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Abstract—Most of the intelligent knowledge-based applications
contain components for measuring semantic similarity between
terms. Many of the existing semantic similarity measures that use
ontology structure as their primary source cannot measure seman-
tic similarity between terms and concepts using multiple ontologies.
This research explores a new way to measure semantic similarity
between biomedical concepts using multiple ontologies. We propose
a new ontology-structure-based technique for measuring semantic
similarity in single ontology and across multiple ontologies in the
biomedical domain within the framework of Unified Medical Lan-
guage System (UMLS). The proposed measure is based on three
features: 1) cross-modified path length between two concepts; 2) a
new feature of common specificity of concepts in the ontology; and
3) local granularity of ontology clusters. The proposed technique
was evaluated relative to human similarity scores and compared
with other existing measures using two terminologies within UMLS
framework: Medical Subject Headings and Systemized Nomencla-
ture of Medicine Clinical Term. The experimental results validate
the efficiency of the proposed technique in single and multiple on-
tologies, and demonstrate that our proposed measure achieves the
best results of correlation with human scores in all experiments.

Index Terms—Biomedical information retrieval, biomedical
ontology, biomedical terminology, semantic similarity, Unified
Medical Language System (UMLS).

I. INTRODUCTION

S EMANTIC similarity techniques are interested in measur-
ing the semantic similarity, or inversely, semantic distance

between two concepts according to a given ontology. Seman-
tic similarity techniques are becoming important components
in most intelligent knowledge-based and semantic informa-
tion retrieval (SIR) systems [1], [14], [19]. For example, in
SIR, semantic similarity techniques play a crucial role in de-
termining an optimal match between query terms and docu-
ments. Measures of semantic similarity are also used in broad
applications such as sense disambiguation [1], [28], informa-
tion extraction and retrieval [3], [19], classification and rank-
ing, detection of redundancy, and detection and correction of
malapropisms [1], [3], [14]–[16]. In bioinformatics, semantic
similarity techniques can be of great benefit in integrating mul-
tiple information sources for knowledge discovery and informa-
tion extraction applications [14].

Manuscript received February 8, 2008; revised September 3, 2008, December
19, 2008, and March 4, 2009. This paper was recommended by Associate
Editor xxx.
The authors are with the University of Houston-Clear Lake, Houston, TX

77058 USA (e-mail: hisham@uhcl.edu; nguyenanhhoa2000@yahoo.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSMCC.2009.2020689

Semantic similarity is the inverse of semantic distance, such
that, if two conceptsC1 andC2 belong to two different nodes n1
and n2 in a given ontology or terminology, then the distance be-
tween the nodes (n1 and n2) determines the similarity between
these two concepts (i.e., C1 and C2). Each node, in an ontology
(also called concept node), contains a set of synonymous terms,
and hence, two terms are synonymous if they are in the same
node. If the two terms are synonymous, then their semantic sim-
ilarity is maximum, and one term can be represented by one or
more concept nodes.
The semantic similarity measuring techniques can be roughly

classified into two classes: 1) structure-based measures are the
measures that use ontology hierarchy structure (e.g., is-a, part-
of) to compute the semantic similarity between terms [7], [14],
[17], [25] and 2) information content (IC) based measures are
those measures that use IC of concepts derived from corpus
statistics to measure the semantic similarity between terms.
The primitive approach to find the semantic similarity be-

tween two terms in ontology is to find the shortest path length
between them in the ontology (shortest path length) giving that
the links are of type is-a/part-of. Rada et al. [17] proposed path
length as a potential measure of semantic distance/similarity
in the biomedical domain within the Medical Subject Head-
ings (MeSH) terminology [5], [11], [23], [24], [26]. After Rada
et al.’s approach, a number of approaches have been developed
using ontology/terminology as primary information source, and
were mostly applied in the general English domain using, for
example, WordNet [13]. However, most of these similarity tech-
niques cannot measure semantic similarity between terms in
multiple ontologies to solve the problem of missing terms in a
single ontology, or to allow for source integration.
An ontology represents an effectivemeans of knowledge shar-

ing within controlled and structured vocabulary [21]. Many on-
tologies have been developed in the past few decades for var-
ious purposes and domains [3], [12], [15], [21]. For example,
WordNet [13] is a lexical database for general English covering
most of the general English concepts and supporting various pur-
poses. In the biomedical domain, the UnifiedMedical Language
System (UMLS) framework [5] includes many biomedical on-
tologies and terminologies (e.g., MeSH, Systemized Nomen-
clature of Medicine Clinical Term (SNOMED-CT), ICD fam-
ily [5], [6], [11], [23], [24]). Moreover, within one domain, one
concept may exist in one ontology but is missing in another on-
tology. For example, in Fig. 1, the biomedical concept “stomach
cramps” exists in SMOMED-CT but not in MeSH although its
parent concept “abdominal pain” exists in both ontologies. In
this case, such terms that are missing from the underlying on-
tology will not be measured for similarity and will be skipped;
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Fig. 1. Two fragments of (left) SNOMED-CT and (right) MeSH.

see, for example, [14] and [16]. Therefore, we would like to
explore a way of measuring semantic similarity between terms
(such as “stomach cramp” and “colic” in Fig. 1) within multi-
ple ontologies. The existing ontology-based semantic similarity
measures cannot handle this case.
In this paper, first, we investigate the basic ontology-based

semantic similarity features, and then, we propose new seman-
tic features 1 as well as new semantic similarity techniques. The
proposed techniques can measure the similarity between con-
cepts in single ontology and across multiple ontologies in the
biomedical domain. We also present a strategy for combining
and selecting ontologies in measuring the similarity of terms
dispersed across multiple ontologies. The proposed technique
relies on one type of relations, i.e., is-a, and all links between
nodes have the same weight of 1. We evaluated the proposed
measures along with other existing similarity measures that we
adapted from general English into the biomedicine field. We
used datasets of biomedical term pairs scored for similarity by
human experts. The experimental evaluations were conducted
relative to correlation with human scores using the MeSH and
SNOMED-CT within UMLS framework [6], [11], [23]. The
experimental results with the multiple datasets and with mul-
tiple ontologies/terminologies confirmed the efficiency of the
proposed measure.
In the biomedical and bioinformatics domains, a term is dis-

tinguished from a concept in that the “term” is a word form or
a lexical form that exists in the (biomedical) texts (like research
articles) whereas the “concept” is a node in an ontology or in a
controlled/structured vocabulary like MeSH [21]. In the context
of measuring semantic similarity between terms, we assume that
each term is mapped into one or more concepts (i.e., nodes) in
the given set of ontologies.
The biomedical field boasts the availability of huge volumes

of data and information resources. Therefore, identifying and
measuring similarity between biomedical concepts and terms
in these resources will help greatly in utilizing and integrat-
ing information sources, for example, in intelligent knowledge
discovery and information retrieval applications.
TheUMLSproject started at theNational Library ofMedicine

(NLM) in 1986 with one of the objectives being to help in-

1The proposed semantic similarity measure is available upon request from
the first author.

terpret and understand medical meanings across systems [5],
[6], [11], [23]. It consists of three main knowledge sources:
Metathesaurus, Semantic Network, and SPECIALIST Lexicon
and Lexical Tools [5]. Metathesaurus consists of more than one
million concepts from over 130 sources, and supports 17 lan-
guages [5]. MeSH [5], [11], [23], [24], [26] is one of the core
source vocabularies used in UMLS with the primary purpose
of supporting indexing, cataloguing, and retrieval of more than
16 million medical literature articles stored in NLM Medline
database [10]. SNOMED-CT [5], [6], [23], [24] was included
in UMLS in May 2004 (2004AA) [5]. SNOMED-CT is a com-
prehensive clinical ontology with coverage of diseases, clinical
findings, and procedures, and includes concepts, terms, and rela-
tionships to represent clinical information. Each node in MeSH
is a main heading, which is a concept that belongs to a descrip-
tor in MeSH database [26]. A descriptor is often broader than a
single concept, and so, it may consist of a class of concepts.

II. BACKGROUND

Several semantic similarity measures have been proposed in
the past few decades. Most of these measures were developed
for, and applied into, WordNet [13]. WordNet was developed
at Princeton University and includes English nouns, verbs, ad-
jectives, and adverbs organized into synonym sets. In WordNet
2.0, there are nine noun taxonomies with an average depth of 13,
and 554 verb taxonomies with an average depth of 2. For more
details on WordNet, see [13]. The following semantic similarity
measures are based on WordNet and can be roughly classified
into two groups as follows.

A. Structure-Based Measures

Most of the measures that are based on the hierarchy structure
of ontology are actually based on: 1) path length (i.e., shortest
path length/distance between the two concept nodes) and 2)
depth of concept nodes in the ontology. Some of the measures
that are based on WordNet include Path length [17], Wu and
Palmer [25], and Leacock and Chodorow [7].

B. Information-Content-Based Measures

These measures use IC of concepts, sometimes with ontology
structure, as their information source. Some of the WordNet-
based measures include Resnik [18], Jiang and Conrath [4], and
Lin [9].

C. Semantic Similarity in the Biomedical Domain

Rada et al. [17] proposed semantic distance as a potential
measure for semantic similarity between two concepts inMeSH.
More recently, Caviedes and Cimino [2] implemented the short-
est path length measure, called CDist, based on the shortest
distance between two concept nodes in the ontology. They
evaluated CDist on UMLS Metathesaurus (MeSH, SNOMED,
ICD9 [5], [6], [11], [23], [24], [26]), and then compared the
CDist similarity scores to human expert scores by correlation
coefficients. Another recent work on semantic similarity and
relatedness in the biomedicine domain is by Pedersen et al. [16]



AL-MUBAID AND NGUYEN: MEASURING SEMANTIC SIMILARITY BETWEEN BIOMEDICAL CONCEPTS WITHIN MULTIPLE ONTOLOGIES 3

Fig. 2. Fragment of two clusters in ontology.

in which they applied a corpus-based context vector approach
to measure similarity between concepts in SNOMED-CT. Their
context vector approach is ontology-free but requires training
text, for which, they used text data from Mayo Clinic corpus of
medical notes [16], [28].

III. ONTOLOGY-BASED SEMANTIC SIMILARITY FEATURES

A. Path Length and Common Specificity Features

Path-length-based measures, such as path length [2], [17] and
Leacock and Chodorow [7], do not account for the depth of the
nodes and give the same similarity value for two pairs of nodes
{(n1, n2), (n3, n4)} if PathLength(n1, n2) = PathLength(n3,
n4) regardless of the depth of the nodes or the depth of their least
common subsumer (LCS). The LCS of two nodes n1 and n2 is
the lowest node in the tree that can subsume both n1 and n2. For
example, in Fig. 2, LCS(a3 , a5) = a1 and LCS(a2 , b2) = r. In
addition, the measure of Wu and Palmer [25] uses only depth
of concept nodes. We, however, want to combine both features,
path length and depth, in one measure, i.e., we will take the
specificity of concept nodes into account by utilizing the depth
feature of the concepts. The LCS of two concept nodes deter-
mines the common specificity of two concepts, according to
ontology structure only. Furthermore, local density such as link
strength/weight also affects the similarity. One way of measur-
ing the local density is using IC of concepts based on corpus
statistic [1], [8], [18]. And since there is no standard corpus
in biomedical domain, we use only ontology-based features as
properties of semantic similarity. The proposed method does
not require ontology (essentially) with formal semantic rela-
tions between terms; it can be applied onto any terminology
structure, structured vocabulary, or, in general, directed acyclic
graph (DAG) with links between the nodes.

B. Local Granularity of Clusters and Local Specificity
of Concepts

The existing semantic similarity measures do not take into
account the local granularity of clusters (i.e., subtrees, category

trees, and taxonomy) containing the concept nodes.We examine
the local specificity of a concept node by considering the cluster
containing that concept node. The following example explains
the effect of cluster on concept specificity. We use the term
“cluster” in this paper to refer to a subtree or taxonomy tree in
the ontology.
Let us consider the fragment in Fig. 2 that has two (left and

right) clusters containing concepts ai and biwith depths of 4 and
3, respectively. The roots of the two clusters are a1 and b1 , while
r is the global root. Define the specificity, spec(c), of concept c
in a cluster C as follows:

spec(c) =
depth(c)
depthC

(1)

where depth(c) is the depth of concept c and depthC is the
depth of cluster C using node counting. We note that spec(c) =
1when the concept c is a leaf node in the cluster (i.e., depth(c)=
depthC). Following (1), specificity of a2 and b2 , in Fig. 2, is
calculated as follows:

spec(a2) =
2
4

= 0.50 spec(b2) =
2
3

= 0.67.

i.e., the local specificity of concept b2 (0.67) is more than that
of concept a2 (0.50) even though both have the same depth.
Thus, b2 has more specificity (i.e., more specialized) within its
cluster than a2 as it lies further down, toward the bottom, in
its cluster. Therefore, the local granularity of clusters affects the
similarity scale between concepts in different clusters. Thus, the
granularity of clusters should be taken into account and utilized
as a contributing feature in measuring semantic similarity.

IV. CROSS-ONTOLOGY SEMANTIC SIMILARITY

Within the framework of UMLS, the concepts are dispersed
in many ontologies and terminologies, and these ontologies
overlap in many sets of UMLS concepts. Some concepts (e.g.,
“colic” in Fig. 1) related to a concept in a given ontology (e.g.,
SNOMED-CT) may not be seen in that ontology, as shown in
Fig. 1; however, these related concepts exist in other ontolo-
gies (e.g., MeSH) in the framework. The issue that stands out
here is that the ontologies within a framework like UMLS have
different granularity degrees, and so, each ontology reflects a
different similarity scale. For measuring cross-ontology similar-
ity of concepts, the granularity of ontologies should be taken into
account. Rodriguez and Egenhofer proposed amethod for deter-
mining the most similar (or equivalent) entity (concept) classes
in two ontologies [20]. Their method also ranks the similarity
of a given concept to a set of concepts based on two ontolo-
gies [20]. The method finds similar classes based on matching
common features in the two ontologies. In the evaluations, pre-
cision and recall were calculated based on number of similar
entity classes that their method finds versus number of actual
similar classes [20]. In this paper, however, we want to measure
the semantic similarity between two terms within two ontolo-
gies O1 and O2 having some common (identical) nodes (see
Figs. 1 and 3).
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Fig. 3. Connecting two ontology fragments.

A. Adapted Common Specificity Feature

For cross-ontology semantic similarity, we adapt the concept
specificity feature (Section III-B) for cross-ontology. In a pre-
vious work, we investigated this specificity feature with cluster
granularity within a cluster-based approach [12]. The specificity
feature takes into account the depth of the LCS of two concepts
and the depth of ontology. The common specificity, CSpec, of
two concept nodes C1 and C2 can be measured by finding the
depth of their LCS node, and then scaling it by the depth D of
the ontology as follows:

CSpec(C1 , C2) = D − Depth(LCS(C1 , C2)). (2)

Thus, the CSpec feature determines the common specificity
of two concepts in the ontology. The less the CSpec value of two
concepts, the more they have “shared information,” and thus the
more they are similar. For example, in Fig. 2, CSpec(a2 , a5) =
4 − 1 = 3 and CSpec(a2 , b2) = 4 − 0 = 4.

B. Proposed Cross-Ontology Approach

1) Rules and Assumptions: As each ontology has a different
granularity degree affecting its similarity scale, we present the
intuitive rules of cross-ontology semantic similarity as follows.
1) The semantic similarity scale system reflects the degree
of similarity of pairs of concepts comparably in single
ontology or in cross-ontology. This rule ensures that the
mapping of one ontology OB (called secondary ontology)
to another ontologyOA (called primary ontology) does not
deteriorate the similarity scale of the primary ontology.

2) The semantic similarity must obey local ontology’s simi-
larity rules as follows.
a) The shorter the distance between two concept nodes
in the ontology, the more they are similar.

b) Lower level pairs of concept nodes are semantically
closer (more similar) than higher level pairs (i.e., the
more the two concept nodes share information, the
more similar they are).

c) The maximum similarity of two concepts is reached
when they are in the same node in the ontology.

2) Single Ontology Similarity: Within the single ontology,
we do not consider the granularity, and hence, we use the path
length and depth features to get semantic distance of two con-
cepts as follows:

SemDist(C1 ,C2) = log((Path− 1)α × (CSpec)β + k) (3)

where α > 0 and β > 0 are contribution factors of two features
(Path and CSpec), k is a constant, Path is the shortest path length
between the two concept nodes, and CSpec feature is calculated
as in (2). We use logarithm function (inverse of exponentiation)
for semantic distance (3), which is the inverse of semantic sim-
ilarity. Shepard [29] derived an exponential-decay function as
a form of universal law of stimulus generalization for psycho-
logical sciences based on which the assumption can be true that
logarithm functions are appropriate for semantic distance [8].

3) Cross-Ontology Semantic Similarity: In cross-ontology
semantic similarity between two concepts (C1 andC2), there
are four cases that depend on whether or not the two concepts
(C1 and C2) occur in one ontology (i.e., if C1 and C2 do not
exist in one ontology, then we must use two ontologies in the
measure), and whether they occur in the primary or secondary
ontology (the proposed cross-ontology measure requires that
one of the ontologies be designated as “primary” and the rest
are secondary ontologies; determining primary and secondary
ontologies is discussed in Section IV-C). The four cases are as
follows.

Case 1 (Similarity within the primary ontology): If the two
concepts occur in the primary ontology, then the similarity in
this case is treated as similarity within single ontology using (3)
given before.

Case 2 [Cross-ontology similarity (primary–secondary)]:
The common specificity feature: In this case, the two concepts
belong to two different ontologies (primary and secondary).
The secondary ontology is connected to the primary ontology
by joining the common nodes (e.g., a9 and b2 in Fig. 3) of two
ontologies. However, two ontologies may have many common
or equivalent nodes. Two nodes in two ontologies are equivalent
if they refer to the same concept. For example, in Fig. 3, suppose
that b2 and a9 refer to the same concept (i.e., b2 = a9), then we
merge b2 and a9 into one node called bridge, as in Fig. 3. Thus,
since there can bemore than one bridge nodewhenmapping two
ontologies, there can be more than one LCS node ({LCSn}) for
the two concepts. The LCS node of two concept nodes (C1 , C2)
belonging to two ontologies is the LCS of the first node C1 in
primary ontology and the bridge node, i.e.,

LCSn (C1 , C2) = LCS(C1 ,bridgen ) (4)

such that C1 belongs to the primary ontology while C2 be-
longs to the secondary ontology. The path length between two
concept nodes in two ontologies passes through two ontologies
having different granularity degrees. The part of path length
in secondary ontology is then converted (scaled) into primary
ontology’s scale of path feature as explained next.

The cross-ontology path length feature: The path length be-
tween two concept nodes is calculated by adding up two path
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lengths from each of them to bridge node. For example, the path
length between a3 and b3 in Fig. 3 is calculated as follows:

Path(a3 , b3) = d1 + d2 − 1 (5)

such that d1 = d(a3 , bridge) and d2 = d(b3 , bridge), where
d(a3 , bridge) is the shortest path length from a3 to the bridge,
and similarly for d(b3 , bridge) (in this example, d1 = 7 and
d2 = 2). In this case, bridge is counted twice because of using
node counting approach, so 1 is subtracted in (5). Note that path
lengths d1 and d2 are in different scales. Let us assume the first
ontology (which contains ai) to be the primary ontology, and
thus, the second ontology (which contains bi) is the secondary
ontology. We scale the path length and CSpec features in the
secondary ontology to the primary ontology’s scale. We define
PathRate and CSpecRate as follows. The granularity ratio of the
primary ontology over the secondary ontology for the common
specificity feature is

CSpecRate =
D1 − 1
D2 − 1

(6)

where D1 and D2 are the depth of primary ontology and sec-
ondary ontology, respectively [hence (D1 − 1) and (D2 − 1)
are the maximum common specificity values of the primary and
secondary ontologies, respectively; see (2)]. The granularity ra-
tio of the primary ontology over the secondary ontology for the
path feature is given by

PathRate =
2D1 − 1
2D2 − 1

(7)

where (2D1 − 1) and (2D2 − 1) are the maximum path values
of two concept nodes in the primary and secondary ontologies,
respectively. Following our rules (in Section IV-B1), d2 [in (5)]
in the secondary ontology needs to be scaled to the primary
ontology as follows:

d′2 = PathRate× d2 . (8)

This new path length d′2 reflects the path length of the second
concept node to the bridge node relative to the primary ontology
granularity scale. Applying (8), the cross path length between
the two nodes in primary ontology scale of path feature is given
as follows:

Path(C1 , C2) = d1 + PathRate× d2 − 1. (9)

And so,

Path(C1 , C2) = d1 +
2D1 − 1
2D2 − 1

× d2 − 1. (10)

Recall that there can be more than one bridge node; therefore,
there can bemore than one path length between the two concepts
({Pathn}). Finally, the semantic distance, SemDist, between two
concept nodes is given as follows:

CSpeci(C1 , C2) = D1 − Depth(LCS(C1 , Bridgei)) (11)

SemDisti(C1 , C2)= log((Pathi−1)α×(CSpeci)
β +k) (12)

SemDist(C1 , C2) = MINq{SemDistq (C1 ,C2)} (13)

where D1 is the depth of the primary ontology and Pathi is the
path length of two concepts calculated via Bridgei . The semantic
distance between two concepts is chosen as theminimumamong
all possible paths.

Case 3 (Similarity within single secondary ontology): This
is the case when both concepts are in a single secondary on-
tology. Then, the semantic distance features in this case must
be converted into primary ontology scales of two features as
follows:

Path(C1 , C2) = Path(C1 , C2)secondary × PathRate (14)

CSpec(C1 , C2) = CSpec(C1 , C2)secondary × CSpecRate
(15)

SemDist(C1 ,C2) = log((Path− 1)α × (CSpec)β + k) (16)

where Path(C1 , C2)secondary and CSpec(C1 , C2)secondary are
the Path and CSpec between C1 and C2 in the secondary ontol-
ogy, and PathRate and CSpecRate are computed in (7) and (6),
respectively.

Case 4 (Similarity within multiple secondary ontologies):The
fourth case is when the two concepts are in two different sec-
ondary ontologies (i.e., none of them exists in the primary on-
tology). In this case, one of the two secondary ontologies acts
momentarily (temporarily) as a primary to calculate the seman-
tic features (viz., Path and CSpec) using case 2 before. Then,
the semantic similarity is computed using case 3 to scale the
features (again) to the scale level of the primary ontology.

C. Choosing the Secondary Ontologies

First, among multiple ontologies, the one with the highest
granularity will be chosen as the primary ontology. Now, which
ontology is chosen as the secondary ontology? In case 2 (i.e.,
first concept in the primary ontology while the other concept
is in a secondary ontology), the second concept may belong to
several ontologies in the unified framework. Assume we have
one designated primary ontology and a number of candidate
secondary ontologies, then our proposed strategy for choosing
the secondary ontology is based on two observations. The first
observation is that themore the twoontologies overlap, the better
the similarity of two concepts dispersed in these two ontologies.
Thus, among the candidate secondary ontologies, we select the
one that has the most overlapping with the primary ontology.
The second observation is that the secondary ontology should
be chosen as the one that has the highest granularity degree.
For that, we proposed a metric to measure the goodness of
choosing a secondary ontology. The higher the goodness value,
the better it is chosen as the secondary ontology. The metric is as
follows:

goodness(Op,Os) =
|Op ∩ Os|
|Op ∪ Os| ×

Ds
Dp

(17)

where Op is the primary ontology and Os is the secondary
ontology that is examined for goodness as secondary ontology.
Op ∩ Os is the set of common concepts of two ontologies.
Op ∪ Os is the union of two sets of concepts of two ontologies.
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Ds and Dp are the depth of primary ontology and secondary
ontology, respectively.
In case 4 before, when the two concepts (C1 and C2) belong

to two different secondary ontologies, there can be multiple
secondary ontologies containing the concepts. Therefore, the
problem is which secondary ontology is chosen for each of the
two concepts? First, for the first concept C1 , among the ontolo-
gies containing C1 , the ontology with the highest granularity
(say Ox) is chosen for C1 . Then, the goodness metric (17) is
used to determine the best ontology for the second concept C2
(note: when applying (17) to determine the second ontology,
we treat the first ontology Ox chosen for the first concept as a
primary ontology).

V. EXPERIMENTS AND RESULTS

There are a number of evaluation methodologies to assess the
accuracy of similarity values computed by a given similarity
measure [1]. One of the methodologies is to employ the simi-
larity measure in an application that requires similarity between
words like word sense disambiguation, finding malapropisms,
or information retrieval [1], [3], [7], [14], [19]. Another evalua-
tion methodology is to compare the computed similarity values
of the measure against the human (expert) similarity scores
using, for example, correlation coefficient. The latter method-
ology requires a dataset of term pairs scored for similarity by
human experts. In this paper, we use the second methodology
to evaluate the proposed measure as it is more common in this
task [1], [3], [7], [8], [14].

A. Datasets

Dataset 1: In the biomedical domain, there are no standard
human rating sets of terms for semantic similarity like theMiller
andCharles (MC) or Rubenstein andGoodenough (RG) datasets
in general English [1]. Thus, to evaluate our methods, we used
the set of 30 concept pairs from [16], which was annotated by
three physicians and nine medical index experts. Each pair was
annotated on a four-point scale: practically synonymous, related,
marginally related, and unrelated. The average correlation be-
tween physicians is 0.68, and between experts is 0.78. Because
the experts are more than the physicians (nine experts versus
three physicians) and the correlation (agreement) between ex-
perts (0.78) is stronger than the correlation between physicians
(0.68), we will assume that the experts rating scores are more
reliable than the physician rating scores.

Dataset 2: We used another biomedical dataset containing 36
MeSH term pairs [3]. The human scores in this dataset are the
average evaluated scores of reliable doctors.

Dataset 3: Furthermore, we combined dataset 1 and
dataset 2 into one dataset; we call it dataset 3 containing 66
biomedical term pairs.
We used the UMLS Knowledge Source (UMLSKS) browser

[24] for SNOMED-CT and MeSH browser [11] for MeSH.
RG Dataset: The RG dataset of term pairs contains 65 gen-

eral English term pairs. RG was collected by Rubenstein and
Goodenough [30], and covers 51 subjects containing 65 pairs of
words on a scale from “highly synonymous” to “semantically
unrelated” [1], [30].

TABLE I
ABSOLUTE CORRELATIONS WITH HUMAN SCORES FOR FOUR MEASURES
USING SNOMED-CT ON DATASET 1, DATASET 2, AND DATASET 3

To evaluate the approach in cross-ontology, a dataset con-
taining term pairs as in cases 2–4 should be used. For example,
concept pairs like (C1 , C2), such that C1 belongs to ontology
O1 whereasC2 exists in ontology O2 and both ontologies are in
the unified framework, should be used for testing. Since there
is no such dataset with human ratings, we simulated this case
and combined different datasets to make sure that there are
pairs [e.g., (C1 , C2)] for which we must use two ontologies
(cross-ontology) to measure their similarity. For that, dataset 1,
dataset 2, and RG dataset [1] were used for experiments.

B. Tools and Information Sources

We implemented the proposed measures using the C# pro-
gramming language. WordNet 2.0 was used as primary on-
tology while MeSH and SNOMED-CT as secondary ontolo-
gies. The Perl module WordNet::Similarity [22] was used
in our implementation. MeSH database and MeSH browser
(http://www.nlm.nih.gov/mesh/meshhome.html) were used to
get information on the terms/concepts in MeSH, and UMLSKS
browser (http://umlsks.nlm.nih.gov) was used to get informa-
tion on the terms in SNOMED-CT. The MeSH browser is a
convenient application with a Web-based interface that allows
the users to do online search and get all the information in an or-
ganized and neat way from the MeSH database. The UMLSKS
browser is an Internet application that provides the users with
flexibility to get and browse through the databases within the
UMLS. For example, it allows the user to request information
about particular Metathesaurus concepts, including attributes
such as the concept definition, its semantic types, concepts that
are related to it, hierarchical context details, and more.

C. Experimental Results

In single ontology, the approach performed very well
surpassing other existing measures in biomedical domain.
Tables I and II show the results of correlations (Pearson) with
human scores for our proposed measure (with default param-
eters α = 1, β = 1, k = 1) using the three datasets, experi-
mented on MeSH and SNOMED-CT, and compared with three
other measures: Path length, Wu and Palmer, and Leacock and
Chodorow [7], [17], [25].
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TABLE II
ABSOLUTE CORRELATIONS WITH HUMAN SCORES FOR FOUR MEASURES

USING MESH ON DATASET 1, DATASET 2, AND DATASET 3

Fig. 4. Illustration of the correlations with human scores for four measures
with dataset 1, dataset 2, and dataset 3 using (a) SNOMED-CT and (b) MeSH.

These results are also illustrated in Fig. 4. Moreover, the im-
provements of the proposed measure, SemDist, achieved over
the average of the three other measures, with both SNOMED-
CT and MeSH, are shown in Tables III and IV, respectively.
Leacock and Chodorow measure achieves the second best cor-
relations (after SemDist) in five of the six experiments (Tables I
and II), while Wu and Palmer measure gives the third best cor-
relations in five of six experiments and the second best correla-
tion in one experiment. Path length achieves the lowest corre-
lations in all six experiments. These results seem realistic since
Leacock andChodorowmeasure uses both path length and depth
features, and thus, outperforms both the path lengthmeasure and
Wu and Palmermeasure that uses only depth feature. To bemore
specific, the measure of Leacock and Chodorow computes the

TABLE III
IMPROVEMENTS THAT SEMDIST ACHIEVED OVER THE AVERAGE OF THE THREE
OTHER SIMILAR TECHNIQUES USING SNOMED-CT WITH THREE DATASETS

TABLE IV
IMPROVEMENTS THAT SEMDIST ACHIEVED OVER THE AVERAGE OF THE THREE

OTHER SIMILAR TECHNIQUES USING MESH WITH THREE DATASETS

TABLE V
ABSOLUTE CORRELATION OF THE PROPOSED APPROACH ON THE RG DATASET

AND WORDNET 2.0

TABLE VI
ABSOLUTE CORRELATIONS OF THE PROPOSED APPROACH IN

CROSS-ONTOLOGY (WORDNET AND MESH)

similarity by using the path length scaled by themaximum depth
of the ontology, whereas Wu and Palmer measure uses depth of
LCS of the two concepts scaled by the summation of the depths
of the two concepts [7], [25]. We note that SemDist outperforms
the other measures with SNOMED-CT more significantly than
with MeSH because of the higher specificity of SNOMED-CT
(with depth around 18) compared to MeSH (with a depth of
around 12). From the results in Tables III and IV, we observe
that SemDist achieved an average improvement of 53% using
SNOMED-CT, while using MeSH, the average improvement is
5.3%. This suggests that SemDist is a good choice for ontologies
with high specificities where the new CSpec feature will have
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TABLE VII
BIOMEDICAL DATASET 2 (36 PAIRS) AND RG DATASET (65 PAIRS, IN ITALICS) WITH HUMAN SIMILARITY SCORES (HUMAN) AND SEMDIST’S SCORES USING

WORDNET AND MESH

more positive impact on the correlation results. Even with
MeSH, where the average improvement is 5.4%, this improve-
ment can be considered significant given the existing limited
resources of human scored datasets in this domain. Further-
more, Tables I and II show that all four measures performed
better in MeSH than in SNOMED-CT.

In another single ontology experiment, the RG dataset and
WordNet 2.0 were used, and the results are shown in Table V
using the default parameters (α = 1, β = 1, k = 1). The pur-
pose of this experiment (Table V) is to show that the proposed
measure achieves sound results using a standard dataset (RG)
and a large and reliable terminology (WordNet).
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TABLE VIII
ABSOLUTE CORRELATIONS OF THE PROPOSED APPROACH IN
CROSS-ONTOLOGY (WORDNET AND SNOMED-CT)

To evaluate the approach in cross-ontology, the RG dataset
(65 pairs) was combined with the two biomedical datasets
(dataset 1 and dataset 2) in three combinations as follows.
1) RG (65 pairs) + Dataset 1 (30 pairs): Total 95 pairs.
2) RG (65 pairs) + Dataset 2 (36 pairs): Total 101 pairs.
3) RG + Dataset 1 + Dataset 2: Total 131 pairs.
WordNet was used for RG terms, and MeSH or SNOMED-

CT was used for terms of dataset 1 and dataset 2. Moreover,
WordNet was considered the primary while MeSH/SNOMED-
CT was the secondary ontology. Then, on these three dataset
combinations 1)–3), two evaluations (I and II given later) were
conducted: one using WordNet–MeSH and the other using
WordNet–SNOMED-CT as primary–secondary ontologies.

Evaluation I: Three experiments [using combinations 1)–3)]
were conducted in this evaluation. In the first experiment, using
combination 1), only 25 pairs (out of the 30 pairs in dataset
1) were found in MeSH. Thus, the similarity of 65 pairs in
WordNet obtained as in single ontology model, and 25 term
pairs as cross-ontology technique (case 3). In the second ex-
periment, dataset combination 2) was tested using WordNet
and MeSH. In the third experiment, combination 3), the three
datasets were combined with a total of 126 pairs distributed be-
tweenWordNet andMeSH. The results are shown in TableVI. In
these experiments, the proposed method achieved an average of
∼81% correlation with human scores using, on average, ∼106
term pairs and two ontologies. The complete results of correla-
tion for each pair using combination 2) (the second experiment
in Table VI) are shown in Table VII. The human rating scores
in RG dataset are converted into [0–1] scale to be compatible
with human ratings in dataset 2.

Evaluation II: In these experiments, 29 out of 30 pairs in
dataset 1 and 34 out of 36 pairs in dataset 2 were found in
SNOMED-CT. We calculate 65 pairs in WordNet as in single
terminology, and the biomedical term pairs in dataset 1 and
dataset 2 using the cross-ontology technique. The results are
shown in Table VIII. From these results, we note that us-
ing MeSH for biomedical terms (dataset 1 and dataset 2)
produces better correlation with human judgments than with
SNOMEDCT; this also holds true for single ontology results
in Tables I and II. The results in Tables VI and VIII prove that
the cross-ontology approach is very promising and efficient with
very good correlationswith human ratings in combined datasets.

VI. DISCUSSION AND CONCLUSION

Measuring semantic similarity between terms and concepts
has many great uses and applications in the biomedical domain
and yet faced by many difficulties. One of the problems in mea-
suring semantic similarity between concepts, using ontology, is
that certain concepts maybe missing from the underlying ontol-
ogy. This problem stands out prominently in certain domains
(e.g., bioinformatics). For example, in biomedical SIR, there
is a great need for measuring the semantic similarity between
biomedical concepts and document terms [27], and there are
several potential ontologies. It can very well be that not all the
concepts are found in single terminology (i.e., the concepts are
dispersed on more than one terminology) [16]. We presented
a new way to measure the semantic similarity between terms
using multiple ontologies. The new measure nonlinearly com-
bines ontology-based features with new features that address
the similarity across multiple ontologies. We further presented
a strategy for combining and selecting ontologies in measur-
ing the similarity between terms dispersed in multiple ontolo-
gies. The proposed measures were evaluated using biomedical
datasets and multiple different ontologies within the UMLS,
and in single-ontology as well as in cross-ontologies. In the
experimental results, the proposed measures achieved the best
correlations with human scores in all experiments, with three
datasets and with different ontologies. In some experiments, our
measure achieved more than 100% improvement over the aver-
age of the other similar techniques (Table III), and using MeSH,
our proposed measure gave high correlations (slightly exceed-
ing 0.86) in one of the experiments (Table II). And overall,
the proposed measure achieved improvements between 0.5%
(Table II) and 54% (Table I) over the measure of Leacock and
Chodorow, which was the best performer among the three eval-
uated ontology-based measures (Tables I–IV). To the best of our
knowledge, these are the best reported results on this problem in
the biomedical domain to date. The experimental results further
demonstrated that MeSH terminology produces better semantic
similarity correlations with human ratings than SNOMED-CT
in all of the tested measures. The reason for this is the fact
that MeSH is closer to human perspective of relations between
the biomedical terms than SNOMED-CT. This is also the case
not only with the proposed measure, but also with the three
othermeasures thatwe tested (Leacock–Chodorow,Wu–Palmer,
and Path length, as in Tables I and II). We exerted research
effort to examine this point and found that the structure of these
medical terms in MeSH terminology is closer to human per-
spective than the arrangement of these terms in SNOMED-CT.
The experimental results with cross-ontologymeasure were also
quite impressive. On average, the measure achieved a correla-
tion of about 0.81 with human scores of three cross-ontology
experiments (Table VI). These results are fairly significant giv-
ing the difficulty of the task of measuring the similarity of con-
cepts within several ontologies that overlap in many nodes. This
is an interesting work that provides a good contribution in this
task of biomedical term similarity across multiple ontologies
in a unified framework, and will provoke more progress in this
direction in ontology integration and cross-ontology research in
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the biomedical domain. In the future work of this research, we
would like to investigate a few more aspects related to semantic
similarity; for example, we like to comprehensively examine
these semantic similarity measures compared with what UMLS
provides as clues of semantic similarity. We would also like to
involve more terminologies and vocabularies from the biomedi-
cal domain. For example, we can expand this research to involve
terms from gene and protein structured databases, vocabularies,
and ontologies (e.g., gene ontology, Swiss-Prot, TrEMBL, and
UniProt). Furthermore, we would like to study the semantic
similarity with different types of relations than is-a and part-of,
and with different weights of edges between terms.
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