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ABSTRACT
Genetic programming is a relatively new domain-independent method for

evolving computer programs to solve problems. This chapter suggests avenues
for possible future research on genetic programming, opportunities to extend the
technique, and areas for possible practical applications.

1.  Introduction
The goal of the field of automatic programming is to create, in an automated way, a computer
program that enables a computer to solve a problem.  Genetic programming (Koza 1992, 1994) is
a domain-independent approach to automatic programming in which computer programs are
evolved to solve, or approximately solve, problems.  The field of genetic programming has grown
rapidly in the past few years.  Between 1992 and 1996, over 600 papers on genetic programming
have been published.

This paper discusses the many opportunities to apply genetic programming to realistic and
practical problems, numerous possible avenues to extend the technique of genetic programming,
and avenues for research on theoretical aspects of genetic programming.

2 . Promising Application Areas
I believe the single most important area for future work in genetic programming (as well as for all
other techniques of automated machine learning) is to demonstrate the applicability of the technique
to realistic problems.

The presence of some or all of the following characteristics make an area especially suitable for
the application of genetic programming:

• an area where conventional mathematical analysis does not, or cannot, provide analytic
solutions,

• an area where the interrelationships among the relevant variables are poorly understood (or
where it is suspected that the current understanding may well be wrong),

• an area where finding the size and shape of the ultimate solution to the problem is a major part
of the problem,

• an area where an approximate solution is acceptable (or is the only result that is ever likely to
be obtained),

• an area where there is a large amount of data, in computer readable form, that requires
examination, classification, and integration, or

• an area where small improvements in performance are routinely measured (or easily
measurable) and highly prized.

For example, problems in automated control are especially well suited for genetic programming
because of the inability of conventional mathematical analysis to provide analytic solutions to many
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problems of practical interest, the willingness of control engineers to accept approximate solutions,
and the high value placed on small incremental improvements in performance.

Problems in fields where large amounts of data are accumulating in machine readable form
(e.g., biological sequence data, astronomical observations, geological and petroleum data, financial
time series data, satellite observation data, weather data, news stories, marketing databases) also
constitute especially interesting areas for potential practical applications of genetic programming.

3 . The Threshold of Practicality
Evidence is accumulating that genetic programming is now reaching the threshold of delivering
results that are competitive with human performance on non-trivial problems.   There have been
several recent examples of problems – from fields as diverse as cellular automata, space satellite
control, molecular biology, and design of electrical circuits – in which genetic programming has
evolved a computer program whose results were, under some reasonable interpretation,
competitive with human performance on the specific problem.  For example, genetic programming
with automatically defined functions has evolved a rule for the majority classification task for one-
dimensional two-state cellular automata with an accuracy that exceeds that of the original human-
written Gacs-Kurdyumov-Levin (GKL) rule, all other known subsequent human-written rules,
and all other known rules produced by automated approaches for this problem (Andre, Bennett,
and Koza 1996).  Another example involves the near-minimum-time control of a spacecraft's
attitude maneuvers using genetic programming (Howley 1996).  A third example involves the
discovery by genetic programming of a computer program to classify a given protein segment as
being a transmembrane domain without using biochemical knowledge concerning hydrophobicity
(Koza 1994a; Koza and Andre 1996a, 1996b).  A fourth example illustrated how automated
methods may prove to be useful in discovering biologically meaningful information hidden in the
rapidly growing databases of DNA sequences and protein sequences.  Genetic programming
successfully evolved motifs for detecting the D-E-A-D box family of proteins and for detecting the
manganese superoxide dismutase family that detected the two families either as well as, or slightly
better than, the comparable human-written motifs found in the database created by an international
committee of experts on molecular biology (Koza and Andre 1996c).  A fifth example involves the
design of difficult-to-design electrical circuits  using genetic programming (Koza, Bennett, Andre,
and Keane 1996).  A sixth example is recent work on facility layouts (Garces-Perez, Schoenefeld,
and Wainwright  1996).

4 . Handling Complex Data Structures
Ordinary computer programs use numerous well-known techniques for handling vectors of data,
arrays, and more complex data structures.  One important area for work on technique extensions
for genetic programming involves developing workable and efficient ways to handle vectors,
arrays, trees, graphs, and more complex data structures.  Such new techniques would have
immediate application to a number of problems in such fields as computer vision, biological
sequence analysis, economic time series analysis, and pattern recognition where a solution to the
problem involves analyzing the character of an entire data structure.  Recent work in this area
includes that of Langdon (1996) in handling more complex data structures, Teller (1996) in
understanding images represented by large arrays of pixels, and Handley (1996) in applying
statistical computing zones to biological sequence data.

5 . Evolution of Mental Models
Complex adaptive systems usually possess a mechanism for modeling their environment.  A
mental model of the environment enables a system to contemplate the effects of future actions and
to choose an action that best fulfills its goal.  Brave (1996b) has developed a special form of
memory that is capable of creating relations among objects and then using these relations to guide
the decisions of a system.

6 . Evolution of Assembly Code
The innovative work by Nordin (1994) in developing a version of genetic programming in which
the programs are composed of sequence of low-level machine code offers numerous possibilities



                                                                                                         3

for extending the techniques of genetic programming (especially for programs with loops) as well
as enormous savings in computer time.  These savings can then be used to increase the scale of
problems being considered.

7 . Automatically Defined Functions and Macros
Computer programs gain leverage in solving complex problems by means of reusable and
parametrizable subprograms.  Automated machine learning can become scalable (and truly useful)
only if there are techniques for creating large and complex problem-solving programs from smaller
building blocks.  Rosca (1995) has analyzed the workings of hierarchical arrangements of
subprograms in genetic programming.  Spector (1996) has developed the notion of automatically
defined macros (ADMs) for use in evolving control structures.  Considerable future work can be
anticipated in this area.

8 . Cellular Encoding
Gruau (1994) described an innovative technique, called cellular encoding or developmental genetic
programming in which genetic programming is used to concurrently evolve the architecture of a
neural network, along with the weights, thresholds, and biases of the individual neurons in the
neural network.  In this technique, each individual program tree in the population is a specification
for developing a complete neural network from a starting point consisting of a very simple
embryonic neural network containing a single neuron.  Genetic programming is applied to
populations of these network-constructing program trees in order to evolve a neural network to
solve various problems.  Brave (1996a) has extended and applied this technique to the evolution of
finite automata.  This technique has also been applied to other complex structures, such as electrical
circuits (Koza, Bennett, Andre, and Keane 1996).

9 . Automatic Programming of Multi-Agent Systems
The cooperative behavior of multiple independent agents can potentially be harnessed to solve a
wide variety of practical problems.  However, programming of multi-agent systems is particularly
vexatious.  Bennett's recent work (1996) in evolving the number of independent agents while
concurrently evolving the specific behaviors of each agent and the recent work by Luke and
Spector (1996) in evolving teamwork are opening this area to the application of genetic
programming.

1 0 . Autoparallelization of Algorithms
The problem of mapping a given sequential algorithm onto a parallel machine is usually more
difficult than writing a parallel algorithm from scratch.  The recent work of Walsh and Ryan (1996)
is advancing the autoparallelization of algorithms using genetic programming.  Considerable future
work can be anticipated in this important area.

1 1 . Co-Evolution
In nature, individuals do not evolve in a vacuum.  Instead, there is co-evolution that involves
interactions between agents and other agents as well as between agents and their physical
environment.  The important area of co-evolution, as illustrated by the work of Pollack and Blair
(1996), can be expected to attract considerable future work.

1 2 . Complex Adaptive Systems
Genetic programming has proven useful in evolving complex systems, such as Lindenmayer
systems (Jacob 1996) and cellular automata (Andre, Bennett, and Koza 1996) and can be expected
to continue to be useful in this area.

1 3 . Evolution of Structure
One of the most vexatious aspects of automated machine learning from the earliest times has been
the requirement that the human user predetermine the size and shape of the ultimate solution to his
problem (Samuel 1959).  There can be expected to be continuing research on ways by which the
size and shape of the solution can be made part of the answer provided by the automated machine
learning technique, rather than part of the question supplied by the human user.  For example,
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architecture-altering operations (Koza 1995) enable genetic programming to introduce (or delete)
function-defining branches, to adjust the number of arguments of each function-defining branch,
and to alter the hierarchical references among function-defining branches.  Brave (1995) showed
that recursion could be implemented within genetic programming.  Future work can be expected on
operations that enable genetic programming to dynamically introduce iteration and recursion and
nested occurrences of iteration and recursion.

1 4 . Foundations of Genetic Programming
Genetic programming inherits many of the mathematical and theoretical underpinnings from John
Holland's pioneering work (1975) in the field, including the near-optimality of Darwinian search.
However, the genetic algorithm is a dynamical system of extremely high dimensionality.  Many of
the most basic questions about the operation of the algorithm and the domain of its applicability are
only partially understood.  The transition from the fixed-length character strings of the genetic
algorithm to the variable-sized Turing-complete program trees (and even program graphs) of
genetic programming further compounds the difficulty of the theoretical issues involved.  There is
increasing word on the grammatical structure of genetic programming (Whigham 1996).

1 5 . Optimization
The fundamental importance of optimization problems guarantees that there will be considerable
future work on applying genetic programming to optimization.  Recent examples include work
(Soule, Foster, and Dickinson 1996) from the University of Idaho, the site of much early work on
genetic programming techniques and the work of Garces-Perez, Schoenefeld, and Wainwright
(1996).

1 6 . Novel Methods of Fitness Evaluation
In a novel experiment, Floreano and Mondada (1994) ran the genetic algorithm on a fast
workstation to evolve a control strategy for an obstacle-avoiding robot. The fitness of an individual
strategy in the population within a particular generation of the run was determined by executing a
physical robot tethered to the workstation for 30 seconds in real time.  The robot behavior is thus
highly realistic and avoids the pitfalls of computer simulated behavior.  This technique can be
expected to find future application in genetic programming.

1 7 . Techniques that Exploit Parallel Hardware
Evolutionary algorithms offer the ability of solve problems in a domain-independent way that
requires little domain-specific knowledge.  However, the price of this domain-independence and
knowledge-independence is paid in execution time.  Application of genetic programming to realistic
problems inevitably requires considerable horse power.  The long-term trend toward ever faster
microprocessors is likely to continue to provide ever increasing amounts of computational power.
However, for those using algorithms that can beneficially exploit parallelization (such as genetic
programming), the trend toward decreasing prices of hardware will be even more important in
terms of providing the large amounts of computational power necessary to solve realistic problems.
In most genetic programming applications, the vast majority of computer resources are used on the
fitness evaluations.  The calculation of fitness for the individuals in the population is usually
entirely decoupled.  Thus, parallel computing techniques can be beneficially applied to genetic
programming and genetic algorithms with almost 100% efficiency (Andre and Koza 1996).  In
fact, the use of semi-isolated subpopulations often accelerates the finding of a solution to a problem
using genetic programming and produces super-linear speed-up.  Parallelization of genetic
programming will be of central importance to the growth of the field.

18.  Evolvable Hardware
One of the exciting new areas of evolutionary programming involves the use of evolvable hardware
(Sanchez and Tomassini 1996).  Evolvable hardware includes devices such as field programmable
gate arrays (FPGA) and field programmable analog arrays (FPAA).  These devices are
reconfigurable with very short configuration times and download times.   Thompson (1996) has
pioneered the use of field-programmable gates arrays to evolve a frequency discriminator circuit



                                                                                                         5

and a robot controller using the recently developed Xilinix 6216 chip.  I anticipate an explosive
growth in the use of genetic programming to evolve hardware and the use of reconfigurable
hardware to accelerate genetic programming runs.
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