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Angular Measure 

 Full circle contains 360° 
(degrees) 

 Each degree contains 
60′ (arc-minutes) 

 Each arc-minute 
contains 60′′ (arc-
seconds) 

 Angular size of an 
object depends on its 
actual size and 
distance from viewer 



The Measurement of Distance 
Triangulation: 
Measure the 
baseline distance  b 
and angles θ and φ, 
then calculate the 
distance d.  If 
φ = 90°, then 

d = b/tan θ 

If θ is small 
tan θ ≈ θ (in radians), 

then 
d ≈ b/θ 

θ 

b 

d 

φ 



The Measurement of Distance 
Measuring the Earth’s radius by 
triangulation was done by 
Eratosthenes about 2300 years 
ago.  
He noticed that 
when the Sun was 
directly overhead in 
Syene, it was at an 
angle in Alexandria. 
By measuring the  
angle θ and the 
distance b between 
the cities he 
calculated the 
radius r = b/θ. 



The Measurement of 
Distance 

Trigonometric parallax: is a form 
of triangulation, but  we look at 
the apparent displacement of an 
object against the fixed stars 
from two vantage points 

In this example, we observe on 
opposite sides of the Earth 
(diameter of the Earth is the 
baseline). 

Then,           d ≈ r⊕ /p 
Stars are too far away for this to 
work because the angles are too 
small to measure. 

= 2p 



Distances to Stars 
Using the Earth’s 
orbit as a baseline: 
A star appears slightly 
shifted from different 
positions of the Earth 
on its orbit.  The 
farther away the star is 
(larger d), the smaller 
the parallax angle p. 

A parsec is based on a 
b = 1 AU and p = 1 
sec-1 

1 pc = 3.26 LY 
d = 1/p  

  d in parsec (pc) 
p in arc seconds 



Trigonometric Parallax 
Example:  

 The nearest star, α Centauri, has a parallax of p = 0.76 
arc seconds for a baseline b = 1 AU 

d = 1/p = 1/0.76 = 1.3 pc = 1.3 x 3.26 = 4.3 LY 

 With ground-based telescopes, we can measure 
parallaxes p ≥ 0.02 arc sec 
 ⇒ d ≤ 50 pc 

 For this reason, with ground based telescopes we are 
limited to stars no farther away than 
50 pc (~10,000 stars). 

 The Hipparcos satellite enabled us to increase the  
number  to ~120,000 stars out to ~110 pc 



The Solar Neighborhood 
The nearest star to the Sun, Proxima Centauri, 
is a member of a 3-star system: the α Centauri 
complex 

Model of distances:  
 If the Sun is a marble, then the Earth is a 

grain of sand orbiting 1 m away 
 The nearest star is another marble 270 km 

(~170 miles) away 
 The solar system extends about 50 m from 

the Sun; the rest of the distance to the 
nearest star is basically empty 



The Solar Neighborhood 
 The next nearest neighbor: Barnard’s Star 
 Barnard’s Star has the largest proper motion of 

any star after correcting for parallax. 
 Proper motion is the actual transverse 

movement of the star in space. 
 These pictures were taken 22 years apart 



The Solar Neighborhood 
The actual motion of the α Centauri complex: 

 The transverse 
speed is determined 
from the proper 
motion measured 
over many years. 

 The radial speed is 
measured from a 
Doppler shift 
vr = c ∆λ/λ0. 

 The true space 
motion is the vector 
sum of the 
transverse speed 
and the radial speed. 



The Solar Neighborhood 
The 30 closest stars to the Sun 



Luminosity Relative to 
Apparent Brightness 

  Luminosity is the flux of 
radiation energy from the star 
(its intrinsic brightness) 

 The more distant a light 
source, the fainter it appears. 

 The same amount of light falls 
on a smaller area at a distance 
of 1 unit than at a distance of 2 
units ⇒ smaller apparent 
brightness. 

  Area increases as distance squared ⇒ apparent brightness 
decreases as the inverse of distance squared 



Intrinsic Brightness Relative to 
Apparent Brightness 

In an equation, the flux b (apparent brightness) received 
from the source is proportional to its intrinsic 

brightness or luminosity L and inversely proportional 
to the square of the distance d 

 L   b  ∝  d2 

Both stars may appear equally bright (bA = bB), whereas 
star A is intrinsically much brighter than star B (LA > LB) 

because dA > dB 

Star A 
Star B Earth 



The Magnitude Scale 

First introduced by Hipparchus  
(160-127 BC): 

 Brightest stars: 1st magnitude (mV = 1) 
 Faintest stars (unaided eye): 6th magnitude (mV = 6)  

In the 19th century, it was found that: 
 1 mV  stars appear ~100 times brighter than 6 mV 

stars and the scale is logarithmic  
 It was then defined that 1 mV difference gives a 

factor of 2.512 in apparent brightness (larger 
magnitude = fainter object!) such that a difference 
of 5 mV is exactly 100 times difference in brightness 



Example: 
Betelgeuse and Rigel 

Betelgeuse 
mV = 0.41 

Rigel 
mV = 0.14 

Magnitude 
Difference Intensity Ratio 

1 2.512 

2 2.512*2.512 = (2.512)2 = 
6.31 

3 2.512*2.512*2.512= (2.512)3 
= 15.85 

4 (2.512)4 = 39.82 

5 (2.512)5 = 100 

For a magnitude difference of 0.41 – 
0.14  = 0.27, we find an intensity ratio of 

(2.512)0.27 = 1.28 



The magnitude scale system can be 
extended towards negative numbers 
(very bright) and numbers > 6 (faint 

objects): 

Sirius (brightest star in the sky): 
mv = -1.42 

Venus (maximum): mv = -4.4 

Full Moon: mv = -12.5 

Sun: mv = -26.7 

The Magnitude Scale 



Distance and Intrinsic Brightness 

Betelgeuse 

Rigel 

Earlier we determined that 
Rigel appears 1.28 times 
brighter than Betelgeuse, 

But Rigel is 1.6 times 
further away than 

Betelgeuse 

In fact, Rigel is actually 
(intrinsically) 1.28*(1.6)2 = 

3.3 times brighter than 
Betelgeuse. 



Absolute Visual Magnitude 

 To characterize a star’s intrinsic brightness 
(luminosity L), we define absolute visual 
magnitude MV as the apparent visual 
magnitude (brightness) that a star would have 
if it were at a distance of 10 pc. 
 Both MV and L state a star’s intrinsic 

brightness. 
 MV is most useful for comparing stars 
 L is expressed in physical units of power (e.g. 

Watts) 



Absolute Visual Magnitude 

Betelgeuse 

Rigel 

Betelgeuse Rigel 

mV 0.41 0.14 

d 152 pc 244 pc 

MV -5.5 -6.8 

Back to our example of 
Betelgeuse and Rigel: 

Difference in absolute 
magnitudes: 6.8 – 5.5 = 1.3 

⇒ Luminosity ratio = 
(2.512)1.3 = 3.3 

as we saw before 



The Distance Modulus 
If we know a star’s absolute magnitude, we can 

infer its distance by comparing absolute and 
apparent magnitudes 

Distance in units of parsec 

Distance Modulus 

= mV  – MV 

= -5 + 5 log10 (d [pc]) 

Equivalent: 

d = 10 (mV – MV + 5)/5 pc 

This formula is important for finding distances to stars 
using “standard candle” methods 



Luminosity and Apparent Brightness 

If we know a star’s brightness and its distance 
from us, we can calculate its absolute 
magnitude. 

MV = mV + 5 - 5 log10(d [pc]) 

The relation between MV and L is 

L = log10
-1 [(K – MV)/2.512] 

Where K is a constant that depends on 
observation conditions. 



Luminosity vs. 
Absolute Magnitude 

Converting from 
magnitude to luminosity 
in solar units: This graph 
allows us to perform this 
conversion simply by 
reading horizontally.   
Note that a reduction of 5 
in magnitude corresponds 
to an increase in a factor 
of 100 in luminosity. 



Color and Temperature 

Orion 
Betelgeuse 

Rigel 

Stars appear in 
different colors,  

from blue (like Rigel)  

via green / yellow (like 
our Sun)  

to red (like 
Betelgeuse). 

 

These colors tell 
us about the star’s 

temperature. 



Laws of Thermal Radiation 
1. The hotter an object is, the 

more luminous it is.  Stefan’s 
Law: 
F = σ TK 

4 

(where F is power/unit area, σ = 
5.67 x 10-8 W/m2·K4 , TK is the 
temperature in Kelvin). 

2. The peak of the black body 
spectrum shifts towards 
shorter wavelengths when the 
temperature increases. Wien’s 
displacement law: 
λmax ≈ 2,900,000 nm /TK 

Note how the hottest star looks blue 
and the coolest star looks red 



The Balmer Thermometer 
Balmer line strength is sensitive to temperature 

peaking at ~104 K. 

Almost all hydrogen atoms are in 
the ground state (electrons in the 
n = 1 orbit) ⇒ few transitions from 
n = 2 orbit ⇒ weak Balmer lines 

Most hydrogen atoms are ionized 
⇒ weak Balmer lines 

Line Strength and Stellar Type 



Measuring the Temperatures of Stars 
Using Line Strength 

Different elements, ions and molecules have line strength 
peaks at different temperatures.  Comparing line strengths, 

we can measure a star’s surface temperature! 



Spectral Classification of Stars 
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Different stars show different characteristic sets of 
absorption lines.  These are used to define stellar types. 
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Spectral Classification of Stars 



Mnemonics to remember 
the spectral sequence 

O B A F G K M 

Oh Be A Fine Girl/Guy Kiss Me 

Oh Boy, An F Grade Kills Me 

Only Bad Astronomers Forget Generally Known Mnemonics 



Stellar 
Spectra 
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Note that these 
electronically 

measured 
spectra show 

the Planck 
continuum 

spectrum with 
the absorption 
spectra as dips 

from the 
continuum 



The Composition of Stars 
From the relative strength of absorption lines (carefully 
accounting for their temperature dependence), one can 

infer the surface composition of stars. 





The Radius of a Star 
We already know: luminosity increases with surface 

temperature (~T4) (see the section on Light); hotter stars 
are brighter. 

But luminosity also increases with size: 

A B 

Star B will be 
brighter than 
star A at the 

same 
temperature. 

⇒ Luminosity is proportional to the radius squared,  L ∝ R2. 

Surface area of the star Energy flux of a blackbody 

Quantitatively:  L = 4πR2 σT4 



Example: 

Polaris is just about the same spectral type 
(G) (and thus surface temperature) as our 

Sun, but it is 10,000 times brighter than our 
Sun. This must be caused by Polaris having 
a larger radius than the Sun.  Polaris must 
be 100 times larger than the Sun because 
R2  = 1002 = 10,000 produces a luminosity 

10,000 times brighter than our Sun. 



Stellar Radii 
Stellar radii vary widely: 
  Dwarf stars have radii 

equal to, or less than, the 
Sun’s radius.  

  Giant stars have radii 
between 10 and 100 times 
the Sun’s radius. 

  Supergiant stars have 
radii more than 100 times 
the Sun’s radius. 

 Note: We generally use the 
Sun’s radius R as our 
standard distance 



Stellar Sizes 

A few very large, very close 
stars can be imaged directly 
using speckle interferometry; 
this is Betelgeuse.  The first 
speckle interferometry image 
of Betelgeuse consisted of 
about 15 pixels.  a) Very 
good resolution.  b) Even 
better resolution 



Organizing the Family of Stars: 
The Hertzsprung-Russell Diagram 

We know that stars have different temperatures, 
different luminosities, and different sizes. 

To bring some order to this zoo of different stars Ejnar 
Hertzsprung and Henry Norris Russell organized them 

in a diagram of Luminosity (Absolute magnitude) 
versus Temperature (Spectral type)  

Spectral type: O    B    A    F    G    K    M 
or Temperature (backward log scale) 

Hertzsprung- 
Russell Diagram 
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The Hertzsprung–Russell Diagram 
This is an H-R 
diagram of a few 
prominent stars 
(high apparent 
brightness). 
With this small 
sample we would 
conclude that the 
H-R diagram is not 
helpful in showing 
any stellar  
organization. 



The Hertzsprung–Russell Diagram 
Once many stars are plotted on an H–R diagram, 
a pattern begins to form: 
 These are the 80 closest 

stars to us; note the 
dashed lines of constant 
radius. 

 The darkened curve is 
called the main 
sequence because this 
is where most stars are. 

 The white dwarf region is 
also indicated; these 
stars are hot but not 
very luminous because 
they are quite small. 



The Hertzsprung–Russell Diagram 
An H–R diagram of the 100 brightest stars 
looks quite different: 
 These stars are all more 

luminous than the Sun. 
 Two new categories 

appear here – the red 
giants and the blue 
giants. 

 Clearly, the brightest 
stars in the sky appear 
bright because of their 
enormous luminosities, 
not their proximity.  



The Hertzsprung-Russell Diagram 

This is an H–R diagram of 
about 20,000 stars. The main 
sequence is clear, as well as 
the red giant region. 

About 90% of stars lie on the 
main sequence; 9% are red 
giants and 1% are white 
dwarfs. 



The Hertzsprung-Russell Diagram 

Same 
temperature, 

but much 
brighter than 

MS stars 
⇒ Must be 

much larger 
⇒ Giant 

Stars 

Same temp., but 
fainter ⇒ Dwarfs 



Extending the Cosmic Distance Scale: 
Spectroscopic Parallax 

Spectroscopic parallax has nothing to do with 
parallax, but it does use spectroscopy to find 
the distance to a main-sequence star. 

Method: 
1.  Measure the star’s apparent magnitude b and 

spectral type (OBFGKM) 
2.  On the H-R diagram, use the spectral type to 

find the luminosity L 
3.  Apply the inverse-square law to find distance 

b = L/4πd2 

d = (L/4πb)½ 



Example 
Stellar  type: F9 

Luminosity: 1.8 L 

Distance: d = (1.8 L/4πb)½ 



Extending the Cosmic Distance Scale 
Spectroscopic parallax can extend the cosmic 
distance scale to several thousand parsecs 



Extending the Cosmic Distance Scale 
The spectroscopic parallax calculation can be 
misleading if the star is not on the main sequence. The 
width of spectral lines can be used to define luminosity 
classes. 

In this way, 
giants and 
supergiants 
can be 
distinguished 
from main-
sequence 
stars 



Luminosity 
Classes Ia Bright Supergiants 

Ib  Supergiants 

II   Bright Giants  

III  Giants 

IV  Subgiants 

V   Main-Sequence 
     Stars 

Ia 
Ib 

II 

III 

IV 
V 



Binary Stars 
More than 50% of all 
stars in our Milky Way 
are not single stars, 
but belong to 
binaries: 

Pairs or systems 
of multiple stars 
which orbit their 
common center of 
mass.  

If we can measure and 
understand their 
orbital motions, we 
can calculate their 
stellar masses.  



The Center of Mass 
The center of mass is 
the balance point of 
the system. 

If both masses are 
equal ⇒ center of 
mass is in the middle, 
             rA = rB. 
The more unequal the 
masses, the more the 
c.m. shifts toward the 
more massive star.  



Calculating Stellar Masses 
Recall Kepler’s 3rd Law: 

Py
2 = aAU

3/1 m  

for the solar system which has a 
star with 1 solar mass in the 

center.  
We find almost the same law for 

binary stars with masses MA and MB  

MA + MB =  
aAU

3  ____  
Py

2  

(MA and MB in units of solar masses) 



Visual Binaries 
The ideal case: 
Both stars can be seen 
directly, and their separation 
and relative motion can be 
followed directly. 
Unfortunately, visual binaries 
usually have long periods and 
we often have large 
uncertainties in measuring 
them. 



Spectroscopic 
Binaries 

The binary separation a cannot be measured directly because 
the stars are too close to each other. 

However, in spectroscopic binaries, the stars show Doppler 
shifts from the radial velocities of the two stars. 

By measuring these Doppler shifts we can determine a limit 
on the separation and thus the masses can be inferred in the 
most common cases.  



Spectroscopic 
Binaries 

 The approaching star produces 
blue-shifted lines; the receding star 
produces red-shifted lines in the 
spectrum. 

 Doppler shift ⇒ Measurement of 
radial velocities vr.  Transverse vt 
must be estimated.    v  = (vr

2 + vt
2)½  

 Measure the period P by timing the 
cycle through one or more periods. 

  Estimate of separation 
        v ≈ πa/P      ⇒     a ≈ Pv/π 

  Estimate of masses using a and 
P  



Spectroscopic 
Binaries 

Tim
e 

Typical sequence of spectra from 
a spectroscopic binary system 



Eclipsing Binaries 
Usually, the inclination 
angle of a binary system 
is unknown ⇒ 
uncertainty in mass 
estimates. 

Special case: 

Eclipsing Binaries 

Here, we know that we 
are looking at the system 
edge-on (~0° inclination)! 



Eclipsing Binaries 
Produce a “double-dip” light curve  

Example: VW Cephei 



Eclipsing Binaries 
Unfortunately, light curves are not always easy to interpret 



Eclipsing Binaries 
Example: 

Algol in the 
constellation 
Perseus 

From the light 
curve of Algol, we 
can infer that the 
system contains 
two stars of very 
different surface 
temperatures 
orbiting in a 
slightly inclined 
plane. 



The Mass-Luminosity Relation 

More massive 
stars are more 

luminous. 

L ∝ M3.5 

Studying binaries enables us to obtain the masses of some stars.  
Plotting luminosity vs. mass shows that they are related. 



Masses of 
Stars in the 

H-R Diagram 
Masses in units 
of solar masses 

We will learn that high-
mass stars have much 
shorter lives than low-
mass stars: 

tlife ~ M-2.5 

10 m :  ~30 million yr. 

Sun:      ~10 billion yr. 

0.1 m : ~3 trillion yr. 



A Census of the Stars 

Faint, red 
dwarfs (low 
mass) are the 
most common 
stars. 

Bright, hot, blue 
main-sequence 
stars (high-
mass) are rare.  

Giants and 
supergiants are 
extremely rare. 
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