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Abstract

The quest to �nd models usefully characterizing data is a process central to the scienti�c method,

and has been carried out on many fronts. Researchers from an expanding number of �elds

have designed algorithms to discover rules or equations that capture key relationships between

variables in a database. The task of this chapter is to provide a perspective on statistical

techniques applicable to KDD; accordingly, we review below some major advances in statistics

in the last few decades. We next highlight some distinctives of what may be called a \statistical

viewpoint." Finally we overview some in
uential classical and modern statistical methods for

practical model induction.

4.1 Recent Statistical Contributions

It would be unfortunate if the KDD community dismissed statistical methods on the basis

of courses that they took on statistics several to many years ago. The following provides

a rough chronology of \recent" signi�cant contributions in statistics that are relevant

to the KDD community. The noteworthy fact is that this time period coincides with

the signi�cant increases in computing horsepower and memory, powerful and expressive

programming languages, and general accessibility to computing that has propelled us into
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the Information Age. In e�ect, this started a slow but deliberate shift in the statistical

community, whereby important in
uences and enablers were to come from computing

rather than mathematics.

4.1.1 The 1960s

This was the era of robust and resistant statistical methods. Following ideas of G. E. P.

Box and J. W. Tukey,

Huber (1964) and Hampel (1974) formalized the notion that the usual estimators of

location and regression coe�cients were very sensitive to \outliers", \leverage values",

and otherwise unreasonably small amounts of contamination. Key concepts are the

� in
uence function of Hampel (essentially the derivative of an estimator with respect

to the data)

� M-estimators of Huber, so-called because they generalize maximum likelihood es-

timators (which require a probability distribution) to a closely related class of

estimating equations

� diagnostics, where implicit downweighting of observations a�orded by robust esti-

mators is replaced by empirical derivatives that quantify the e�ects of small changes

in the data on important aspects of regression-like models (see for example, Belsley,

Kuh, and Welsch, 1980)

The theory supporting these ideas is elegant and important as it uni�es many seemingly

unrelated concepts (e.g. trimmed means and medians) and more so because it re
ects

the realism that data does not usually obey assumptions as required by (mathematical)

theorems. Thus the robustness era freed statisticians of the shackles of narrow models

depending on unrealistic assumptions (e.g. normality).

The only downside of the era was that too much e�ort was placed on deriving new esti-

mators that deviated only slightly from each other both qualitatively and quantitatively.1

What was needed instead, was the leadership and direction in using these methods in

practice and dealing with the plethora of alternatives available. Partly because of this

misguided e�ort, many of the techniques of the era never made it into commercial software

and therefore never made it into the mainstream of methods used by nonstatisticians.

4.1.2 The Early 1970s

The term Exploratory Data Analysis (EDA) characterizes the notion that statistical

insights and modeling are driven by data. John Tukey (1977; Mosteller and Tukey,

1Basically re
ecting R. A. Fisher's insight (Statistical Methods for Researchers, 1924) that there is
nothing easier than inventing a new statistical estimator.



A Statistical Perspective on Knowledge Discovery in Databases 3

1977) reinforced these notions in the early 70's using a battery of ultra-simple methods,

e.g. what could be done with pencil and paper. But the deeper message was to dispel

the traditional dogma stating that one was not allowed to \look at the data prior to

modeling". On the one side the argument was that hypotheses and the like must not be

biased by choosing them on the basis of what the data seem to be indicating. On the

other side was the belief that pictures and numerical summaries of data are necessary in

order to understand how rich a model the data can support.

A key notion in this era characterized statistical modeling as decomposing the data

into structure and noise,

data = fit + residual (4.1.1)

and then examining residuals to identify and move additional structure into the �t. The

�tting process would then be repeated and followed by subsequent residual analyses.

The iterative process described above has its roots in the general statistical paradigm

of partitioning variability into distinct parts (e.g., explained and unexplained variation;

or, in classi�cation, within-group and between-group variation). The EDA notion simply

uses the observed scale of the response rather than the somewhat unnatural squared

units of \variability". While this might seem like a trivial distinction, the di�erence is

critical since it is only on the observed scale that diagnosis and treatment is possible. For

example, a component of variance can indicate that nonlinearity is present but cannot

prescribe how to accommodate it.

Graphical methods (not to be confused with graphical models in Bayes nets) enjoyed a

renaissance during this period as statisticians (re-)discovered that nothing outperforms

human visual capabilities in pattern recognition. Speci�cally, statistical tests and models

focus on expected values, and in many cases, it is the unexpected that upsets or invali-

dates a model (e.g., outliers). Tukey argued that (good) graphical methods should allow

unexpected values to present themselves | once highlighted, models can be expanded

or changed to account for them.

Another important contribution was to make data description respectable once more.

Statistics has its roots in earlier times when descriptive statistics reigned and mathemat-

ical statistics was only a gleam in the eye. Data description is concerned with simplicity

and accuracy, while not being overly formal about quantifying these terms (though an

important area of research tries to do just that; e.g., Mallows (1973), Akaike (1973),

and Rissanen (1978)). A key notion popularized in this era was that there is seldom

a single right answer { in nearly all situations there are many answers. E�ective data

description highlights those that are simple, concise, and reasonably accurate. Simple

transformations of a dataset are used to e�ect such descriptions, the two most common
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ones being data reexpression, e.g. using log(age) instead of age, and data splitting, e.g.

setting aside outliers to simplify the description of the bulk of the data.

4.1.3 The Late 1970s

To an outsider much of the statistical literature would seem fragmented and disjoint.

But the fact of the matter is that much is closely related, but that speci�c details of

individual contributions hide the real similarities. In the late 70's, two review papers

and one book elegantly captured the essence of numerous prior publications. The �rst of

these, Generalized Linear Models (Nelder and Wedderburn, 1974; McCullagh and Nelder,

1989) extended the usual normal theory linear model to a much wider class of models that

included probability models other than the normal distribution, and structural models

that were nonlinear. The theory accomplished this by decomposing the variation in a

response variable into systematic and random components, and allowed the former to

capture covariate e�ects through a strictly monotone link function, g(�) =
P

xj�j , and

allowing the latter to be a member of the exponential family of distributions, E(�; �). In

so doing, these models provided a unifying theory for regression-like models for binary and

count data, as well as continuous data from asymmetric distributions. The second major

review paper is well known outside of statistics as the EM algorithm (Dempster, Laird,

and Rubin, 1977). This paper neatly pulled together numerous ways of solving estimation

problems with incomplete data. But the beauty of their general treatment was to instill

the concept that even if data are complete, it is often useful to treat it as a missing value

problem for computational purposes. Finally, the analysis of nominal or discrete data,

speci�cally counts, had several disconnected streams in the literature and inconsistent

ways to describe relationships. Bishop, Fienberg, and Holland (1975) pulled this material

together into the class of loglinear models. The associated theory allowed researchers to

draw analogies to models for continuous data (for example, analysis of variance ideas)

and further provided computational strategies for estimation and hypothesis testing. It

is also noteworthy that this work anticipated current work in so-called graphical models,

a subset of the class of loglinear models for nominal data.

4.1.4 The Early 1980s

Resampling methods had been around since the late 1950s under the moniker jackknife,

so-named by Tukey because it was a \trusty general purpose tool" for eliminating low-

order bias from an estimator (Schreuder, 1986). The essence of the procedure is to replace

the original n observations by n or more (possibly) correlated estimates of the quantity

of interest (called psuedovalues). These are obtained by systematically leaving out one or

more observations and recomputing the estimator. More precisely, if � is the parameter
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of interest, the ith psuedovalue is de�ned by

pi = n�̂all � (n� k)�̂
�i (4.1.2)

where the last quantity is the estimator �̂ based on leaving out the ith subset (of size k).

The jackknife estimate of � is the arithmetic mean of the psuedovalues, �p =
P

pi=n.

While the jackknife was originally proposed as a bias reduction tool, it was quickly

recognized that the ordinary standard deviation of the psuedovalues provides an honest

estimate of the error in the estimate. Thus an empirical means of deriving a measure

of uncertainty for virtually any statistical estimator was available. One interpretation

of the procedure is that the construction of psuedovalues is based on repeatedly and

systematically sampling without replacement from the data at hand. This led Efron

(1979) to generalize the concept to repeated sampling with replacement, the so-called

bootstrap (since it allowed one to \pick oneself up by the bootstraps" in constructing a

con�dence interval or standard error). This seemingly trivial insight opened the veritable


ood gates for comprehensive analytic study and understanding of resampling methods.

The focus on estimating precision of estimators rather than bias removal coupled with the

advance of computing resources, allowed standard errors of highly nonlinear estimators

to be routinely considered.

Unfortunately, as with robustness, the bulk of the research e�ort was directed at theo-

retical study of resampling ideas in what KDD researchers would regard as uninteresting

situations. The most nonlinear procedures, such as those resulting from combining model

identi�cation and model estimation (see Section 4.1.6), received only cursory e�ort (e.g.

Efron and Gong, 1983; Faraway, 1991).

4.1.5 The Late 1980s

One might characterize classical statistical methods as being \globally" linear whereby

the explanatory/prediction/classi�cation variables a�ect the distribution of the response

variable via linear combinations. Thus the e�ect of xj on y is summarized by a single

regression coe�cient �j . Nonlinear relationships could only be modeled by speci�cally

including the appropriate nonlinear terms in the model, e.g. x2j or logxj. Cleveland

(1979) helped seed the notion that globally linear procedures could be replaced with

locally linear ones by employing scatterplot smoothers in interesting ways. A scatterplot

smoother s(x) is a data-dependent curve de�ned pointwise over the range of x. For

example, the moving average smoother is de�ned at each unique x, as the mean �y(x) =P
yi=k of the k (symmetric) nearest neighbors of x. The ordered sequence of these

pointwise estimates traces out a \smooth" curve through the scatter of (x; y) points.

Originally smoothers were used simply to enhance scatterplots where clutter or changing

density of plotted points hindered visual interpretation of trends and nonlinear features.



6 Elder & Pregibon

But by interpreting a scatterplot smoother as an estimate of the conditional meanE(yjx),

one obtains an adaptive, nonlinear estimate of the e�ect of x on the distribution of y.

Moreover, this nonlinearity could be tamed while simultaneously reducing bias caused

by end-e�ects, by enforcing \local" linearity in the smoothing procedure (as opposed to

local constants as provided by moving averages or medians). Thus by moving a window

across the data and �tting linear regressions within the window, a globally nonlinear �t

is obtained, i.e. the sequence of predictions at each point xi, si(x) = ai + bix, where

the coe�cients ai and bi are determined by the least squares regression of y on x for all

points in the window centered on xi.

This notion has been applied now in many contexts (e.g. regression, classi�cation,

discrimination) and across many \error" distributions (e.g. the generalized additive

model of Hastie and Tibshirani, 1985). While this work reduced the emphasis on strict

linearity of the explanatory variables in such models, it did not ameliorate the need for

having previously identi�ed the relevant variables to begin with.

4.1.6 The Early 1990s

Within the statistics community, Friedman and Tukey (1974) pioneered the notion of

allowing a model to adapt even more nonlinearly by letting the data determine the

interesting structure present with \projection pursuit" methods (Section 4.4.3). These

are less restrictive than related nonlinear methods such as neural networks (Section 4.4.4),

supposing a model of the form

�(yjx) =
KX

k=1

gk(
JX

j=1

xj�jk) (4.1.3)

where both the regression coe�cients �jk and the squashing functions gk() are unknown.

Important algorithmic developments and theory resulted from these models even though

they failed to achieve widespread use within the statistics community. Part of the rea-

son was that these models were regarded as too 
exible in the sense that arbitrarily

complex functions could be provably recovered (with big enough K). The community

instead retreated back to additive models that had limited 
exibility but a�orded much

greater interpretability. Indeed, interpretability was the focus of much of the work in this

area as alternative formulations of the locally linear model were derived, e.g., penalized

likelihood and Bayesian formulations (O'Sullivan et al. 1986).

Still, these ambitious methods helped to nudge the community from focusing on model

estimation to model selection; for modern methods (see Sections 4.4.3 to 4.4.7) the

modeling search is over structure space as well as parameter space. It is not uncommon

now for many thousands of candidate structures to be considered in a modeling run
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{ which forces one to be even more conservative when judging whether improvements

are signi�cant, since any measure of model quality optimized by a search is likely to

be over-optimistic (see e.g., Miller, 1990 in the context of regression subset selection).

When considering a plethora of candidates it usually becomes clear that a wide variety

of models, with di�erent structures and even inputs, score nearly as well as the single

\best". Therefore, following the ancient statistical adage that \in many counselors there

is safety"2 some researchers are now explicitly blending the outputs from several viable

models to obtain estimates with reduced variance and (almost always) better accuracy on

new data (e.g., Wolpert, 1992; Breiman, 1994b). Such techniques are especially promising

when the models being merged are from completely di�erent families (for example, trees,

polynomials, kernels, and splines), and if the local in
uence of each is a function of its

estimated accuracy in that region of design space.

4.2 Distinctives of a Statistical Viewpoint

4.2.1 Interpretability

Researchers from di�erent �elds seem to emphasize di�erent qualities in the models they

seek. For example, Breiman (1994a) noted that the \neural network community" appears

not to be wedded to variations on that approach, but may experiment with a wide variety

of techniques under the overriding goal of developing a model minimally misclassifying

new data. Statisticians, on the other hand, are usually interested in interpreting their

models, and may sacri�ce some performance to be able to extract meaning from the

model structure. If the accuracy is acceptable they reason that a model which can be

decomposed into revealing parts is often more useful than a \black box" system, especially

during early stages of the investigation and design cycle.

4.2.2 Characterizing Uncertainty

The randomness in sampled data is inherited by estimated model parameters since these

are functions of the data. Statisticians summarize the induced randomness by so-called

sampling distributions of estimators. By judicious assumptions, exact sampling distribu-

tions are analytically tractable; more typically asymptotic arguments are invoked. The

net result is often the same, the estimated parameters are approximately normally dis-

tributed. This distribution characterizes the uncertainty in the estimated parameters,

and owing to normality, the uncertainty is succinctly captured in the standard devia-

tion of the sampling distribution, termed the standard error of the estimate. Standard

2Proverbs 24:6b
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statistical practice requires stating the standard errors of estimated model parameters.

Parameters associated with estimates that are small in comparison to their standard

errors, (e.g., t = �̂=s:e:(�̂) < 2) are not likely to be part of the \true" underlying process

generating the data, and it is often prudent to drop such parameters from the model.

A term by term analysis such as this breaks down in the presence of collinear variables

and is weakened also by nonlinear models that stretch the applicability of the asymp-

totic normal sampling theory. Yet, the basic insight is very useful: estimates should be

accompanied by uncertainty measures (e.g., error bars) to be useful.

The Bayesian paradigm provides a di�erent though related perspective. Here one

treats the parameter itself as a random variable and merges prior beliefs about the pa-

rameter together with observed data. The resulting posterior distribution, p(�jdata),

can often itself be approximated by a normal distribution, and thereby a single num-

ber summary of parameter uncertainty is available. Of course, recent computational

advances and ingenious algorithms (e.g. Markov chain monte carlo) obviate the need

for analytically derived normal approximations. But lacking a picture of the posterior

distribution, the second moment is often used to summarize the spread of the induced

posterior distribution.

Other disciplines also deal with unavoidable variation. For instance, electrical engineers

design circuits to �lter noisy signals using components with inexact values themselves

(e.g., resistors with 15% tolerances). Similarly, �nancial analysts know that potential

investments need to be evaluated not only on their expected return, but on their risk

{ usually, the standard deviation of those returns. Investments with higher historical

or implied deviations make sense only if they are accompanied by an appropriate \risk

premium" (higher expected return). On the other hand, logicians and computer sci-

entists have been slow to appreciate the importance of explicitly handling uncertainty.

Arguably, Statistics has had a head start on this problem and seems to have the natural

language, the probability calculus, to propagate and characterize uncertainty in models.

The \certainty factors" in early expert systems and the \fuzzy logic" of later ones, are

weak attempts to do what probability has done for centuries.

In some modeling contexts, emphasis is on prediction rather than estimation (of model

parameters). This change in emphasis does not reduce the need to characterize and re-

port uncertainty. Properly formulated models provide not only the prediction at each

point in the design space, E(yjx)), but also the associated variance, var(yjx). Mon-

itoring local variance is useful for more than con�dence estimates. For example, Cox

and John (1993) and Elder (1993a) employ conditional variances of a response surface

to guide global search algorithms very e�ciently in low dimensions. Unfortunately, only

a few nonlinear inductive modeling techniques (see Section 4.4) explicitly incorporate

conditional variance into their estimates { a clear area for potential improvement.
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4.2.3 Borrowing Strength

It is often the case in statistical problems that inferences are desired but data is sparse.

Consider an example from retail marketing. An SKU (stock keeping unit) is a unique

label assigned to a retail product, for example, men's size 12 blue socks. Predictions

of SKUs are required at a store level in a large chain of department stores to build up

su�cient inventory for promotions and seasonal demand or other \predictable" events.

The problem is that detailed historical data on individual SKU sales at each and every

store in the chain is not available; for example, it may be that no men's size 12 blue

socks sold in the Florida store since last November. The concept of borrowing strength

allows us to build forecasts at the site-SKU level by exploiting hierarchies in the problem,

possibly in more ways than one. By aggregating across stores, su�cient information is

available to build a site-independent prediction for each SKU. This prediction can be

used to add stability to predictions of SKUs in each of several regions, which can in turn

be used to add stability at the site level. Similar types of decompositions could allow us

to borrow strength by looking at sales of, say, all blue socks independent of size, then

all socks, then men's undergarments, then menswear overall. Such \hierarchical models"

have their origins in empirical Bayes models, so-called because inferences are not truly

Bayesian, as maximum likelihood estimates are used in place of \hyperparameters" (the

parameters in prior distributions) at the highest levels of the hierarchy where data is

most numerous. This typically results in estimates of the form ŷi = ��yi+(1��)�y where

�yi is the estimate speci�c to the ith level of the hierarchy and �y to that of its parent

(where data is more abundant). The mixing parameter, �, captures the similarity of the

individual estimate to its parent relative to the tightness of the distribution of the �yi's.

4.2.4 Explicit Assumptions

Statisticians are typically very aware of the explicit and implicit assumptions associated

with their models. Though some of the appeal of non-traditional models and methods

undoubtedly stems from their apparent ability to bypass statistical analysis stages many

see as cumbersome, it is clear that matching the assumptions of a method with the

characteristics of a problem is bene�cial to its solution. Statistical analysts usually take

the useful step of checking those assumptions; chie
y, by examining:

1. residuals (model errors)

2. diagnostics (model sensitivity to perturbations)

3. parameter covariances (redundancy)

Not all violations of assumptions are equally bad. For example, assumptions about

stochastic behavior of the data are typically less important than the structural behavior;
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the former might lead to ine�cient estimates or inaccurate standard errors, but the

later could result in biased estimates. Within these two broad classes, normality and

independence assumptions are typically less important than constancy (homogeneity) of

variance (e.g., var(yjx) = constant for all x). A single outlier from the structural model

can bias the �t everywhere else. Likewise, leverage values are those observations that

have undue in
uence on the �t, for example if deleting the ith observation resulted in a

large change in the estimate of a key parameter. An important distinction is that leverage

values need not correspond to large residuals { indeed by virtue of their \leverage", they

bias the �t toward themselves resulting in small or negligible residuals. Colinearity among

the predictor variables confuses the interpretation of the associated parameters, but can

also be harmful to prediction; the new data must strictly abide by the interrelationships

re
ected in the training data or the model will be extrapolating beyond the con�nes of

the training space, rather than interpolating within it.

4.2.5 Regularization

The aim of statistical inference and inductive modeling is to infer general laws from

speci�c cases { to summarize observations about a phenomenon into a coherent model

of the \underlying data-generating mechanism" which can be tested for explanatory

power on new cases. To perform well on data not seen during \training", models need

appropriate structure and complexity; they must be powerful enough to approximate

the known data, but constrained enough to generalize successfully. \Ockham's razor" is

often invoked as a guiding principle in model selection, which suggests one select for use,

from competing hypotheses with similar explanatory power, the simplest one. In many

cases the simpler, less accurate model will generalize better to new data arising from the

process that generated the training set.

In statistical terms, the tradeo� is between model \under�t" (bias) and \over�t" (vari-

ance), and the imposition of modeling restraint is called \regularization". If data are

plentiful, model over�t can be avoided by reserving representative subsets of the data for

testing as the model is constructed. When performance on the test set systematically

worsens, model growth is curtailed. In the more common scenario in which the design

space is less densely populated with data, all the cases can be employed for training, and

model complexity (e.g., number of parameters) or roughness (e.g., integrated squared

slope of its response surface) is used to constrain the �t. The criterion to be minimized

is then a weighted sum of the training error and the measure of model complexity or

roughness. Note that nonlinear and adaptively-selected parameters can have more in
u-

ence on a model than is typical for linear terms, so their inclusion must be accompanied

by a correspondingly greater increase in training accuracy to \pay their way".

Two other regularization methods are employed, the �rst in statistics and the other in
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nonstatistical communities. The �rst method, parameter shrinkage, uses all the variables

but constrains their overall in
uence to make the models more robust. For example, with

collinear variables, there can be in�nite solutions to a linear estimation problem. Even

with nearly collinear variables, the estimated \optimal" parameters may have huge vari-

ances { a clear type of over�t. By shrinking the parameters, e.g., through a singular value

decomposition of the ill-conditioned design matrix, a relatively robust weight solution is

selected more near the origin (where all parameters are zeroed out). Likewise, ridge re-

gression pushes unstable solutions in the direction of smaller values, e�ectively reducing

the complexity of the model. Shrinkage can also be performed on trees (Pregibon and

Hastie, 1990) and neural networks (known as \optimal weight decay"). Most shrink-

age procedures have a Bayesian interpretation whereby the user-de�ned prior guides the

direction and degree of regularization.

The second method, which applies to iterative procedures (and is considered a relatively

crude approach by many statisticians), is to halt the adjustment procedure some time

before convergence. This has been the primary means by which arti�cial neural network

training (weight modi�cation) is halted but has also been reported in other contexts such

as taming the EM algorithm in positron emission tomography.

To summarize, it is a hallmark of the statistical approach to regularize models; i.e., to

employ simplifying constraints alongside accuracy measures during model formulation in

order to best generalize to new cases { the true goal of most empirical modeling activities.

4.3 Reservations to Automatic Modeling in Statistics

The experienced statistician, perhaps the most capable of guiding the development of

automated tools for data analysis, may also be the most acutely aware of all the di�culties

that can arise when dealing with real data. This hesitation has bred skepticism of what

automated procedures can o�er and has contributed to the strong focus by the statistical

community on model estimation to the neglect of the logical predecessor to this step,

namely model identi�cation. Another culprit underlying this benign neglect is the close

historical connection between mathematics and statistics whereby statisticians tend to

work on problems where theorems and other analytical solutions are attainable (e.g.

sampling distributions and asymptotics). Such solutions are necessarily conditional on

the underlying model being speci�ed up to a small number of identi�able parameters that

summarize the relationship of the predictor variables to the response variable through

the �rst few moments of the conditional distribution, f(yjx). For example the common

regression model takes the form:
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�(yjx) =
JX

j=1

xj�j (4.3.4)

�(yjx) = constant (4.3.5)

The implicit parameter J is not part of the explicit formulation nor is the precise

speci�cation of which xj's de�ne the model for the mean parameter �. Traditional

statistics provides very useful information on the sampling distribution of the estimates

�̂j for a �xed set of xj 's but no formalism for saying which x's are needed.

The relatively small e�ort by the statistical community in model identi�cation has

focused on marrying computing horsepower with human judgment (as opposed to fully

automated procedures). The general problem is deciding how large or complex a model

the available data will support. By directly and explicitly focusing on mean squared

prediction error, statisticians have long understood the basic tradeo� between bias (too

small a model) and variance (too large a model) in model selection. Algorithms (Furnival

and Wilson, 1978) and methods (Mallows, 1973) have been used extensively in identifying

candidate models summarized by model accuracy and model size. The primary reason

that human judgment is crucial in this process is that algorithmic optimality does not

and cannot include qualitative distinctions between competing models of similar size

{ for example, if the accuracy/availability/cost of the variables di�er. So it is largely

human expertise that is used to select (or validate) a model, or a few models, from the

potentially large pools of candidate models.

The statistician's tendency to avoid complete automation out of respect for the chal-

lenges of the data, and the historical emphasis on models with interpretable structure,

has led that community to focus on problems with a more manageable number of vari-

ables (a dozen, say) and cases (several hundred typically) than may be encountered in

KDD problems, which can be orders of magnitude larger at the outset.3 With increas-

ingly huge and amorphous databases, it is clear that methods for automatically hunting

down possible patterns worthy of fuller, interactive attention, are required. The exis-

tence of such tools can free one up to, for instance, posit a wider range of candidate data

features and basis functions (building blocks) than one would wish to deal with, if one

were specifying a model structure \by hand".

This obvious need is gaining sympathy but precious little has resulted. The subsections

below highlight some of the areas that further underlie the hesitation of automatingmodel

identi�cation by the statistical community.

3Final models are often of similar complexity; it's the magnitude of the initial candidate set of
variables and cases that is usually larger in KDD.
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4.3.1 Statistical signi�cance versus practical signi�cance

A common approach to addressing the complexity and size of model space is to limit

model growth in the model �tting/learning stage. This is almost always accomplished

using a statistical test of signi�cance at each step in the incremental model building

stage. Thus for example, one could use a standard �2 test of independence between two

nominal variables as a means to limit growth of a model that searches for \signi�cant"

association. The main problem with this approach is that signi�cance levels depend

critically on n, the sample size, such that as n increases, even trivial di�erences attain

statistical signi�cance. Statisticians ameliorate this problem by introducing context to

better qualify �ndings as \signi�cant."

4.3.2 Simpson's paradox

A related problem with automated search procedures is that they can often be completely

fooled by anomalous association patterns, even for small datasets. An accessible and

easily understood example (Freedman, Pisani, and Purves, 1978) concerns admission to

graduate school at UC Berkeley in 1973. Across major departments, 30% of 1835 female

applicants were admitted while 44% of 2691 male applicants were admitted. Do these

disparate fractions indicate sex bias? On the face yes, but if the applicants and admissions

are broken down by department, then the fractions of the two sexes admitted shows a

very di�erent story, where one might even argue that \reverse" sex bias is present! The

\paradox" here is that the choice of major is confounded with sex { namely that females

tend to apply to majors that are harder to get into while males apply to \easy" majors.

The implication of this paradox is that KDD tools which attack large databases looking

for \interesting" associations between pairs of variables must also contain methods to

search for potential confounders. Computationally, this changes the problem from an n2

to an n3 operation (or higher if one considers more confounders). The computational

burden can only be avoided by providing knowledge about potential confounders to the

discovery algorithm. While this is in principle possible, it is unlikely to be su�cient

since common sense knowledge often suggests what confounders might be operating.

Statisticians have long brought these common sense insights to the problem rather than

delegate them to automata.

4.3.3 Selection bias

Automated knowledge discovery systems are applied to databases with the expectation

of translating data into information. The bad news is that often the available data is

not representative of the population of interest and the worse news is that the data itself

contains no hint that there is a potential bias present. Namely, it's more an issue of what
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is not in a data set rather than what information it contains. For example 4, suppose

that the White House Press Secretary is using a KDD (e.g. information retrieval) tool to

browse through email messages to PRESIDENT@WHITEHOUSE.GOV for those that

concern health care reform. Suppose that she �nds a 10:1 ratio of pro-reform to anti-

reform messages, leading her to assert that \Americans favor reform by a 10:1 ratio"

followed by the worrisome rejoinder \and Government can �x it." But it may well be

that people dissatis�ed with the health care system are more likely to \sound o�" about

their views than those who are satis�ed. Thus even if the true distribution of views on

health care reform has mean \score" of zero, self-selected samples that are heavily biased

towards one of the tails of this distribution will give a very misleading estimate of the

true situation. It is not realistic to expect automated tools to identify such instances. It

is probably even less realistic to expect users (e.g. lawyers) of such systems to critically

question such interesting \facts."

4.3.4 Quantifying Visual Capabilities

Today's data analyst is very dependent on interactive analysis where numerical and

graphical summaries are computed or displayed \on the 
y". Successful instances of

data mining by statisticians are often sprinkled with cries of \aha" whereby some subject

matter (context) information, or unexpected behavior in a plot, is discovered in the

course of the interaction with the data. This discovery can change the intended course

of subsequent analysis steps in quite unpredictable ways. Assuming that it is a very

hard problem to include common sense and context information in automated modeling

systems, this leaves automated interpretation of plots as a promising area to explore.

There are two problems that have served as a barrier to statisticians in this regard:

1. it is hard to quantify a procedure to capture the unexpected in plots.

2. even if this could be accomplished, one would need to describe how this maps into

the next analysis step in the automated procedure.

What is sorely needed in the statisticians armory is a way to represent meta-knowledge

about the problem at hand and about the procedures commonly used. This suggests an

opportunity where the KDD and statistical communities can complement their skills and

work together to provide an acceptable and powerful solution.

4.4 Statistical Methods

4A less modern but more realistic situation occurred in US politics when three major polls over-
whelmingly projected Dewey over Truman in the 1948 presidential election | too bad for Dewey (the
Republican) that there was a discrepancy between the voting public and those with phone service.



A Statistical Perspective on Knowledge Discovery in Databases 15

In this section we review some classical and more recent methods that are used in knowl-

edge discovery problems where interest centers on a single response variable, y, and a

collection of predictors, x = (x1; x2; :::; xJ). All the models assume the availability of

training data, and the goal is to �nd a model to predict y from x that performs well

on new data. This problem had a well-de�ned solution (least squares) for many decades

until computing advances made it possible to relax classical assumptions. Statisticians

have since been on a feeding frenzy devising new estimation methods (e.g., M-estimates)

and models (e.g., additive models) to exploit the less restricted formulation.

Others have been caught up in the race to develop increasingly 
exible models, per-

haps encouraged by the famous result of Kolmogorov (1957) that all multi-dimensional

functions can be represented by a composition of one-dimensional functions. But statis-

ticians are not comforted by this result as any such class of models has far too much


exibility to be useful in practice where �nite and noisy data prevail. We need models

that scale up to real data, which due to its size and complexity (e.g., missing values)

beguiles all but the simplest of analyses.

Following discussion of classical linear methods and nonparametric techniques, we

brie
y describe �ve modeling algorithms selected to span \statistical method space":

projection pursuit, neural networks, polynomial networks, decision trees, and adaptive

splines.5 While each can be treated as a \black box" (with a few \knobs" to set) that

performs variable selection and feature extraction from a set of candidate inputs, we do

not recommend such reckless abandon. Rather, careful modeling and familiarity with

the subject matter domain can lead to greatly improved performance.

Several recent references are recommended for further information on this subject.

Friedman (1995) provides an excellent overview of the major issues involved in building

models from data, applicable to all induction techniques. Weiss and Kulikowski (1991)

describe, in a very accessible manner, the basics of major inductive or \machine learning"

classi�cation techniques, including linear discriminant analysis, decision trees, neural

networks, and expert systems. Useful (and more advanced) recent surveys focusing

on neural networks and their statistical properties include those by Ripley (1993) and

Cheng and Titterington (1994). Barron and Barron (1988) provide a unifying view

of many methods as \statistical learning networks". A comparison of approximately

twenty public-domain classi�cation algorithms is summarized on a number of diverse

applications in the European StatLog project (Michie, Spiegelhalter, and Taylor, 1994).

Lastly, modern developments in statistical density estimation and data visualization are

5Clearly, tree methods dominate work in the KDD, machine learning, and expert system communities
{ and not without reason. Trees can be mapped into rules, can more easily handle categorical data
and missing values, and are usually far more interpretable. However, the \smooth" methods deserve
consideration where applicable, as their basis functions can often be more appropriate for the data, and
thus lead to improved performance.
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e�ectively presented by Scott (1992).

4.4.1 Linear Models

The classical models for prediction and classi�cation are linear regression and linear dis-

criminant analysis, respectively. The term \linear" in these models pertains primarily

to the fact that the regression or classi�cation surface is a plane | a linear combina-

tion of the available predictors (equations 4.3.4-5) (which may be nonlinear functions

of the original data). The 
exibility and straightforward computation involved in lin-

ear regression leads to its wide use within other techniques. For example, radial basis

function networks are merely the linear regression of a set of kernel features { nonlinear

functions of the separation of each case from several (potentially adaptively-selected)

data centroids (next Section). Lowe and Webb (1991) employ a neural network archi-

tecture (Section 4.4.4) to compute nonlinear data features which feed into a �nal linear

regression stage, and polynomial networks (Section 4.4.5) use linear regression in every

node to combine previous (nonlinear) polynomial data transformations. Even linear dis-

criminant analysis, with appropriate pre- and post- processing, can be formulated as a

problem with a linear regression stage (Hastie, Tibshirani, and Buja, 1994). This allows

one to replace the linear regression module with an advanced nonlinear/nonparametric

estimation method, greatly increasing the types of patterns that can be handled by such

classi�cation techniques.

The models are also linear in a second important respect; namely, that the estimated

parameters in the model are linear in the response variable, y. For example, in the usual

linear regression model,

�̂j =
nX

i=1

cijyi: (4.4.6)

This type of linearity enables an exact sampling theory for estimated model parameters

(Section 4.2.2), unless the x's were selected during the course of the analysis (in which

case a hard to untangle nonlinearity is involved).

4.4.2 Nonparametric Methods

Linear models are parametric methods; they replace sample data with a model repre-

senting a global \consensus" of the pattern the data represents (to the degree to which

the patterns can be captured by the particular building blocks used; typically, lines or

quadratic curves). Nonparametric, \model-free", or \code book" methods instead keep

the data around and refer to it when estimating the response or the class of a new

point. The simplest such method is nearest neighbors, which returns the response of
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the closest known point (as measured in the input-variable, or design, space according

to some distance metric, e.g., Euclidean). The resulting estimation surface or discrim-

ination boundaries are thus extremely responsive to local variations. To smooth these

somewhat, the data set can be pared of unusual points, or the responses of the nearest

K neighbors can be averaged. This simple method is often quite competitive in perfor-

mance and asymptotically, as the data density increases, results in no worse than twice

the Bayes optimal error (Cover and Hart, 1967).

Kernel estimation (e.g., Parzen, 1962) provides a smoothed, generalized weighting of

near-neighbors. A density function (e.g., uniform, triangular, or normal) is centered over

each point to be predicted.6 The prediction is the kernel-weighted average of all the data.

A single parameter representing the spread of the kernel can be adjusted to govern the

roughness (local responsivity) of the prediction.

While such methods appear to be model-free, a type of model is implicit in the choice

of distance function. Even if one considers Mahalanobis distance between two points i

and j,

dij = (xi � xj)
T��1(xi � xj) (4.4.7)

there is considerable latitude in deciding which x's should enter into the distance calcu-

lation, and in what form (e.g., x or logx). Scaling issues, as re
ected in �, can make

or break the resulting prediction. As with all modeling methods, such issues need to be

carefully considered and experimented with on the training data.

More so than parametric methods, nonparametric techniques are essentially constrained

to operate in low dimensions; they depend heavily on local structure, and high-dimensional

data is so sparse that \local neighborhoods are empty and non-empty neighborhoods are

not local" (Scott, 1992). For example, for data uniformly distributed throughout a 10-

dimensional unit cube, U10[0,1], only 0.1% of the data is in a histogram bin of width

0.5 { not a very local neighborhood! Also, as dimension grows, nearly every point both

views itself as an outlier with respect to the rest of the training data, and becomes closer

to an outer boundary of the space than to its next nearest neighbor (Friedman, 1995).

Thus, methodological intuition gained from experience in low dimensions is thoroughly

out of place in high-D spaces { a phenomenon known as the \curse of dimensionality".

Still, when intelligently selecting variables to reduce the dimensionality to where sam-

ples can reasonably densely populate predictor space, these simple methods can work

very well, often outperforming parametric methods. Accordingly, even when automated

induction methods (described below) are employed, it is useful to examine the perfor-

6A rectangular kernel leads to a type of histogram with 
exible bin edges.
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mance of simple- or kernel-weighted nearest neighbors on the subset of variables selected

for use by the adaptive algorithms.

4.4.3 Projection Pursuit

In low dimensions, the human ability to recognize patterns is unlikely to be matched by

automata. Straightforward visual examination of data using histograms, scatterplots,

and rotating 3-D plots, can often reveal structure which is missed by automated induc-

tion algorithms (Elder 1993b). Under the \grand tour' strategy (Asimov 1985) the data

is rotated smoothly through all (or most) 2-D views, allowing one to discover interest-

ing perspectives. However, the number of di�erent views explodes exponentially with

dimension, limiting such visual coverage methods to problems with a moderate number

of candidate predictor variables. Accordingly, statisticians have sought to quantify mea-

sures of \interestingness" which can be optimized by the computer to identify revealing

views in high-D.

In a procedure known as Exploratory Projection Pursuit (Friedman and Tukey, 1974),

one searches for 1-D projections that maximallydeviate from normality, robustly smoothes

the data along that projection, and subtracts the smooth from the response. This pro-

cess is repeated, projection by projection, until the error reduction cannot justify the

added complexity. The anti-normal projection index is a reasonable one to employ since,

regardless of the true density, most random projections of high-D data are normal (Di-

aconis and Freedman, 1984). Other exploratory projection indices are designed to seek

holes or clusters. Projection Pursuit Regression (Friedman and Stuetzle, 1981) utilizes a

maximal correlation index while maximal class separation is used for building a classi�er.

However, it is very di�cult to capture \interestingness" in a single criterion; structure

which would be obvious to an analyst can be missed (see, e.g., Elder 1994). Even if a

particular quality could be well-quanti�ed in an index, an analyst employing visualiza-

tion has the advantage of \multiple end-points"; that is, of recognizing any of a wide

variety of patterns encountered without explicitly choosing them as a goal beforehand.

This weakness is shared by all automated modelling techniques to varying degrees, so to

maximize performance, the automated search for structure in high-D space must be com-

plemented by visualization of the lower-D manifolds discovered. (In practice therefore,

techniques producing models with interpretable components have the additional advan-

tage of speeding up the \design cycle" or entire iterative process of model development.)

4.4.4 Neural Networks

Arti�cial neural networks (ANNs) are a useful class of models consisting of layers of nodes,

each implementing a linearly-weighted sum of its inputs with an adjustable sigmoidal (S-
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shaped) output transformation as the bounded squashing function. The outputs of every

node on a layer feed into each node on subsequent layers as their inputs. With the back-

propagation weight adjustment procedure (e.g., Werbos, 1974), cases are fed through one

at a time, and errors are used to adjust the weights of the �nal output node to a degree

proportional to their contribution (magnitude). Then, weights for nodes which feed into

it are similarly adjusted, and so forth, back to the �rst layer. Initial weights are typically

set randomly.

Statisticians have been suspicious of ANNs due to their overzealous promotion, but

also because they appear so over-parameterized, and the weight adjustment procedure

is a local gradient method (missing global optima), sequential (allowing early cases to

have too much in
uence), and interminable (leading to a crude type of regularization

wherein moderating the runtime becomes the principle way to avoid over�t). However,

these weaknesses cancel somewhat, as the slow, local search doesn't allow the excess of

parameters to be over�t easily. Note also that the true degrees of freedom employed by

an ANN are usually fewer than at �rst glance. The danger of over�t can depend on the

training duration, since many random node weights lead to essentially linear functions

(nodes operating in either the middle or an extreme of the sigmoid) and such linear

functions are absorbed by subsequent layers. Only as nodes get pushed into the curved

part of the sigmoids during training do many parameters become active. (This may

explain the common observation that the performance of an ANN on a problem is often

surprisingly robust with respect to changes in its network structure.)

4.4.5 Polynomial Networks

Regression terms are often adaptively selected from a candidate pool in a forward stepwise

(greedy) manner: choose the single best term, add the term which best combines with it,

add the third term which works best with the pair, and so forth (occasionally deleting a

term which is not useful enough) until the accuracy improvement is too small to justify

the increment in complexity. The �rst polynomial network algorithm, the Group Method

of Data Handling (GMDH) (Ivakhnenko, 1968; see also Farlow, 1984), expanded this idea

by considering \chunks" of terms simultaneously. The GMDH uses linear regression to �t

quadratic polynomial nodes to an output variable using all input variable pairs in turn.

The best M nodes are retained as the �rst layer, and their outputs are the candidate

inputs for the next layer, and so on, until complexity impairs performance on a checking

set of data (whence the name). The best node on the �nal layer, and all nodes feeding

into it, become the model, thereby forming a hierarchical composition of functions (a

feed-forward network).

Considerable improvements to the GMDH approach were introduced in the 1970s and

1980's with versions of the Polynomial Network Training (PNETTR) algorithm (Barron
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et al., 1984) and the Algorithm for Synthesis of Polynomial Networks (ASPN, Elder

1985). Some details of the history and methodology of these algorithms are presented

in (Elder and Brown, 1995). Like ANNs, polynomial network estimation surfaces are

smooth and global, but with nonlinearities entering through higher-order polynomial

terms and cross-products, rather than sigmoids. The structure is adaptive rather than

�xed, and the parameters are adjusted in sets, using all the data, rather than globally

using one case at a time. Polynomial networks can take orders of magnitude less time to

train than back-propagation ANNs (e.g., Shewhart, 1992) and typically achieve better

results (e.g., Tenorio and Lee, 1989). However, also like ANNs, polynomial networks

are rather opaque; they are di�cult to dissect, unlike trees, which can be interpreted

straightforwardly.

4.4.6 Decision Trees

The neural and polynomial network methods are global estimators, and hence will poorly

estimate a function everywhere if it is su�ciently badly behaved anywhere (e.g., deBoor,

1978). Decision trees, which recursively divide the space into di�erent regions, instead

have sharp breaks in their estimation surfaces, allowing great local responsivity. Also, the

variables selected for splits may be di�erent in each adaptively-partitioned region of the

space. The 
exibility of the method seems often, in practice, to make up for the crude

basis function (a constant). Note that in a classi�cation problem in which a variable

(fortuitously) has a di�erent constant value for each class, a decision tree could capture

the rule perfectly, whereas classical linear discriminant analysis would actually encounter

numerical instabilities, due to the negligible within-class pooled variance of the variable.

Decision trees were legitimized in the statistical community by the pioneering work on

Classi�cation and Regression Trees (CART) of Breiman et al. (1984). These authors

neatly describe the problem and provide theory and methods to grow a tree and validate

it. They depart frommost previous work in that they propose expanding nodes until they

reach a prescribed minimal size or are themselves pure. A cost-complexity parameter is

introduced that characterizes a nested sequence of subtrees and cross-validation is used

to decide how far back to prune the overly large initial tree. As with other statistical

models, the usual precautions and careful pre- and post-�tting analysis are required. An

advantage held by trees in this regard is that the tree metaphor can be exploited for

graphical analysis.

Trees are natural for classi�cation, but are also useful in di�cult estimation problems

where their simple piecewise-constant response surface and lack of smoothness constraints

make them highly robust to outliers in either the predictors or the response variable.

They automatically select variables, and construct models quite rapidly for an adaptive

method. Importantly, trees are also probably the easiest model form to interpret (so
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long as they are shallow) which, in our experience, greatly improves the model's chances

of actually being used. The main problem with trees is that they devour data at a rate

exponential with depth; so, to uncover complex structure, extensive data is required.

4.4.7 Adaptive Splines

The extreme local responsiveness of trees can sometimes be a disadvantage. Friedman's

(1991) Multiple Adaptive Regression Splines (MARS) model employs recursive partition-

ing to locate product spline basis functions of adjustable degree, rather than constants.

This results in smooth adaptive function approximation as opposed to the crude steps

or plateaus provided by regression trees. The method also considers splines involving

interactions between previously selected variables, so it can orient its basis functions on

other than the original data axes. To aid interpretation, model terms are collected ac-

cording to their inputs and their in
uence is reported in an ANOVA manner, namely,

the e�ects of individual variables and pairs of variables are collected together and graph-

ically presented as function plots. Like CART, MARS employs cross-validation, prunes

terms after over-growing, and can handle categorical variables. As a new (and some-

what complex) method, there is less accumulated experience with its use, though it has

been favorably compared with ANNs (e.g., DeVeaux et al., 1993) One would expect that

enforcing continuity of the response surface (and perhaps that of its slope) will be very

useful for applications which have a design space densely enough populated to support

(and require) the local responsivity of the spline-like basis functions.

4.5 Statistical Computing

Arguably, no matter how brilliant the model or method to describe and summarize data,

software is essential if a methodology is actually to be used. KDD and machine learning

communities implicitly provide software as their methods are largely described algorith-

mically. Statisticians on the other hand, are perfectly capable of generating scores of

models and methods with well de�ned operating characteristics (at least asymptotically)

without ever writing a line of code. But these days are largely over and it is rare that

statistical methods are described or promoted without application to data.

Early general purpose statistical packages included BMDP and SPSS, from the biomed-

ical and social sciences, respectively. Of the two most important newer systems { SAS

and S, SAS is most similar in style, containing many special \procedures" for standard

statistical models. S was designed as a language to express statistical computations,

rather than as a complete package. For example, two sample t-tests were built-in to

SAS, while S simply provided a high-level language to express the relevant computations
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(which could be assigned to a function for repeated usage). Both SAS and S are widely

used for exploratory data analysis, modeling, and graphics. Each provides some degree of

data management to remove that burden from users and can be extended to tailor meth-

ods for speci�c applications. Emerging useful packages include Lisp-Stat (Tierney, 1990),

an S-inspired, object-oriented (Common Lisp) system that is being used in research cir-

cles, as well as a host of PC-based systems that demonstrate remarkable breadth and

accessible interfaces.

It is still the case that specialized methods (such as discussed in the previous Section)

appear �rst in isolation, rather than as part of a bigger system. (A useful repository

for many such statistical research algorithms is the \StatLib" archive.7) For example,

CART �ts trees and trees alone.8 Features of these stand-alone programs usually even-

tually make their way into more general systems, losing some e�ciencies, but gaining the

capabilities of an integrated data analysis environment essential to analysis quality and

analyst productivity. Thus the CART-inspired implementation of tree-based models in

the S language (Clark and Pregibon, 1990) not only allows users to manipulate their data

in a variety of ways prior to �tting, but also provides an interactive graphical interface to

the model and the opportunity to painlessly explore alternatives (e.g., additive models).

The story is somewhat similar on the graphical front. Most stand-alone statistical

graphics systems provide real-time dynamic motion that many �nd essential for exploring

complex high-dimensional data sets. General purpose systems adequately handle most

plots but lack the degree of specialization allowing friendly user interfaces or state-of-

the-art graphics. (Lisp-Stat is an exception in that certain advanced features such as

case-linking multiple plots are provided.) The XGobi system (Swayne, Cook, and Buja,

1992) provides a comprehensive projection and real-time motion tool set that includes

\grand tours" and other \guided tours"; the graphics system can be used stand-alone or

within a cooperative statistics system (e.g., S).

Finally, we want to emphasize that computing is more to statistics than a vehicle for

data analysis. It has revolutionized the �eld through the computational methodologies

that statisticians now take for granted (e.g., resampling methods, cross-validation, and

Markov Chain Monte Carlo). We expect the in
uence of Computer Science on Statistics

to increase in the future.

7Send the one line message \send index" to \statlib@lib.stat.cmu.edu" for contents and retrieval
instructions.

8Though it's recently been o�ered as an optional module for a popular PC package.
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4.6 Conclusions

The tendency of the statistical community to propagate uncertainty in their models

through sampling distributions, their familiarity with the need to regularize models

(trade o� accuracy and complexity), and their dogged perseverance in checking model

assumptions and stability (through residual and graphical analyses) are strengths. Still,

alternative heuristic modeling techniques have gained in popularity partly as a way to

\avoid statistics" yet still address challenging induction tasks. Statisticians should learn

from this the need to do a better job of communicating the value of such considerations,

as well as clarifying and streamlining ways of injecting extra-data information into the

modeling process.

A great deal of work goes into identifying, gathering, cleaning, and labeling the data,

into specifying the question(s) to be asked of it, and into �nding the right way to view

it (literally and �guratively) to discover useful patterns. Despite the central importance

of actually modeling the data (the focus of this chapter) that stage can take up only a

small proportion of the project e�ort. It is hard to conceive that the entire process will

ever be automated. Increased automation has not absolved researchers of the need to

think in statistical terms, including matching model assumptions to the problem, seeking

interpretability, quantifying variance, regulating complexity to improve generalization,

and keeping a lookout for the unexpected. However, modern statistical modeling tools

do make it possible for an analyst to think about the problem at a higher level (by

handling some routine or massive tasks), to try numerous approaches, to estimate the

uncertainty of conclusions arising out of even complex processes, and to iterate through

several stages of a solution design before settling on a representation scheme (or even a

blend of them). When one is comparing KDD techniques, or attempting to extract the

most out of a database, it makes sense to try some of these accessible modern statistical

algorithms.

Bibliography

Akaike, H. 1973. Information Theory and an Extension of the Maximum Likelihood

Principle. In Proceedings of the Second International Symposium on Information

Theory, eds. Petrov and Csaki, 267{281, Budapest: Kiado Academy.

Asimov, D. 1985. The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM

Journal on Scienti�c and Statistical Computing 6: 128{143.

Barron, A. R.; and Barron, R. L. 1988. Statistical Learning Networks: A Unifying

View. In Proceedings of the Twentieth Symposium on the Interface: Computing



24 Elder & Pregibon

Science and Statistics, Reston, Virginia.

Barron, R. L.; Mucciardi, A. N.; Cook, F. J.; Craig, J. N.; and Barron, A. R. 1984.

Adaptive Learning Networks: Development and Application in the United States

of Algorithms Related to GMDH, Ch. 2 in Self-Organizing Methods in Modeling:

GMDH Type Algorithms, ed. S. J. Farlow, 25{65. New York: Marcel Dekker.

Belsley, D. A.; Kuh, E.; and Welsch, R. E. 1980. Regression Diagnostics: Identifying

in
uential data and sources of collinearity. New York: John Wiley & Sons.

Bishop, Y. M. M.; Fienberg, S. E.; and Holland, P. W. 1975. Discrete Multivariate

Analysis: Theory and Practice. Cambridge, Massachusetts: MIT Press.

Breiman, L. 1994a. Comment on \Neural Networks" by Cheng and Titterington, Sta-

tistical Science 9(1): 38{42.

Breiman, L. 1994b. Stacked Regressions, Technical Report 367, Dept. Statistics, UC

Berkeley.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J. 1984. Classi�cation and

Regression Trees. Monterey, California: Wadsworth & Brooks.

Cheng, B.; and Titterington, D. M. 1994. Neural Networks: A Review from a Statistical

Perspective (with discussion). Statistical Science 9(1): 2{54.

Clark, L. A.; and Pregibon, D. 1992. Tree-based Models. Ch. 8 in Statistical Models

in S, eds. J. M. Chambers and T. Hastie. Paci�c Grove, California: Wadsworth &

Brooks/Cole Advanced Books and Software.

Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots.

Journal of the American Statistical. Association 74: 829{836.

Cover, T. M.; and Hart, P. E. 1967. Nearest Neighbor Pattern Classi�cation. IEEE

Transactions on Information Theory 13: 21{27.

Cox, D. D., and John, S. 1993. A Statistical Method for Global Optimization. In

Proceedings of the IEEE Systems, Man, and Cybernetics Society, Chicago, Oct.

deBoor, C. 1978. A Practical Guide to Splines. New York: Springer-Verlag.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum likelihood from

incomplete data via the EM algorithm (with discussion). Journal of the Royal

Statistical Society B 39: 1{38.

DeVeaux, R. D.; Psichogios, D. C.; and Ungar, L. H. 1993. A Comparison of Two

nonparametric Estimation Schemes: MARS and Neural Networks. Computers in

Chemical Engineering 17(8): 819{837.



A Statistical Perspective on Knowledge Discovery in Databases 25

Diaconis, P.; and Freedman, D. 1984. Asymptotics of Graphical Projection Pursuit.

Annals of Statistics 12: 793{815.

Efron, B.; and Gong, G. 1983. A leisurely look at the bootstrap, the jackknife, and

cross-validation. American Statistician 37: 36{48.

Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics

7: 1{26.

Elder, J. F. IV 1994. Comment on \Prosection Views" by Furnas and Buja. Journal of

Computational and Graphical Statistics 3(4): 355{362.

Elder, J. F. IV 1993a. GlobalRd Optimization when Probes are Expensive: the GROPE

Algorithm. Ph.D. diss., Dept. of Systems Engineering, University of Virginia, May.

Elder, J. F. IV 1993b. Assisting Inductive Modeling Through Visualization. In Pro-

ceedings of the Joint Statistical Meeting, San Francisco, California, Aug. 7-11.

Elder, J. F. IV 1985. User's Manual: ASPN: Algorithm for Synthesis of Polynomial

Networks, Barron Associates, Inc., Stanardsville, Virginia. (4th Edition, 1989.)

Elder, J. F. IV; and Brown, D. E. 1995. Induction and Polynomial Networks. Ch. 3

in Advances in Control Networks and Large Scale Parallel Distributed Processing

Models (Vol. 2), ed. M. D. Fraser. Norwood, New Jersey: Ablex. Forthcoming.

(Available as Technical Report IPC-TR-92-9, University of Virginia.)

Faraway, J. J. 1991. On the cost of Data Analysis, Technical Report 199, Dept. Statis-

tics, Univ. Michigan, Ann Arbor.

Farlow, S. J., ed. 1984. Self-Organizing Methods in Modeling: GMDH Type Algorithms.

New York: Marcel Dekker.

Freedman, D.; Pisani, R.; and Purves, R. 1978. Statistics. New York: WW Norton &

Co.

Friedman, J. H. 1995. An Overview of Predictive Learning and Function Approxima-

tion. Ch. 1 in From Statistics to Neural Networks: Theory and Pattern Recognition

Applications, eds. V. Cherkassky, J. H. Friedman, and H. Wechsler, Springer.

Friedman, J. H. 1991. Multiple Adaptive Regression Splines (with discussion). Annals

of Statistics 19: 1{141.

Friedman, J. H.; and Stuetzle, W. 1981. Projection Pursuit Regression. Journal of the

American Statistical Association 76(376) 817{823.

Friedman, J. H.; and Tukey, J. W. 1974. A Projection Pursuit Algorithm for Ex-

ploratory Data Analysis. IEEE Transactions on Computers 23: 881{889.



26 Elder & Pregibon

Furnival, G. M.; and Wilson, R. W. 1974. Regression by leaps and bounds. Techno-

metrics 16: 499{511.

Hampel, F. R. 1974. The in
uence curve and its role in robust estimation. Journal of

the American Statistical Association 62: 1179{1186.

Hastie, T. and Pregibon, D. 1990. Shrinking Trees, Technical Report, AT&T Bell

Laboratories.

Hastie, T.; and Tibshirani, R. 1990. Generalized Additive Models. London: Chapman

& Hall.

Hastie, T.; Tibshirani, R.; and Buja, A. 1994. Flexible Discriminant Analysis by Opti-

mal Scoring. Journal of the American Statistical Association 89(428): 1255{1270.

Huber, P. J. 1964. Robust estimation of a location parameter. Annals of Mathematical

Statistics 35: 73{101.

Ivakhnenko, A. G. 1968. The Group Method of Data Handling { A Rival of the Method

of Stochastic Approximation. Soviet Automatic Control 3: 43{71.

Kolmogorov, A. N. 1957. On the Representation of Continuous Functions of Several

Variables by Superpositions of Continuous Functions of One Variable and Addition.

Dokladi 114: 679{681.

Lowe, D.; and Webb, A. R. 1991. Optimized Feature Extraction and the Bayes Decision

in Feed-Forward Classi�er Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence 13: 355{364.

Mallows, C. L. 1973. Some Comments on Cp. Technometrics 15: 661{675.

McCullagh, P.; and Nelder, J. A. 1989. Generalized Linear Models (2nd Ed.) London:

Chapman & Hall.

Michie, D.; Spiegelhalter, D. J.; and Taylor, C. C., eds. 1994. Machine Learning, Neural

and Statistical Classi�cation. New York: Ellis Horwood.

Miller, A. J. 1990. Subset Selection in Regression. New York: Chapman & Hall.

Mosteller, F.; and Tukey, J. W. 1977. Data Analysis and Regression. Reading Mas-

sachusetts: Addison-Wesley.

Nelder, J. A.; and Wedderburn, R. W. M. 1972. Generalized Linear Models. Journal

of the Royal Statistical Society A 135: 370{384.

O'Sullivan, F.; Yandell, B. S.; and Raynor, W. J. Jr. 1986. Automatic smoothing of re-

gression functions in generalized linear models. Journal of the American Statistical

Association 81: 96{103.



A Statistical Perspective on Knowledge Discovery in Databases 27

Parzen, E. 1962. On Estimation of a Probability Density Function and Mode. Annals

of Mathematical Statistics 33: 1065{1076.

Ripley, B. 1993. Statistical Aspects of Neural Networks. In Chaos and Networks {

Statistical and Probabilistic Aspects, eds. O. Barndor�-Nielsen, D. Cox, J. Jensen,

and W. Kendall, London: Chapman & Hall.

Rissanen, J. 1978. Modeling by Shortest Data Description. Automatica 14: 465{471.

Schreuder, H. T. 1986. Quenouille's estimator. Encyclopedia of Statistical Science 7:

473{476. New York: John Wiley & Sons.

Scott, D. W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualiza-

tion. New York: Wiley.

Shewhart, M. 1992. A Neural-Network-Based Tool. IEEE Spectrum February: 6.

Swayne, D. F.; Cook, D.; and Buja, A. 1992. XGobi: Interactive Dynamic Graphics

in the X Window System with a Link to S. In Proceedings of the 1991 American

Statistical Association Meetings.

Tenorio, M. F., and Lee, W. T. 1989. Self-Organizing Neural Networks for the Identi�-

cation Problem. In Advances in Neural Information Processing Systems, ed. D. S.

Touretzky, 57{64. San Mateo, California: Morgan Kau�man.

Tierney, L. 1990. LISP-STAT New York: John Wiley & Sons.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, Massachusetts: Addison-

Wesley.

Weiss, S. M.; and Kulikowski, C. A. 1991. Computer Systems that Learn: Classi�cation

and Prediction Methods from Statistics, Neural Networks, Machine Learning, and

Expert Systems. San Mateo, California: Morgan Kaufmann.

Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Ph.D. diss., Harvard, August.

Wolpert, D. 1992. Stacked Generalization. Neural Networks 5: 241{259.


