accuracy results of three 
evaluations EV1, EV2, and EV3. 
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Word Baseline 
(mfs) 

Previous  Results 
Our 

method 
(EV1) 

Stevenson et al. (2008) [1] Agirre et al. (2010) [2] Jimeno-Yepes et al. (2010) 
[3] 

 Joshi -
2005 

McInnes 
2007 

Stevenso
n-2008 

Single Subset Full NB CombSW CombV 

adjustment 67 71 70 74   33.3 35.5 76.3 69 53.9 99 
blood 
pressure 54 53 46 46 53.0 50 48 57.0 38 44 98 

cold 91 90 89 88 32.6 26.3 28.4 92.6 39 79 94 
condition 98 - 89 89 95.7 39.1 48.9 97.8 78 69 95 
culture 89 - 94 95   33 77 93.0 100 54 87 
degree 97 89 79 95   95.4 93.8 96.9 88 82 93 
evaluation 50 69 73 81 59 54 50 78.0 52 50 98 
extraction 94 84 86 85   23 27.6 94.3 98 86 94 
failure 86 - 73 67   27.6 72.4 86.2 86 100 83 
fat 97 84 77 84 56.2 63 95.9 97.3 91 84 93 
ganglion 93 - 94 96 66 77 64 95.0 88 86 93 
glucose 91 - 90 91 91 91 90 91.0 78 39 90 
growth 63 71 69 68 37 37 37 73.0 55 66 92 
Immune 
suppression 59 80 75 80 64 59 62 79.0 60 65 98 

implantation 83 94 92 93 75 84.7 84.7 98.0 94 97 91 
japanese 92 77 76 75 70.9 70.9 64.6 92.4 63 94 92 
lead 93 89 90 94 93.1 93.1 93.1 93.1 83 86 84 
man 63 89 80 90 61.5 34.8 44.6 87.0 65 42 98 
mosaic 54 87 75 87   60.8 66 82.5 84 72 99 
nutrition 51 52 49 54   33.7 32.6 55.1 45 43 94 
pathology 86 85 84 85   34.3 28.3 85.9 76 83 79 
radiation 62 82 81 84 58.2 53.1 53.1 83.7 76 76 82 
reduction 82 91 92 89 36.4 54.5 54.5 81.8 100 82 63 
repair 76 87 93 88 63.2 72.1 76.5 95.6 87 88 92 
sex 80 88 87 87 84 85 85 84.0 60 53 94 
support 80 - 91 89 80 80 80 80.0 100 90 67 
surgery 98 - 94 97 95.9 97 97 98.0 43 96 95 
ultrasound 84 92 85 90 84 84 83 85.0 81 83 93 
variation 80 - 91 95 85 80 75 91.0 65 86 86 
weight 55 83 79 81 56.6 56.6 56.6 84.9 66 68 83 
white 54 79 74 76 68.9 67.8 63.3 81.1 57 58 100 

Average 77.5 81.1 81.2 83.6 68.8 59.7 63.5 86.0 73.1 72.7 90.3 
  

Table 4: Comparison of our results with the best reported results from recent reported techniques. 


