11.32. In the Challenger Deep of the Marianas Trench, the depth of seawater is 10.9 km and the pressure is $1.16 \times 10^{8} \mathrm{~Pa}$ (about $1.15 \times 10^{3} \mathrm{~atm}$). (a) If a cubic meter of water is taken from the surface to this depth, what is the change in its volume? (Normal atmospheric pressure is about $1.0 \times 10^{5} \mathrm{~Pa}$. Assume that k for seawater is the same as the freshwater value given in table 11.2.) (b) What is the density of seawater at this depth? (At the surface, seawater has a density of $1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.)

Identify: Apply $B=-\frac{(\Delta p) V_{0}}{\Delta V}$. Density $=m / V$.
Set Up: At the surface the pressure is $1.0 \times 10^{5} \mathrm{~Pa}$, so $\Delta p=1.16 \times 10^{8} \mathrm{~Pa}$. $V_{0}=1.00 \mathrm{~m}^{3}$. At the surface $1.00 \mathrm{~m}^{3}$ of water has mass $1.03 \times 10^{3} \mathrm{~kg}$.

Execute:

(a) $B=-\frac{(\Delta p) V_{0}}{\Delta V}$ gives $\Delta V=-\frac{(\Delta p) V_{0}}{B}=-\frac{\left(1.16 \times 10^{8} \mathrm{~Pa}\right)\left(1.00 \mathrm{~m}^{3}\right)}{2.2 \times 10^{9} \mathrm{~Pa}}=-0.0527 \mathrm{~m}^{3}$
(b) At this depth $1.03 \times 10^{3} \mathrm{~kg}$ of seawater has volume $V_{0}+\Delta V=0.9473 \mathrm{~m}^{3}$. The density is

$$
\frac{1.03 \times 10^{3} \mathrm{~kg}}{0.9473 \mathrm{~m}^{3}}=1.09 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} .
$$

Evaluate: The density is increased because the volume is compressed due to the increased pressure.

