11.32. In the Challenger Deep of the Marianas Trench, the depth of seawater is 10.9 km and the pressure is 1.16×10^8 Pa (about 1.15×10^3 atm). (a) If a cubic meter of water is taken from the surface to this depth, what is the change in its volume? (Normal atmospheric pressure is about 1.0 x 10^5 Pa. Assume that *k* for seawater is the same as the freshwater value given in table 11.2.) (b) What is the density of seawater at this depth? (At the surface, seawater has a density of 1.03×10^3 kg/m³.)

Identify: Apply
$$B = -\frac{(\Delta p)V_0}{\Delta V}$$
. Density $= m/V$

Set Up: At the surface the pressure is 1.0×10^5 Pa, so $\Delta p = 1.16 \times 10^8$ Pa. $V_0 = 1.00$ m³. At the surface 1.00 m³ of water has mass 1.03×10^3 kg.

Execute:

(a)
$$B = -\frac{(\Delta p)V_0}{\Delta V}$$
 gives $\Delta V = -\frac{(\Delta p)V_0}{B} = -\frac{(1.16 \times 10^8 \text{ Pa})(1.00 \text{ m}^3)}{2.2 \times 10^9 \text{ Pa}} = -0.0527 \text{ m}^3$

- (b) At this depth 1.03×10^3 kg of seawater has volume $V_0 + \Delta V = 0.9473$ m³. The density is $\frac{1.03 \times 10^3 \text{ kg}}{0.9473 \text{ m}^3} = 1.09 \times 10^3 \text{ kg/m}^3$
- **Evaluate:** The density is increased because the volume is compressed due to the increased pressure.