
Supervised Learning for Neural Networks:

A Tutorial with JAVA exercises 1

Wulfram Gerstner

1A chapter in the EPFL graduate volume on `Intelligent Systems', edited by Mlynek

and Teodorescu (preliminary)

Chapter 1

Supervised Learning for Neural

Networks: A Tutorial with

JAVA-exercises

Abstract This chapter gives a short introduction to the theory of neural networks
in the context of supervised learning. Simple perceptrons, multilayer perceptrons,
radial basis function networks, the backpropagation algorithm, and other topics
are discussed. The problem of over�tting and generalization which is of eminent
practical importance is emphasized. All theoretical concepts are illustrated by
JAVA-applets which the reader can download from:
http : ==diwww:epfl:ch=mantra=

1.1 Introduction

Over the last twenty years neural networks have found their way into numerous
applications ranging from character recognition, plant optimization, to �nancial
prediction; see e.g. [2]. Often the term 'neural network' is used is a rather broad
sense which groups together di�erent families of algorithms and methods. On the
biological end of the spectrum, the term neural network is used to describe models
of computation in single neurons or whole areas of the brain. In the following
we focus on arti�cial neural network. There at least three di�erent classes of
algorithms may be distinguished: supervised, unsupervised, and reinforcement
learning. This chapter focuses exclusively on the supervised learning paradigm.

1.2 Formal Neurons

Arti�cial neural networks are based on a rather simple model of a neuron. Most
neurons have three parts: a dendrite which collects inputs from other neurons

1

x i = g(Σj wijx j − ϑ)

dendrite

synapse electrode spike train

output

summation
of inputs

threshold
(nonlinearity)

transmission
of output

rate

T

axonsoma

x
g(.)

j

x iwij

pulses
T

i

Fig. 1.1: A single arti�cial neuron. Input values xj are summed with weights wij

and passed through a nonlinear function g(
P

j wij xj).

(or from an external stimulus); a soma which performs an important nonlinear
processing step; �nally an axon, a cable-like wire along which the output signal is
transmitted to other neurons further down the processing chain. The connection
site between two neurons is called a synapse. The signal of most real neurons
consists of spikes, short pulses of electrical activity. In arti�cial neural networks,
the spikes are replaced by a continuous variable xj which we may think of as a
temporally averaged pulse rate.

The formal neuron model describes the following processing steps (Fig. 1.1).
The rates xj of all neurons which send signals to neuron i are weighted with
parameters wij. We may think of these weights as describing the e�cacy of the
connection from j to i. A weight is therefore sometimes called `synaptic e�cacy'.
The output xi of neuron i is a nonlinear transform of the summed input,

xi = g

0
@ nX
j=1

wij xj � #i

1
A : (1.1)

where n is the number of input lines converging onto neuron i and # is a formal
threshold parameter. Let us de�ne the total input as h =

Pn
j=1wij xj � #i. The

simplest choice of a nonlinearity would be a threshold function: g(h) = 1 for
h > 0 and zero otherwise. We may write this in the form

g(h) = H(h) (1.2)

where we have used the de�nition of the Heaviside step function.

More generally, we could replace the strict threshold by a `soft' threshold

g(h) =
1

2
[1 + tanh(h)] : (1.3)

The above choice is motivated by the fact that the output of a neuron is typicall
close to zero if there is no input at all or if the input is inhibitory. The output
rate approaches a maximum value (which can be normalized to unity) if the input
is strong. We may use h =

P
j wij � #i in (1.3). The value of #i determines the

transition regime from low to high output. For an input
P

j wij xj = #i the output
is exactly half the maximum.

Sometimes it is also useful to consider neurons with a linear transfer function

g(h) = h : (1.4)

In particular for neurons which are at the end of the processing chains (`output
neurons') this is a suitable choice.

Exercise - Single Neuron. The Java applet summarizes the mathematical
concepts of a single model neuron. Play around with the parameters. Try to
understand how logical AND and OR can be implemented by a single neuron.

1.2.1 Removing the threshold

In the preceding subsection, two types of parameter have been introduced, viz.,
weights wij and a threshold #i. We will now show that the threshold can be
treated as just one extra weight. To do so we will start from (1.1)

xi = g

0
@ nX
j=1

wij xj � #i

1
A

= g

0
@ nX
j=1

wij xj + #i (�1)
1
A : (1.5)

We may now de�ne a new input line x0 � �1 with weight wi0 = #i. This
de�nition allows us to rewrite (1.5) in the simple form

xi = g

0
@ nX
j=0

wij xj

1
A : (1.6)

The advantage of (1.6) is that we are left with a single type of parameter.

1.2.2 Reading Neural Network Graphs

Given the above de�nitions of an arti�cial neuron we can immediately read a
neural network graph as the one in Fig. 1.2. At the left end of the network, a set

x hid
jwjk

wij

k

(1)

(2)

x

gg (1) (2)

xi
outin

Fig. 1.2: A multilayer network. The input xin is transformed to an output xout.

of inputs xink with 1 � k � n is applied. The set of outputs on the right end is
xouti , 1 � i � m. Let us focus on a single component xouti of the output. Its value

xouti = g(2)[h
(2)
i]

= g(2)[
X
j

w
(2)
ij x

hid
j]

= g(2)[
X
j

w
(2)
ij g

(1)(h
(1)
j)]

= g(2)[
X
j

w
(2)
ij g

(1)(
X
k

wjkx
in
k)] (1.7)

In (1.7) no lower and upper bounds have been marked. We always assume im-
plicitly that the sums run over all corresponding input lines. They start at zero
and therefore formally include the threshold. Eq. (1.7) gives the output as a
function of the input xin. The parameters of the input-output transformation
are the weights. The weights play an important role in the theory of supervised
learning.

1.3 Supervised Learning

1.3.1 Motivation

To motivate the paradigm of supervised learning, let us consider a classi�cation
problem (Fig. 1.3). We want to have a machine which classi�es input patterns
into di�erent classes. The input patterns could, for example, be handwritten
characters as they frequently occur on cheques or postal addresses. The output
should be the correct label of the character. For example, a machine which
recognizes A's should give a 1 in the output if the input is an A and zero otherwise.
Of course, the machine is not perfect and makes occasionally errors.

For the moment, we may treat the classi�cation machine as a black box which
represents some input-output transform. Such a transform will have some param-

a)

neural
a class A

network

b)

superviser

x

t

out
(µ)

x

input

error

out
(µ)

(µ)in

Fig. 1.3: a) The task of automatic classi�cation. An input, for example a pixel
pattern of a handwritten character, is to be classi�ed as either belonging to class
A or not. b) The parameters of the classi�er are adapated using training data
where the superviser knows the correct output tout(�). The error xout(�)� tout(�)
is fed back to the neural network.

eters which we can change. We want to optimize those parameters so that the
machine makes as few errors as possible.

How can we optimize these parameters? In supervised learning we always
assume that there is a data base � which contains a number of examples where
the input is given together with the correct output. A data base � in supervised
learning consists of P input-output pairs xin(�); tout(�) which are numbered by
the index �:

� =
n�
xin(�); tout(�)

�
; 1 � � � P

o
: (1.8)

The output value tout(�) is often called the target value which motivates the letter
tout as a shorthand. The data base � can be used to adapt the parameters of the
input-output transform.

Of course, the �nal task of the machine will be to give the correct answer to
new input data which it has never seen before. It is therefore not su�cient to
look simply at the performance of the machine for the known input-output pairs
in the data base. What we want is that the machine `learns' the essential aspects
of the input output mapping and then `generalizes' to new data.

αa a a u u u u uaa µ

UA label

Data µx()

µt()

Fig. 1.4: Example of a data base for supervised learning. Each input pattern,
for example the pixel pattern of a character, is associated with the correct label,
e.g., A for a.

x
x

x

x

xx
o

o

o

o
o

o
o o

o
x

class A
point not
in class A

x o
point in

data space

Fig. 1.5: The dashed line separates the crosses from the zeros.

1.3.2 Geometrical visualization

In general the input data xin(�) can be high dimensional vectors xin 2 IRn with
components xink , 1 � k � n. In the case of handwritten character recognition, we
could try to work directly with the pixel patterns which might have a resolution
of 16 � 16. Thus n = 256. We may imagine the data vectors as points in the
n-dimensional space (Fig. 1.5). Some of the input patterns have a target value
tout(�) = 1. They are labeled as members of the class and marked by crosses.
Others have tout(�) = 0 and are marked by zeros. In the geometrical picture,
the task of generalization corresponds to �nding a surface which separates the
elements of class A from the non-elements.

We can rephrase this statement mathematically: we want to �nd a function
dA(x

in) so that dA(x
in) > 0 for all point xin(�) which are elements of class A, and

dA(x
in) < 0 for points which do not belong to class A. The separating surface is

the set of points with dA(x
in) = 0. For any new data point xin we may predict

the classi�cation simply by evaluating the function dA(x
in). If dA(x

in) > 0 we
guess that the point belongs to class A and vice versa. The function dA would be
called a discriminant function for class A.

g(h) =

w

x
in

j

j

(µ)
(µ) =

out
(µ)t

out
x

?

Fig. 1.6: The simple perceptron consists of a single neuron with a threshold
nonlinearity g(h) = H(h).

1.4 Simple Perceptrons

Let us start with the analysis of a single neuron which receives input from a
number of input channels xink with 1 � k � n This is called a simple perceptron.
If we apply input pattern �, the output of the neuron is

xout(�) = H

nX
k=1

wkx
in
k (�)� #

!
: (1.9)

Note that the sum starts at k = 1 and the threshold has been made explicit. Since
there is only a single neuron, there is no need to keep the index of the neuron i in
the weights. We have therefore made the replacement wik �! wk. We can think
of the weights wk, 1 � k � n as a vector w which has the same dimensionality as
the input vectors xin(�). The classi�cation task consists in optimizing the weights
so that the output of the network xout(�) is equal to the target value tout(�).

1.4.1 Linear Separability

Let us study (1.9) in more detail. Whenever the argument of the Heaviside
function d(xin) � Pn

k=1wkx
in
k � # > 0, the neuron will have an output of +1.

That is, the neuron will classify the input as an element of the class. Similarly,
whenever the argument is negative an input will be classi�ed as not belonging to
the class. Thus d(xin) is a discriminant function. The set of critical points in the
input space which separate the class members from the non-members is given by
d(xin) = 0, hence

0 =
nX

k=1

wkx
in
k � # : (1.10)

Eq. (1.10) is a linear equation and de�nes a hyperplane in the input space. Thus
we have the result that a simple perceptron can only solve problems which can be
separated by a hyperplane. These problems are called linearly separable. Fig. 1.7
illustrates the idea of linear separability in two dimensions.

o

o
o

o

o

oo

x

x

x

x

x x

Fig. 1.7: Linear separability: The crosses and the zeros can be separated by a
straight line.

We emphasize that we have used a notation in n dimension and an explicit
threshold. The threshold is related to the distance of the hyperplane from the
origin. If we include the threshold in the weights, we work in n + 1 dimension
and the hyperplane must go through the origin.

1.4.2 Perceptron Algorithm

The simple perceptron can solve problems which are linearly separable - but how
can we �nd the position of the optimal hyperplane? The idea of the perceptron
algorithm is that we test one data point xin(�) after the other. Testing a data
point means that we apply xin(�) at the input layer of the perceptron and compare
the neuronal output xout(�) with the desird output tout(�). If the output of
the perceptron is correct, we don't take any action. If the output is incorrect
xout(�) 6= tout(�), the weight vector w is changed w �! w + �w. The process
of weight adaptation is called learning. The learning rule is

�w = �
h
tout(�)� xout(�)

i
xin(�) (1.11)

where � > 0 is some small parameter. It is useful to introduce a variable �(�) =
tout(�)� xout(�). The learning rule then becomes

�w = � �(�)xin(�) (1.12)

which makes the geometrical structure of the learning process more transparent.
If the actual output xout(�) is correct, �(�) is zero and the weight vector is not
changed. Let us consider a data point xin(�) with target value tout(�) = 1 for
which the perceptron gives the false output xout(�) = 0. In this case �(�) is
positive and a change �w of the weight vector in direction of x(�) is applied.

o

o

x

x

w

x

∆w

o

o

x

o

o

x

x

Fig. 1.8: Perceptron algorithm. If a point is misclassi�ed like the cross (vector
x) on the left-hand side of the separating line (dashed), the weight vector w is
changed in direction of x. This rotates the seprating line in the desired direction.

This rotates the hyperplane around the origin. Note that the algorithm as it is
presented here supposes that the threshold is absorbed in an additional weight
component. We will see in the following that nearly all of the learning rules have
a structure analogous to (1.12).

Exercise - Perceptron Learning Rule. Choose the threshold nonlinearity and
de�ne a `AND' or `OR' problem. Watch how the perceptron learning rule �nds
the correct separation.

1.4.3 Gradient descent

Even if we are interested in a classi�cation task, we may nevertheless consider a
neuron with a continuous output function g(h). For example, we may take the
sigmoidal function g(h) = (1=2)[1 + tanh(h)] introduced in (1.3). The advantage
of the continuous output is that we can apply the general idea of gradient descent
to the learning process. The total quadratic error that the neural network makes
on all training samples in the data base � is

E(w) =
1

2

X
�

[tout(�)� xout(�)]2 : (1.13)

Since xout(�) = g[h(�)] = g[
P

k wkx
in
k (�)] depends on the weights wk, the error is

a function of the weight vector w. Changing the weights may increase or decrease
the error. We may therefore adjust the weights so as to minimize the error. A
simple method to reduce the error is gradient descent. The weights are changed
in direction of the negative gradient

�wk = �� dE

dwk

(1.14)

E

ww* kk

E

wk

∆

∆

Fig. 1.9: Gradient descent. A change of the weight in direction of the negative
gradient �wk = ��dE=dwk lowers the error by an amount �E.

where � is some small parameter.
The gradient dE=dwk can be calculated using the chain rule. We set h(�) =P

j wjx
in
j (�) and �nd

dE

dwk

=
X
�

dE

dh(�)

dh(�)

dwk

= �X
�

h
tout(�)� xout(�)

i
g0jh(�) xink (�)

= �X
�

�(�) xink (�) (1.15)

The factor g0 is the derivative of the gain function g(h) evaluated at h = h(�).
Note that (1.15) contains the sum over all patterns. If we put (1.15) in (1.14) we
have a learning rule where we change the weights only after we have tested all the
patterns and calculated the term �(�) for 1 � � � P . Such a learning rule would
be called a 'batch' rule. In practice it is easier to use learning in an on-line mode.
The weights are changed immediately after a single pattern has been applied,

�w = � �(�)xin(�) (1.16)

where we have switched to the vector notation. The form of the learning rule is
identical to (1.12), except that the factor � is now �(�) = [tout(�)�xout(�)] g0jh(�).
The only di�erence compared to the perceptron learning rule (1.11) is the addi-
tional factor g0.

In the online mode, it is no longer guaranteed that the error E decreases
at each step. A change �w which is good for the present pattern may be bad
for several other patterns and therefore increase the total error. If patterns �
are chosen randomly from the data base �, the online mode corresponds to a
stochastic gradient descent algorithm.

out
x (µ)

out
(µ)t

w

x
in

j

j

(µ) µ
h

?

Fig. 1.10: Adaline. The target value tout(�) = �1 is compared with the linear
output h� =

P
nwkx

in
k (�) to calculate the error. The threshold xout(�) = g(h�)

is disregarded during the learning process.

1.4.4 Adaline algorithm

In the �fties and sixties, Widrow and Ho� had worked with a variant of a gradient
descent algorithm; see [1]. The error was measured directly after the linear sum-
mation step, before the threshold; cf. Fig. 1.10. The name is short for ADAptive
LInear NEuron or, more generally, ADAptive LINEar Element.

To understand the principle, de�ne tout(�) = +1 if input pattern � belongs to
the class and tout(�) = �1 otherwise. If the summed input h(�) =

P
nwkx

in
k (�)

is positive, the threshold step will give an output xout(�) = +1; if h(�) � 0
the output will be xout(�) = �1. For a pattern with tout(�) = +1, a summed
input of h(�) = +1 will guarantee the correct output. Similarly, the requirement
h(�) = �1 for patterns tout(�) = �1 is su�cient for a correct output. Note
that h(�) = +1 is not a necessary requirement for an output of one. Any value
h(�) > 0 would give the same result xout(�) = 1. But if we take the stronger
requirement that h(�) should be as close as possible to tout(�), we can de�ne an
error

EAda(w) =
1

2

X
�

h
tout(�)� h(�))

i2
: (1.17)

The error is zero if tout(�) = h(�).
Since h(�) =

P
j x

in
j , the error (1.17) is a quadratic function in the weights. It

follows that EAda(w) has a unique minimum which can either be approached by
gradient descent or calculated explicitly. The minimumw� is given by dE=dwk =
0 for 0 � k � n. Thus

X
�

tout(�) xink (�) =
X
j

w�

j

X
�

xinj (�) x
in
k (�) : (1.18)

This is a linear equation for w� which can be solved by standard methods. The
advantage of the linear element used for the learning step in Adaline is that
direct mathematical methods are available. The disadvantage with view to the
classi�cation task is that we are optimizing the wrong error function. In the end

we are interested in a correct classi�cation after the threshold step and not in the
best linear approximation.

Exercise - ADALINE, Perceptron, and Backpropagation. In this applet, you
can de�ne your own classi�cation problem. Start with a linearly separable prob-
lem. De�ne one set of `red' and one set of `blue' points by clicking on the surface.
Use the Perceptron algorithm, ADALINE, or gradient descent to solve the prob-
lem (gradient descent is called Backpropagation in this Applet). Can you de�ne a
problem which is correctly solved by the Perceptron algorithm, but where ADA-
LINE does not �nd a solution?

1.4.5 Optimal Perceptron

Let us suppose that we have indeed a problem which is linearly separable. If
there exists one solution, there are almost always many others. Which one is the
best? One possibility is to choose the solution with the maximal safety margin.
Fig. 1.11 illustrates the idea. The dashed line correctly separates the zeros from
the crosses, but some of the data points are close to the separating line. The
optimal separation is given by the thick solid line. Data points on both sides
have at least a distance of d. Note that several points will lie directly on the
margin. These points are called the support vectors.

Let us assume that we work in n+1 dimensions with the threshold # integrated
as the �rst component of the weight vector. Formally the optimal separation can
then be de�ned as the line where the closest point has a maximal distance

d = max
w

(
min

(
wxin(�)

kwk ; 1 � � � P

))
: (1.19)

Optimizing the margins should make the system relatively stable with respect to
noise.

1.4.6 Discussion

The theory of simple perceptrons had been developed in the �fties during the
�rst big vague of neural networks. The simple perceptron has one obvious disad-
vantage: it can only solve linearly separable problems. Obviously there are many
problems which are not linearly separable. The prototype of a non-separable
problem is the XOR-problem.

What can we do with those problem which are not linearly separable? One
idea is that we may be able to �nd a preprocessing scheme which recodes the
problem so that the remaining problem is linearly separable. The idea is illus-
trated in Fig. 1.12. The input vector xin(�) is pre-processed in a �rst layer and
yields a set of features with coe�cients �1(x

in(�)) : : : ; �n(x
in(�)). These are then

treated as input to a simple perceptron xout(�) = H
hPn

k=1wk �(x
in
k (�))

i
.

o

o
o

o

x

x

x

x x

x

o

o

x

x

x

o

d

Fig. 1.11: The optimal perceptron. The thick line provides the separation with
the maximum margin. The dashed line gives a sub-optimal separation.

Unfortunately, however, there exists no universal preprocessing method which
is local in the input space and would transform any di�cult problem in a linearly
separable one. In fact, Minsky and Papert gave the example of task where �gures
have to be classi�ed into connected ones (consisting of a single line) and those
which are not connected. Since this is a global question which can not be decided
locally, no local preprocessing can simplify the problem - the remaining task that
has to be solved in the classi�cation step is always of the XOR type and can
therefore not be solved by a simple perceptron. The book of Minsky and Papert
[7] has been very in
uential and their critique of the perceptron basically killed
the �eld of neural networks for a long period. Today it is often stated that simple
perceptrons are of historical interest only.

This is, however, not completely true. More recently the idea of preprocessing
followed by a classi�cation by simple perceptrons (this idea in fact never com-
pletely died) has come back in the context of `Support Vector Machines' (SVM).
Preprocessing by convolution with a set of kernels maps the problem into a high
(potentially in�nite) dimensional feature space. In the feature space the sepa-
ration with maximum margin is chosen. The classi�cation approach is therefore
exactly the one used in the `optimal perceptron'.

Using a smart mathematical formulation of the preprocessing step, it is possi-
ble to avoid the explicit calculation of the features by convolution. The problem
of �nding the optimal separation can be formaulated directly as a quadratic pro-
gramming problem. For details see, e.g., [11].

w

w

ϕ

n

n

1

1
ϕ

smart preprocessing problem
linearly separable

fixed weights adaptive weights

xout

Fig. 1.12: The idea of the perceptron. A preprocessing step is followed by a
simple perceptron.

1.5 Multilayer Perceptrons (MLP)

Multilayer perceptrons are organized in layers of neurons and implement a feed-
forward processing chain. The layers between the input nodes and the output
neurons are called hidden layers. Multilayer Perceptrons are more
exible than
simple perceptrons. The most important learning rule for network training is the
backpropagation algorithm.

1.5.1 The XOR problem

In the preceding section we have seen that the simple perceptron can only solve
linearly separable problems. The prototype of an example which is not linearly
separable is the XOR problem. It is straightforward to construct a two-layer
perceptron with two neurons in a hidden layer which solves the XOR-problem;
Fig. 1.13. The �rst neuron in the hidden layer uses a linear separation which
splits o� the OFF/OFF input. The second neuron separates the ON/ON input
from the rest. If both neurons in the hidden layer are inactive, then the input is
either ON/OFF or OFF/ON. What remains for the neuron in the output layer is
now a linearly separable problem. The above arguments show that a multilayer
perceptron is more
exible and can, in principle, solve problems that a simple
perceptron cannot solve. The construction does not, however, tell us how to �nd
the optimal weights in a general, potentially much more complicated situation.
To get weights automatically, we need a learning rule.

#1

#2

On/On

Off/Off

x

o

o
XOR

first layer

Neuron
#1 active

Off/Off

Neuron
#2 active

On/On
x o

xo

second layer

XOR problem is
solvable

Fig. 1.13: Solution of the XOR problem by a 2-layer perceptron (+ layer of input
nodes). There are two neurons in the hidden layer.

1.5.2 Backpropagation Algorithm

The Backpropagation algorithms is the gradient descent rule applied to a mul-
tilayer perceptron. A clever use of the chain rule allows us to implement the
algorithm rather e�ciently.

We use the notation introduced in Fig. 1.2 and Eq. (1.7). As in the section
on gradient descent, the aim is to minimize the quadratic error

E(w(1);w(2)) =
1

2

X
�

X
i

h
touti (�)� xouti (�)

i2
(1.20)

where the sum over i runs over all neurons in the output layer. In order to apply
the gradient descent rule

�w
(k)
ij = �� dE

dw
(k)
ij

(1.21)

we need to calculate the derivative dE=dw
(k)
ij . The superscript k refers to the

layer. For the sake of simplicity, we introduce the total input to neuron i in layer
k as h

(k)
i (�) =

P
j w

(k)
ij x

(k�1)
j (�) where x

(0)
j (�) = xinj (�). We use the chain rule

and write
dE

dw
(k)
ij

=
X
�

dE

dh(k)(�)

dh
(k)
i (�)

dw
(k)
ij

: (1.22)

Let us de�ne �
(k)
i (�) = �dE=dh(k)i . This yields a learning rule of the form

�w
(k)
ij = �

X
�

�
(k)
i (�) x

(k�1)
j (1.23)

which we recognize; cf. Eqs. (1.12,1.16). The � factors are

�
(n)
i =

h
touti (�)� xouti (�)

i
g0(n)j

h
(n)
i

(�)
(1.24)

wjk
(1)

δδ (2)(1)

(0)
kx (1)

j
x

Fig. 1.14: Backpropagation of the � values.

for the output layer k = n and

�
(k�1)
j = g0(k�1)j

h
(k�1)
j

(�)
X
i

w
(k)
ij �

(k)
i (1.25)

for all other layers 1 � k � n�1. The �nal equation (1.25) gave rise to the name
'backpropagation of errors' for the algorithm. The �-factors are seen as local
errors. To calculate the error at layer k � 1, we need the error at layer k which
is therefore propagated backwards. Even though our discussion has focussed on
networks with a single hidden layer, the same algorithm can also be used for
networks with several hidden layers.

A gradient descent algorithms converges to local minima. It is not guaran-
teed that it �nds a global minimum. It is therefore necessary in applications to
restart the algorithm several times with di�erent initial conditions. The online
version of the algorithm which introduces a certain degree of stochasticity helps
to escape from small local minima, but there may be deep local minima in which
the algorithm is trapped.

Exercise - Multilayer perceptron. De�ne a problem of the `XOR'-type by
distributing about twenty points close to the four corners. Take for example
a network with a single hidden layer that contains four hidden neurons. Try
to optimize the learning parameters. How often gets learning stuck in a local
minimum? How often does it �nd a correct separation of the points?.

1.5.3 Momentum terms

In practical applications the pure form of a gradient descent algorithm is rarely
used. There are several tricks and methods to speed up convergence. One stan-
dard variation of gradient descent is the addition of a momentum term. At each
iteration, the weight change keeps a little bit of the direction of the previous
weight change. Thus the weights behave as if they had some inertia or `momen-
tum'.

Let us assume that the change of weight w
(k)
ij in the last time step was

�w
(k)
ij (t� 1). For the change at time t pure gradient descent would give �w

(k)
ij =

��dE=dw(k)
ij . Adding a momentum term means that we use instead

�w
(k)
ij (t) = ��dE=dw(k)

ij + ��w
(k)
ij (t� 1) (1.26)

with some parameter 0 < � < 1. The momentum terms helps to avoid oscillations
when a minimum is approached.

1.6 Radial Basis Function Networks

Not all neural networks are Multilayer Perceptrons. The term neural networks is
used these days more generally. An important class of neural networks are the so-
called Radial Basis Function Networks (RBF). There are two layers of neurons.
The �rst one calculates a nonlinear function �j(x) = G(jxin � cjj) where cj is
the center of the radial basis function �j. A common example of a Radial Basis
Function is the Gaussian

G(jxin � cj) = exp

8<
:�

xin � c

2�2

!2
9=
; (1.27)

The second layer contains the output neurons. They have a linear transfer func-
tion. Thus the output is

xouti =
nX

j=1

wij �j(x
in) + w0 �0: (1.28)

where �0 � �1 is a constant. The term w0�0 plays the same role as the threshold
in the case of perceptrons. Formally, it can be included in the summation if we
start the sum at j = 0.

1.6.1 Linear Optimization

Often the centers cj of the basis functions (and similarly the variance � of the
Gaussians) are chosen by simple heuristic arguments. For example we may arbi-
trarily chose n out of the P > n data samples in our data base and set cj = xin(�j)
for 1 � j � n. The center � of the Gaussians can be chosen so that each basis
function touches one of the centers of the others. More involved schemes could
make use of some unsupervised learning procedure.

Once the centers and the other parameters of the radial basis functions �j(x)
have been chosen, the only parameters to optimize are the weights wij. But this is

now a linear optimization problem. De�ne Aj� = �j
�
xin(�)

�
. For simplicity we

discuss the case of a single output unit and suppress the index i. The quadratic

φ φ

x

1 n

out
i

i1
w

Fig. 1.15: A radial basis function network (RBF).

error is

E(w) =
1

2

pX
�=1

h
xout(�)� tout(�)

i2

=
1

2

pX
�=1

2
4 nX
j=0

wjAj� � tout(�)

3
5
2

(1.29)

The condition dE=dw = 0 yields a linear equation for w which can be solved by
direct methods. The same linear optimization problem has already been encoun-
tered in (1.18) in the context of ADALINE.

Exercise - Radial Basis Function Network. In this applet a RBF network
is used for function approximation. The centers of the functions are equally
distributed over the one-dimensional input space. De�ne a set of about �fteen
input-output pairs. Watch the output of the network. Now reduce the num-
ber of data points while keeping the number of basis functions constant. What
happens?

1.6.2 Nonlinear Optimization

More generally we may wish to optimize the centers cj and the parameters of
the basis functions by a supervised learning procedure. Following the same ar-
guments as for the derivation of the backpropagation algorithm, we can apply
gradient descent to ck and to the variance �. The derivation of the formulas is

straightforward, but tedious. Another possibility of parameter optimization is
given by the Expectation Maximization algorithm. In low dimensions it is also
possible to use, instead of radial kernels, Gaussians with arbitrary covariance
matrix.

Exercise - Gaussian Mixture Model/EM. De�ne a set of about 20 data points
which yo may want to distribute into two clusters. Set the number of kernels to
two. Watch how the two kernels move to the clusters and adjust there covariance
matrix so as to optimally model the data distribution. What happens if the
number of kernels does not match the number of clusters?

1.6.3 Discussion

The framework of the radial basis function network makes the connection be-
tween neural networks and classical approximation techniques in statistics more
transparent. In fact, methods which use a superposition of several Gaussians
are commonly used in density estimation. In statistics these methods are also
called mixture models or, more speci�cally, a mixture of Gaussians. The main
di�erence is that radial basis function network usually assume that several out-
put units can share the same basis functions �k(x), 1 � k � n. The standard
approach in density estimation would be to use for each class an independent
set of basis functions. See the book of Bishop for an in-depth discussion of the
relation [4].

Another advantage of radial basis functions is that they allow more easily an
interpretation of what the network is doing. This goes in two directions. First,
expert knowledge can be easily implemented and used for an initialization of
parameters. Second, after training the mapping that the network has found can
be analyzed. In many cases it is possible to extract the knowledge in terms of
rules. The relation between neural networks and expert knowledge is exploited
in the context of 'Neuro-Fuzzy-Networks'.

1.7 The Problem of Over�tting and Generaliza-

tion

1.7.1 Motivation

We have seen in the preceding sections that a simple perceptron can only solve
linearly separable problems whereas a multilayer perceptron is more powerful.
The question arises whether it is always desirable to have a
exible network. The
answer is negative. In some cases it is better to have network which does not
perform perfectly on the data set. To understand why, let us recall the task of
supervised learning. The data set is used to train a network to perform a desired

a)

o

o
o

o

o

oo

x

x

x

x

x x

o

o
oo

o
o

o

o

o

x
x

x

x

x

x

x

x

x

x

x

o

o

b)

o

o
o

o

o

oo

x

x

x

x

x x

o

o
oo

o
o

o

o

o

x
x

x

x

x

x

x

x

x

x

x

o

o

Fig. 1.16: The separation of a data set a) by a simple perceptron and b) by a
multilayer perceptron (schematic). The multilayer perceptron performs perfectly
on the data set. What matters, however, in applications is the prediction for new
data points where the answer is not known, like the point indicated by the arrow.

input-output mapping, e.g., for automatic classi�cation. The �nal network will be
used on new data which are not part of the training data base. The performance
of the network has therefore to be measured on new data which has not been
used during training.

The basic idea is illustrated in Fig. 1.16. In a) the data set has been separated
by a simple perceptron. Since the data set is not linearly separable a few errors
remain. The more
exible network in b) is capable of a perfect separation. Let
us now see how the network performs on new data, for example the data point
indicated by an arrow in the input space. The network in b) would a predict a
classi�cation as a cross, the one in a) as a zero. The problem is that a priori
we don't know which one of the two classi�cations is correct. For example it
may be that the cross which caused the tongue in the separation boundary is the

results of a noisy measurement and that the likelihood of zeros is much higher in
that region than the one for crosses. Then the prediction of the simple network
would in fact be better than the one of the more
exible network. It follows that
in particular for noisy data, we have to control the
exibility of our network.
Otherwise the network may learn the `noise' instead of the underlying structure
of the input-output mapping. Learning the speci�c data sample including the
noise is known as the problem of over�tting.

The same problem is also known in function approximation. Let us suppose
we have a data base which contains noisy input-output pairs (xin(�); tout(�))
with xin; tout 2 IR. The task of function approximation is to �nd the underlying
structure of the data distribution. A �t by a polynomial with as many free
parameters as data points allows one to interpolate the data perfectly, but may
cause arbitrarily large oscillations. The output of the function for new input
points xin is then meaningless. A good �t should contain few free parameters
which forces the function to average away part of the noise.

In neural networks, the weights wij play the role of the �t parameters. We
must therefore control the e�ective number of weights. More or less systematic
methods of the control of model
exibility are usually summarized under the title
of regularization procedures. Some of these methods are discussed in the next
subsections.

Exercise - Radial Basis Function Network. Go back to the Radial Basis Func-
tion Network and study how the oscillations in the representation increase if the
number of �t paramters approaches the number of data points. De�ne a data set
which does not cover the input space evenly, for example, you could choose to
have more points towards the borders than in the middle of the interval. What
happens?

1.7.2 Training and validation set

Whatever the speci�c regularization method, we always split the data set � into
two parts, �1 and �2. If the data set contains a total of P =1000 data points, we
may for example select stochastically P1 = 500 points for data set �1 and use the
remaining P � P1 points for �2.

Only data set �1 is used during learning. It is called the training set. At
each step of the learning procedure, we take a pattern � 2 �1, and calculate the
weight update. After P1 updates (one epoch), we interrupt learning and test the
performance of the current network on the P �P1 samples of data set �2. The set
�2 plays the role of `new' data which the network has not seen during training.
It is therefore called validation set. We also calculate after each epoch the error
Elearn on the training set. Both errors are plotted as a function of learning time,
measured by the number of epochs.

During the initial phase of learning both training and validation error usually

E

training time

E

E learn

val

t*

Fig. 1.17: Over�tting. During training with gradient descent rules, the learning
error Elearn decreases (solid line). The validation error Eval (dashed), however,
may increase again after some time.

decrease. This means that the network learns the structure of the data as it
should. If the network is too
exible, then the validation error Eval starts to
increase again after a certain number of epochs while the training error continues
to decrease. This means that the network now learns the speci�c examples of
the (noisy) data set. The generalization to new data, however, gets worse. The
network starts to `over�t' the data; cf. Fig. 1.17.

Exercise - Generalization in Multilayer Perceptrons. By clicking on the sur-
face, you may de�ne a learning set and a validation set. Make sure the two sets
are of the same size, e.g., 30 points each. Take a network with 8 hidden neurons
and study the evolution of learning and validation error. Take a small learning
step and continue learning for several thousand iterations. Does the validation
error rise after some time?

1.7.3 Control of network architecture

Over�tting occurs if the e�ective number of free parameters in the network is too
large. In neural networks, the number of parameter increases with the number of
neurons in the hidden layer. A simple procedure to control the
exibility of the
network is therefore to test various network architectures with di�erent number of
neurons. If the validation error increases consistently towards the end of learning,
then the network is too
exible. In this case, a smaller network with a reduced
number of neurons should be tried. On the other hand, if the network is too
small, then both the learning and validation error are unnecessarily large at the
end of learning. The optimal size of the network is achieved if validation and
learning error are low after convergence of the learning procedure.

1.7.4 Regularization by early stopping

Changing the network architecture repeatedly is a tedious procedure. Moreover
it is rather coarse in the sense that each additional neuron means several new
parameters wij. Thus it is often not completely clear what the optimal network
size really is.

A simpler way of
exibility control is given by a method called early stopping.
To use this method, we take a network which is slightly too large so that the
validation error starts to increases after some time t�. The best set of weights
is therefore the one at t� - and not the one at the end of learning. During the
learning process we therefore keep the set of weights at t� in a separate memory.
These are the weights which we will choose for the �nal application of the network.

During learning the validation error may
uctuate slightly over several epochs.
A �rst minimum of Eval may be followed by a second, deeper minimummuch later
in the learning process. A correct use of early stopping therefore requires that
learning and validation errors are watched over a long time. Learning should not
be stopped the �rst time that the validation error increases.

Early stopping does not formally reduce the number of free parameters. The
reason it works is that, at the beginning, the network does not yet use all the

exibility provided by the large number of parameters. At the beginning, several
neurons in the hidden layer learn approximately the same weight vector. Only
after some time they specialize to detect di�erent features. By early stopping we
therefore control the e�ective number of free parameters used by the network.

1.7.5 Regularization by penalty term

Regularization by penalty terms is probably the most systematic way to control
the
exibility of the network. The idea is the replace the simple quadratic error
function that we have used earlier by a new error criteria

E =
1

2

X
�

h
tout � xout(�)

i2
+ � fpenaltyg : (1.30)

The extra term (which is speci�ed below) is intended to penalize solutions which
are too
exible. The error function (1.30) depends on the parameter � and as

before on the value of the weights w
(k)
ij .

How can we characterize solutions which are too
exible? In function approx-
imation with xin; tout 2 IR we could give a penalty to solutions with high values
of curvature. A good choice of the penalty term would therefore be the mean
quadratic curvature

R
[d2xout=(dxin)2]2dxin where the integral runs over the part

of the input space that we are interested in.
In case of neural networks with high-dimensional input data, the curvature

measure is not so easy to handle. But we may just as well take a di�erent penalty

E

E

Elearn

val

(1/λ∗)10 −2 10 3 (1/λ)

Fig. 1.18: Learning and validation error as a function of the regularization pa-
rameter �.

term. A penalty term which is easy to use is

penalty =
1

2

X
i;j;k

h
w

(k)
ij

i2
: (1.31)

The sum starts at i = 1; j = 1; k = 1 and runs over all weights in all layers. The
summation does not include the thresholds (which would correspond to terms

with indices w
(k)
i;0).

The motivation behind (1.31) is that a solution with lots of curvature can only
be constructed with large weight values. Punishing large weights will therefore
control the e�ective
exibility of the network. On the other hand, threshold values
only shift the bias and should therefore be treated di�erently. Large threshold
values are therefore not penalized. It can be shown that for linear optimization
problems (that is, the error is quadratic in the weights) a penalty term (1.31) and
early stopping are equivalent.

To minimize (1.30) we may use gradient descent, �w(k)
mn = �� dE=dw(k)

mn.
The derivative of the �rst term in (1.30) gives the standard term that has been
discussed previously in the context of backpropagation. The derivative of the
penalty term (1.31) is w(k)

mn. The new learning rule is therefore

�w(k)
mn = fstandardtermg � ��w(k)

mn (1.32)

which is the old learning rule plus a weight decay term. The penalty term (1.31)
is therefore called regularization by weight decay.

The penalty term (1.31) focuses on the mean quadratic weight. Let us denote
the total number of weights by M . A penalty term (1.31) does not distinguish
between a situation where all weights have the same low value of 1=

p
M and

another one where a single weight has a value of 1 and all the others are zero.
In fact, in the latter case all weights which are zero could be removed without
changing the result. It is therefore argued that the number of parameters used by

the network in the second case is smaller than the one in the �rst case. Therefore
the penalty for a homogeneous weight distribution should be larger than the one
for a distribution with several zero-weights. A term which does this is

penalty =
X
ijk

h
w

(k)
ij

i2
c+

h
w

(k)
ij

i2 (1.33)

as can be checked by some examples. The parameter c is a positive constant. A
penalty term of the form (1.33) is called weight elimination. The name comes
from the idea that weights which are close to zero could be eliminated so as to
reduce the total number of parameters of the network. Methods which remove
weights or neurons are summarized under the title of pruning algorithms. The
penalty term (1.33) is, however, useful even if connections with small weights
are not removed. The penalty term controls as usual the e�ective number of
parameters - a reduction of the total number of parameters by physically removing
the connection is not necessary.

All regularization terms are added with a parameter �. The choice of �
controls the
exibility of the network. In order to optimize � we can use a
method completely analogous to the one used for early stopping. We measure
the learning error and the validation error for di�erent values of �. For each �
we start learning with di�erent initializations and wait till the learning procedure
has fully converged. Training and validation errors are plotted as a function of
1=�. In a sense, 1=� plays the role of the number of epochs in early stopping. For
large � the network mainly tries to minimize the penalty term and hardly cares
about the data. For small �, the network is too
exible and over�ts the data.
The learning error is small, but the validation error large. The optimal value ��

is at the minimum of the validation error.
Exercise - Generalization in Multilayer Perceptrons. Repeat the previous

exercise but include a non-zero weight decay factor.

1.7.6 Discussion

In all applications, neural networks will be used on new data which are not part
of the data base. The relevant performance measure is therefore not the training
error, but the validation error. Even then it may be argued that the data set
�2 on which the validation error is measured is not completely new, since it has
already been used to optimize the parameter � of the regularization term or,
similarly, the stopping time for early stopping.

It order to have a performance measure which is absolutely neutral, it would
therefore be necessary to split the data base � into three parts, one for learning, a
second one for validation, and a third one for testing. This is, however, a luxury
which can be a�orded only if the data base is very large, e.g., several thousands of

samples. In practice, the number of examples is rather too small than too large.
Then even a separation of the data base into two parts is di�cult. The question
arises of how many of the samples should be reserved for the validation set. It is,
of course, not necessary to keep half of the data for validation, but how many?
This is di�cult to decide. In the extreme case, we may opt for a take-one-out
cross-validation. One of the samples is picked for validation, the remaining P � 1
are used for training. The training procedure is restarted P times, each time
with a di�erent sample in the validation set. Such a cross-validation procedure
is useful for very small data sets.

1.8 Further Reading

The book of Bishop [4] emphasized the relation of supervised learning in Neural
Networks. to classical statistical methods which are used in the context of pattern
recognition problems. As a �rst introduction to Neural Networks the book of
Rojas [9] can be recommanded for its use of graphical illustrations which help
the reader to visualize the theorectical concepts. A comprehensive treatment of
Neural Networks is given in the book of Haykin [5]. The now classical textbook
of Hertz, Krogh, and Palmer [6] is still highly recommandable.

People who are interested in the history of the �eld should consult Minsky and
Papert [7] as well as the collections of classical papers [1], [8]. The original paper
of Rosenblatt on Perceptrons and the one of Widrow and Ho� on ADALINE are,
for example, reprinted in [1]. The PDP-book shows the enthousiasm of neural
network research in the eighties [10]. An overview of the state of the art of neural
networks as models of biological phenomema is given in the Handbook of brain
theory [3]. All of the cited books contain extensive lists of references to the
original literature.

Bibliography

[1] J A Anderson and E Rosenfeld, editors. Neurocomputing: Foundations of research. MIT-
Press, Cambridge Mass., 1988.

[2] Everyday applications of Neural Networks. Special issue. In IEEE Transactions in Neural

Networks, volume 8, pages 825{964, 1997.

[3] M. A. Arbib. The handbook of brain theory and neural networks. MIT Press, Cambridge,
MA, 1995.

[4] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[5] S. Haykin. Neural Networks. Prentice Hall, Upper Saddle River, NJ, 1994.

[6] J Hertz, A Krogh, and R G Palmer. Introduction to the theory of neural computation.
Addison-Wesley, Redwood City CA, 1991.

[7] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge Mass., 1969.

[8] G. Palm. Brain Theory. Springer, Berlin, 1986.

[9] R. Rojas. Neural networks: a systematic introduction. Springer, Berlin, Heidelberg, 1996.

[10] D. E. Rumelhard, J.L. McClelland, and the PDP research group. Parallel distributed

processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. MIT
Press, Cambridge Mass., 1986.

[11] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

27

