

Configuration Management for
Open Source Software

by

Ulf Asklund & Lars Bendix

AALBORG UNIVERSITY
Department of Computer Science

Technical Report

DEPARTMENT OF COMPUTER SCIENCE
Fredrik Bajers Vej 7E ? DK-9220 Aalborg Ø ? Denmark

Phone +45 9635 8080 ? Telefax: +45 9815 9889
URL: http://www.cs.auc.dk

R-01-5005 January 2001

Configuration Management for Open
Source Software
Ulf Asklund1, Lars Bendix2

1 Department of Computer Science, Lund Institute of Technology, Bo x 118, S-22100 Lund, Sweden, Email:
Ulf.Asklund@cs.lth.se
2 Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, D-9220 Aalborg Øst, Denmark,
Email: bendix@cs.auc.dk

Abstract

Any organisation that produces high quality software merits a closer analysis of their methods such that good
techniques can be transferred to other organisations. Open Source Software projects is such a case. We make
explicit their underlying process for handling change management and analyse to what extent their success can
be attributed to good process, tools or people. Furthermore, we discuss to what degree lessons learned from OSS
can be transferred to more traditional ways of developing software.

1. Introduction

It is beyond doubt that OSS projects produce software of high quality. This despite a seemingly anarchistic way
of organising projects and having a set-up (many, distributed developers) that is usually considered difficult to
handle within the field of configuration management. In this paper, we would like to investigate more closely
what they actually do, and why they are so successful. We will describe their underlying change management
process, thereby making it explicit, so it can be followed in case others want to start an OSS project. We will
also analyse to what extent their success is due to a good process, good tools or simply to outstanding people
participating in OSS projects. Based on this we discuss which lessons learned form OSS could be transferred to
traditional ways of developing software. Change management is a part of configuration management that is
keeping your configurations consistent under change.

This led us to establish two research questions that we wanted to investigate with relation to configuration
management for Open Source Software:

Research question #1: How do they do it - can we make their implicit process repeatable? If a (commercial)
company wants to start an OSS project or a project having the same characteristics (like many, distributed
developers), what should they then look out for and how should they handle the configuration management
task? This research question is dealt with in section 3 of this paper.

Research question #2: Can we learn something - why are they successful and does it transfer? What are they
reasons for their success? What are they doing better than traditional projects? Are they putting restrictions on
the project and thus obtaining a simpler process? Can traditional projects transfer some (or all) of the successes
from OSS? These questions are treated in section 4 where we analyse the reasons for their success and section 5
where we discuss what lessons transfer from OSS projects to projects involving conventional software (CS).

In the following section, we will establish a framework for treating the configuration management process in
general. Using this framework, we will describe, analyse and discuss similarities and differences between OSS
and conventional projects. The section will, furthermore, allow people with no specific knowledge of
configuration management to follow the remaining sections of the paper.

In the last section of this paper we draw our conclusions.

2. Traditional Configuration Management
Configuration Management is a discipline within software engineering with the aim to control and manage
projects and to help developers synchronize their work with each other. Configuration management is part of the
entire development life cycle and is also a very broad area with respect to the means of how to achieve its goals,
which are obtained by defining methods and processes to obey, making plans to follow and by using
configuration management tools that help developers and project leaders with their daily work. One definition of
configuration management is:

Configuration management is the controlled way of leading and managing the development of and changes to
combined systems and products during their entire life cycle.

There are, however, many definitions, all with a different focus. One reason for the differing definitions is that
configuration management has two target groups with rather different needs: management and developers.

From a management perspective [Berlack,1992], [Leon,2000], configuration management directs and controls
the development of a product by the identification of the product components and control of their continuous
changes. The goal is to document the composition and status of a defined product and its components, as well as
to publish this such that the correct working basis is being used and that the right product composition is being
made. One example of a definition supporting this discipline is ISO 10 007 meaning that the major goal within
configuration management is "to document and provide full visibility of the product's present configuration and
on the status of achievement of its physical and functional requirements". This standard also states that
configuration management consists of four activities, or areas of responsibility. These are (extracted from the
standard):

?? Configuration Identification
Activities comprising determination of the product structure, selection of configuration items,
documenting the configuration item's physical and functional characteristics including interfaces and
subsequent changes, and allocating identification characters or numbers to the configuration items and
their documents.

?? Configuration Control
Activities comprising the control of changes to a configuration item after formal establishment of its
configuration documents. Control includes evaluation, co-ordination, approval or disapproval, and
implementation of changes. Implementation of changes includes engineering changes and deviations,
and waivers with impact on the configuration.

?? Configuration Status Accounting
Formalized recording and reporting of the established configuration documents, the status of proposed
changes and the status of the implementation of approved changes.
Status accounting should provide the information on all configurations and all deviations from the
specified basic configurations. In this way the tracking of changes compared to the basic configuration
is made possible.

?? Configuration Audit
Examination to determine whether a configuration item conforms to its configuration documents.
Functional configuration audit: a formal evaluation to verify that a configuration item has achieved the
performance characteristics and functions defined in its configuration document. Physical
configuration audit: a formal evaluation to verify the conformity between the actual produced
configuration item and the configuration according to the configuration documents.

From a developer perspective [Babich,1986], [Dart,2000], configuration management maintains the product's
current components, stores their history, offers a stable development environment and co-ordinates simultaneous
changes in the product. Configuration management includes both the product (configuration) and the working
mode (methods) and the goal is to make a group of developers as efficient as possible in their common work
with the product. From the developer's point of view, much of this work may be considerably facilitated by the
use of suitable tools in the daily work. The definition by [Babich,1986] stresses the fact that it is often a group of

developers that together shall develop and support a system: "Configuration management is the art of
identifying, organizing, and controlling modifications to the software being built by a programming team". A
list of the tool aspects we regard to be most relevant is:

?? Version Control - the possibility to store different versions and variants of a document and to
subsequently be able to retrieve and compare them.

?? Build Management - mechanisms for collecting all the source modules of a system and generating the
system, and for keeping the generated files up to date, preferably without doing any unnecessary work.

?? Configuration Selection - functionality to choose the versions of different documents or modules that
constitutes a complete and consistent system.

?? Workspace Management - developers often want to work transparently with the configurations without
being bothered with versioning or seeing the changes of others working on the same configuration.

?? Concurrency Control - manages the simultaneous access by several users, i.e. concurrent development,
either by preventing it or by supporting it. Helps synchronizing the work of the developers.

?? Change Management - a system supporting the management of the collection of change requests, the
generation of error reports, firm change requests, implementation of those changes, documentation of
the problem and the solution, and when it is available.

?? Release Management - the identification and organisation of all documents and assets incorporated in
a release. The build manager is responsible for providing the packed product with the correct
configuration and features.

Version Control

The possibility to store, recreate and register the historical development of an item (document or source code) is
a fundamental characteristic of a version control system. Every stable issue of an item's content is termed a
version. The tool has to minimize the storage space needed to keep all versions of an item. It has to impose a
structure on how versions can develop from each other. And, finally, it has to keep track of all information about
the different versions. Each single item of a given system will undergo many changes during the development
and maintenance of that system. The set of changes that transform one version of an item into a new version is
called a delta and represents the difference between the two versions. In addition to the actual changes, we are
also interested in keeping other useful information about the change such as who did it, when, for what reason.
This information is called the log entry for a version. Together with the delta, the log entry constitutes one
history step in the development history of an item.

Versions of an item may be organized in a number of different ways. The structure that a version control tool
imposes on the development of history steps is called a version graph and is basically linear. One version
follows the other and a new version is always created from the end of the line. For simple development needs
this model is sufficient even though limited. However, it cannot support maintenance (i.e., further development)
of older versions, it does not handle parallel development (for instance, additional development and
maintenance going on in parallel) and thus variants of the same item cannot be represented in this model. To
solve that problem most tools allow branches to be created from older versions and thus support a tree model. In
this model several branches can exist in parallel to reflect either maintenance of older versions, parallel work or
variants. Other models support acyclic graphs; in this way, a version may have two or more predecessors, for
example, in order to express that a bug fix in an old version is merged with the currently developed version.

Build Management

Build management handles the problems created by following the good programming advice to divide large
programs into modules. These modules have to be put back together and compiled in order to create a running
system. The number of modules or items in a system is increased by the fact that we might want to keep them as
small as possible to avoid sharing conflicts when many people have to work together.

To build a system from its modules we need both a description of the structure of the system and information
about how to derive object code from the source code modules. In early tools both the description of the
dependencies and the information about how to compile items was given in a system model, which was used to
derive object code and to link it together. This automates the build process and avoids errors from human
intervention. Furthermore, build tools implement a minimal build as they only recompile source modules that

are out-of-date with respect to existing object code. This can lead to huge savings in compile time for big
systems, if only a small part of the system has been changed.

Further improvements have been made to build tools to remove the limitations of the early ones. The most
severe problem with the original build tool (make [Feldman,1979]) is that it keeps no data of its own. To decide
whether an object module is up-to-date or not, it uses time stamps from the file system. This can be very unsafe
especially in distributed environments where there is no global clock. Furthermore, it does not remember the
way a given object module was created. This means that source modules don't get recompiled if such things as
compilation options are changed or another version of the compiler is used, and this may create several
problems. Additionally, the successors take advantage of the fact that today's comp uters are networked and
support for compilation in heterogeneous environments is common as is the support for parallel compilation.

Configuration Selection

The build management we just described has no notion of versions of modules. Each module that has to go into
the system is assumed to exist in only one version and the task managed by the build tool is only to compile and
link these modules as efficiently as possible. This works quite well for projects without version control - and in
the case of working in a workspace that has all the needed modules locally.

If we add versions to the modules this has to be reflected in the system model. For each node in the graph
describing the dependencies, we now have a version group instead of a single file. This is much the same
situation we have when we look at the repository and want to check some (or all) modules out into our
workspace. This means that the build tool must be extended with the ability to select from the repository.
Unfortunately, not all queries to the repository are unambiguous. In the case of a human being checking
something out, this is not a problem as he can refine the query to become unambiguous. However, a tool does
not have that capacity. This means that we have to be very careful about how we write our selections. Most tools
have opted for the rather unsafe solution to automatically (without user intervention) solve all ambiguities by
choosing the latest version. However, once the selection has been made we are back to normal build
management.

In all situations, it is desirable to ensure that there is a consistent selection and configuration, in terms of the
inclusion of versions with connected modifications. A useful technique for the specification of a configuration
supported by several systems is to offer a rule-based selection mechanism. A configuration is called a partially
bound (sometimes "generic") configuration, if the exact versions that are included can vary in time. A
configuration where all selections have been resolved is called a bound configuration and is particularly suitable
for deliveries, as the versions of all files included are fixed and therefore it can be guaranteed that the system
can be recreated. Certain bound configurations can form a baseline, i.e. are a basis for further development with
formal change management. In the same way that the development of individual files can be considered to be a
version history, so can a corresponding development of configurations. A facility for naming versions
("tagging") can be used to manage the selection of bound configurations in that all files are tagged with the same
name, e.g. "Release 2.3". Consistent naming may also be used to represent logical changes, i.e. changes arising
from a change request and result in the modification of several files.

Workspace Management

The different versions of the documents in a project are kept in a repository by the version control tool. Because
these versions have to be immutable, developers cannot be allowed to work directly within this repository. They
have to take out a copy of the document, modify it, and add the modified copy to the repository. The fact that
developers copy out files to their own private area also means that they are able to work in isolation from other
people's changes .

The workspace management must provide functionality to create a workspace from the repository. In the simple
case this only consists in being able to copy out a single file, however, more often an entire bound configuration
is copied out from the repository to the workspace. This means that the developer has all the necessary
documents and modules for the system at his disposal locally. He does not have to decide what should be kept
globally in the repository and what he needs locally for carrying out his changes. Furthermore, he is isolated
from other people's changes to the repository - and other people are isolated from his changes. This means that
he is in complete control of his world and knows exactly what has changed and why.

When the developer has finished carrying out his modifications, he needs to add the changed documents and
modules to the repository. This operation in the simple case of a single file consists in adding it to the repository
using functionality in the version control tool. However, when he has a complete bound configuration in his
workspace there are probably some files that have remained unchanged and therefore do not need to be added to
the repository. The workspace manager can discover which files have changed and make sure that all of these -
and only these - are added to the repository.

Concurrency Control

When we want to allow several developers to work on the same system at the same time, we must also provide
mechanisms to synchronize their work. The problem that can occur is that more than one developer in his
workspace makes a change to the same document or module. If this situation is not detected - or avoided - the
second developer will overwrite the first developer's change when he adds his workspace to the repository.

Situations where changes are in conflict can be avoided by using a mechanism that locks a file in the repository
when it is copied out to the workspace. This is, however, a serious obstacle to people working in parallel. The
mechanism can be improved by locking only files that are copied out with the intention of being changed, but
this on the other hand forces the developer to decide prematurely on what he wants to change. This mechanism
is often used if only single files are copied out to the workspace or where it is very important to avoid
conflicting changes.

In the case where we use bound configurations to create workspaces, we cannot use a locking mechanism for
concurrency control, as this would allow only one developer as a time to work on anything related to a system.
The approach followed in this case is to optimistically assume that no one will change the file - and if the
assumption does not hold, to detect it and help the developers resolve the conflict. There are two ways to resolve
conflicting changes, i.e. to merge the two changes. In one the responsibility is on the repository and if a merge
cannot be made automatically, a branch is created to hold the second change added to the repository. The other
places the responsibility on the second developer, who in case of an unsuccessful merge has to manually resolve
the problem.

Change Management

The reasons for changes are multiple and complex and handles all changes in a system, both perfective,
corrective and adaptive changes. Change management includes tools and processes, which support the
organization and track the changes from the origin of the change to the approval of the actually implemented
source code. Changes should only be carried out as the result of an approved change request to have full
traceability.

When a change is initiated, change requests are created to track the change until it is resolved and closed. The
support organisation receives the change request, taking direct action and solving the problem if possible. If they
cannot address the issue, the request is passed to the next instance. The change control board (CCB) analyses the

change request and decides which action is to be taken. If the change is approved, the change request is filed to
the developer responsible for implementing the change. When the developer has performed the change its status
becomes "implemented" and a test is performed. When the subsequent new release is to be built, the change
control board decides which changes are to be included and the customer receives a patch including
documentation of all the changes made.
Various tools are used to collect data during the process of tracking a change request. It is important to keep
traceability between the change request and the actual implementation - in both directions. Change management
data can also be used to provide valuable metrics about the progress of project execution. From this data it can
be seen which changes have been introduced between two releases (a set of change requests). It is also possible
to check the response time between the initiation of the change request and its implementation and acceptance.

Release Management

Software released to users mu st consist of documents and modules that have been approved as fit for their
intended use. Usually this requires that they have been completely approved by the change control board. The
release procedures must identify precisely which documents and modules should go into the release and in
which versions. Usually there are two types of releases: internal and external. Internal releases (also called
baselines) are used for development use to create a stable configuration of the system from which further
changes can be made and integrated. External releases are intended for customers. Internal releases are made
more often than external releases and are usually subject to much less rigor in their creation.

3. Managing Configurations in Open Source Projects

The description of OSS projects in this section is based on papers like [Raymond,2000], [Mockus et al,2000],
[Feller et al,2000] and on interviews with key people from three OSS projects, KDE [KDE,2000], Mozilla
[Mozilla,2000] and Linux [Linux,2000]. We use the framework from the previous section to describe how OSS
projects handle different aspects of configuration management. We describe the general model and point out
where a project differs from this model.

Version management

The tool CVS [Berliner,1990] is used for version control in most projects. It satisfies all basic requirements for
version control. All versions are kept and deltas are used to minimize space consumption. It can handle
branches, information about versions can be given in the change log, and it is possible to assign symbolic tags to
versions. Usually write access to the CVS repository is generously granted such that several hundred developers
can add new versions to it. It is also possible to submit regular patches that are then added to the repository by
the moderators.

Linux, however, makes an exception, as they use no tool at all for version control. They simply put the code of
each version in a separate directory, and apply contributions and patches to a "latest" directory. Contributions
can only be applied to the repository by the moderators and there is no version history, as they violate the
version control principle of immutability. When a new release is created, the latest is duplicated into a new
release directory to conserve it even if development continues, which means that releases are immutable. There
are only two branches in the Linux kernel development - one stable release branch and one development branch.

In the projects using CVS, versions are almost never used to revert to an older version. Instead versions are used
as a history trail, describing how a file has developed by reading the log comments and by comparing versions
using the diffing functionality. Most projects are targeted towards several platforms with great differences. They
seem to handle the variants by either separating code into different files or directories, or by using conditional
compilation. This way all variants can exist in the same branch. Changes apply either to the whole project, or
platform specific code. In Linux architectural differences are handled in modules, so there is no need for
variants.

Build Management

The fact that a local workspace containing all necessary files can be created, makes build management easier.
The system model is included in these files and all projects use make or similar as their build tool. It is not time
consuming to rebuild a project in the local workspace after a change, but the initial compilation is a complete
build with no timesavings. This could have been obtained if object code had been included in the creation of the
workspace. The drawback would have been a much slower creation of the workspace.

Configuration Selection

Almost always the latest version of all files is used to build a configuration, i.e. the selection is trivial. Since
only one release is maintained (the latest) there is no need to return to other configurations. Only in the case
where you want to install an older release are they retrieved. In the cases where one stable and one development
release are maintained concurrently they are run as two separate projects. Branches are seldom used to provide
concurrent work, i.e. no configuration selection is needed for that reason either. A new bound configuration is
created for new releases by tagging the versions of the configuration.

In some projects the sheer amount of configurations possible because of variants poses a problem to the
developers. Some changes break configurations, and feedback is needed to fix the problem. The obvious
solution is to try to limit to a set of secure configurations, instead of all possible combinations.

Workspace Management

The version control tool used (CVS) gives optimal support for the special characteristics of OSS projects. It
supports the concept of a project, which makes it a single operation to create a workspace, to synchronize your
workspace with the repository (i.e. the changes of others), and to add your changes to the repository. However,
the most significant feature of CVS is that it can operate in client-server mode, thus freeing the developer for
thinking about file transport over the Internet. Furthermore, there is no need to be connected at all times. It is
possible to create you workspace, disconnect and carry out all your changes off-line, and re-connect again only
when you synchronize and add to the repository.

The cases where developers do not have write access to the CVS repository- and Linux - make an exception. In
these cases a regular patch has to be created manually and sent to a moderator or co-ordinator that must then
apply it to the repository.

Concurrency control

CVS uses optimistic concurrency control. The possibility to lock files is not used when they are copied out from
the repository. CVS can detect when changes have been made in parallel to the same file and forces to last
developer to add his change to resolve the conflict. In most cases it is sufficient to use the update operation to
have the first changes automatically merged into the workspace of the second developer. He can then make sure
that the previously made changes do not break his change. Only very rarely does he have to intervene manually
because CVS cannot perform the merge automatically. Despite the rapid development and numerous developers
with write access to the repository, update conflicts occur only very seldom. When they do happen, the
contributors in question communicate directly to solve the problem. Mailing lists and newsgroups are used to
provide awareness and reduce the risk of creating conflicts that will be hard to merge.

In Linux contributions are sequentialized as the moderator goes through the contributions he receives. If a later
contribution conflicts with an earlier change, it is sent back and the contributor is asked to resubmit his patch.
Only in cases where the conflict is easily resolved, the moderator carries out the necessary modifications.

Change management

The change management process is where OSS projects differ the most from CS projects. As described in
section 2, traditional projects evaluate change proposals and only approved proposals are assigned to
developers. In OSS the evaluation of change proposals is not explicit, if it is there at all. Anyone can propose a

change and most often changes are not even proposed before a change is submitted directly. Change proposals
might be prioritised implicitly or explicitly, but an OSS project cannot assign tasks to developers - everyone
works on what he chooses.

Two slightly different processes exist depending on whether contributions have to be sent to a moderator or if
you can apply your changes directly to the repository through your write access. In both cases, however, it is the
same overall process that is followed. An idea for a change is conceived, it is implemented and tested, it is
submitted as a patch or applied directly on the repository, and finally the implementation (and sometimes the
change idea itself) is evaluated through testing, review and discussion. The final evaluation may result in the
patch being rejected by a moderator or a change to the repository being reverted by a co-ordinator. Usually write
access to the repository is given only to trusted developers, so cases where a change to the repository is reverted
are rare.

Linux, which is the prime example of an OSS project with moderators, gets patches submitted which are then
worked through by the moderator. Patches are reviewed in multiple steps before testing, and only then inserted
in the repository. Contributions that are found ill-designed or have not so sound ideas are rejected at reading
time. If the idea is good but the code is bad, the contribution usually undergoes a few iterations of review before
testing. If a contribution is rejected, there is sometimes feedback to the author.

Some projects, like Mozilla, have a mixed approach of module owners and direct write access to developers.
The modules owner has the right to reject patches. In most cases, any of the developers with write access to the
repository can make changes in most places of the code. There is no fixed policy; rather each module owner sets
the contribution and change policy for his module. Sometimes, the module owners can pose a bottleneck to the
processing of contributions. In project that work exclusively through co-ordination only, it seems like most
changes are accepted immediately, and very few, if any, are rejected. The few patches that are received are
handled by the co-ordinators.

Most change management problems seem to be caught at the review stage. Contributions are often tested via
code reviewing and special run time tests. However, formal testing is not always used. Sometimes when a
change has been made, developers simply use the new code. Developers that have submitted many good patches
are more trusted, and their contributions make their way into the repository quicker. Accepted contributions
show up immediately in the repository.

Even though wish lists and lists of bugs are kept, bugs and change proposals seem to be fixed in a somewhat
arbitrary fashion. Changes are kept track of using detailed lists, in order for willing users to test new features.
Mail and newsgroups are used to communicate wish lists, bugs, and changes and to discuss the general
development of the project.

Release Management

None of the OSS projects release software in the traditional sense. Releases are all what we called internal
releases in section 2 and people either have to do the rest of the job themselves or rely on a commercial

company wrapping an internal release up and turning it into a software packet. As a consequence, none of the
OSS projects use fixed release dates and labelling and release is mostly arbitrary. There is a process, though, for
internal releases. When an internal release is getting nearer, the development branch enters a freeze stage.
Initially, the soft freeze stage means that new features, which break compatibility are discouraged, but not
forbidden. They then move to a hard freeze, which in practice means that any contribution that will change an
interface is forbidden. Only bug fixes are allowed.

The Mozilla project uses a time -based release schedule. This means that development proceeds until a certain
date, and at that date, a release is labelled (called milestones in Mozilla terms). The milestone is then used to see
what has been achieved. Consequently, features and achievements are not planned into milestones; the
milestones only work as a feedback tool.

4. Important CM factors in OSS success
In this section we will analyse some of the CM factors in an OSS project. We have divided the analysis into
three categories: tool support, process, and people. For each category we discuss what we have found to be the
most important properties in an OSS project. The aim is to make these important properties explicit, explained,
and possible to copy for new OSS projects. I.e. we want to make successful projects repeatable (cmp. CMM
level 2).

4.1 Tools

As in all software projects a set of tools are used. In a typical OSS project CVS is used as the CM tool, together
with standard tools as mail, web browser, and newsreaders. We will not discuss compilers and such tools here.

For the CM tool it is important that it has one single server against many clients, which means that servers not
need to be synchronized, just client workspaces. The implementation of server synchronization often (always?)
relies on branching or concurrent work sets, which are not used in OSS projects by other reasons, see below.
Best, of course, is if the tool is free of cost, but if a commercial tool is used the server should have floating
licenses, and it should be "free" to install the clients and to create a workspace that you can work on off-line.

Since all developers have to learn the tool by themselves it must be simple to use (and to administer) and it
should not enforce any particular process. The CVS, which is often used, does, however, support (enforce) the
long transaction CM model to co-ordinate concurrent changes. A tool that supports this model and makes it easy
to update a workspace from the server, including the actual transportation of the files that need to be updated, is
perfect for distributed development, especially when the clients are off-line most of the time. Many tools use
one model when the client is on-line and another (secondary) model when off-line which makes it more
complicated for the developer. Moreover the off-line mode will be treated as an exception rather than the
primary work model it really is.

The clients must also exist on many platforms; at least if the application developed should work on many
platforms.

All versions should, of course, be stored in the server and it should be easy to browse through the history of the
project and specific files, and to see the changes made between two versions. This facility is used by developers
to learn about a project and to see what has happened to it since last time they were active. It is also possible that
some bad submissions sometimes reach the code base, which may lead to difficulties building the system. In
these cases the tool should provide support to back (redraw) the entire transaction containing the bugs, i.e. not
only some files that first have to be detected.

Finally, it must be easy to create bound configurations, baselines, which are made quite often in most OSS
projects.

Another very important property of the set of tools used is awareness. If this is not entirely supported by the CM
tool itself, it must be provided by other tools, e.g. using the web, mail, or news.

4.2 Process

It is important that the process is simple and easy to follow. The personal return of investment of following the
process is important! A too rigid process may increase the personal investment without increasing the return to
the developer him/herself. It is often better to encourage a correct behaviour by providing a better personal
return of investment than to enforce some process due to management requirements. A good example is the long
transaction model, which encourages frequent commits leading to less merge conflicts and increased awareness.
If you do not follow the process of long transactions you yourself are punished by having to do a more
complicated merge. Frequent commits also mean short iterations, which generally seems to be a good strategy
[Beck,1999]. For example, it is easy to make baselines/releases, since there are few long projects going on that
must be waited for.

However, some projects also enforce a special code style, e.g. some naming rules, indentation, etc. Not "sound
ideas" may be rejected, even though they work technically. The reason to add this complexity to the process is
to make the code more easy to read and understand, thus to increase awareness, which is very important. Despite
a lot of discussions via mail and news, the code is still the most important. Nicely written code and
understandable commit comments, makes collective ownership work. Not only the creator of a piece of code
can test and modify it, but everyone that are interested in its functionality.

Open (in OSS) means it is easy for all developers to identify the weakest link in the process, which puts social
pressure on each developer to follow the process and guidelines provided for the project, e.g. to write
understandable comments. From this, the risk to pollute the common repository is reduced.

Also the change management process must be appropriate for the task. An effective way to reduce the
complexity of change management is to not maintain old releases. Instead all development, both bug fixes and
new requirements, are committed directly to main. Otherwise several branches have to be maintained which
now can be avoided. Change management is, however, probably the weakest part of the OSS process, and it is
possible that a stronger support than current 'wish lists' had been cost (time) effective.

Awareness through discussions is also very central to the process. Usually you rely on both formal and informal
communication, but OSS projects does not have face to face meetings, so even informal communication has to
be electronic (and therefore seen/listened to by the whole group - as is the formal communication as long as it
takes place in the newsgroup). Examples of formal communication are CVS comments (log), wish lists, bug
reports, release documentation, and comments in the code.

The combination of self assigned tasks, a light process, stimulating discussions, direct communication, and
group awareness is important to keep skilled and motivated developers. They often find it fun and stimulating to
discuss technical solutions with other skilled developers, especially when it develops fast and gives a lot of
personal return of investment.

4.3 People

The most important people in an OSS project are the moderators/coordinators. He/she protects the code base.
Bad developers may slow the progress down, but cannot destroy the code. Bad moderators can allow the code to
be corrupted gradually. Moderators should NOT write/contribute code themselves or try to improve bad
contributions - otherwise they could soon end up being bottlenecks. Such bottleneck does not only delay the
awareness and usability of the application developed, it also breaks some of the advantages of the long
transaction model. One important property of the model is that the developer always commits a tested (and
working) configuration, if needed after several iterations of 'update-merge-test' within the private workspace
before a successful commit. The developer can, however, only update and test from the common repository and
can not access the submissions not yet processed by the moderator. If these contain modifications not consistent
with the new submission the moderator sends back the submission and the developer has to update and re-send
it.

For all developers it is important to care about their reputation of being 'good developers'. If this social pressure
works as a motivation factor no one wants to submit bad patches, which ensures good quality. Also the
moderator is under a similar pressure, since it is always possible to clone the project with a new, more popular,
moderator. A dialogue between the developers and the moderator is thus good for both parts.

All involved in OSS should also like to discuss their work and want to share their knowledge to other people.
Even though most development is done off-line by single developers, it is really a teamwork that needs a lot of
communication.

5. Transfer from OSS/CM to CS/CM and vice versa
In previous section we highlighted some important CM factors of OSS development with the aim to make them
explicit to be able to repeat successful OSS projects. Some of these factors can be used also within CS
(conventional software) projects, at least after some adjustments, others cannot. How CM is managed within
OSS is, however, no 'silver bullet' solving all kinds of problems and there may (even) be some lessons learned
from CS to OSS as well. In this section we will focus on the transfer of knowledge and best practices between
OSS and CS, mostly from OSS to CS but also vice versa.

A general advice is to avoid unnecessary branches. In CS branches are used primarily for three reasons: (1)
shorter parallel sessions of individual developers, (2) larger projects, and (3) maintenance of old releases. Most
CS projects use branches together with the CM model checkout/checkin with locking and/or the composition
model [Feiler,1991]. If instead the long transaction model is used the need for branches to synchronize shorter
parallel development is reduced since each workspace takes the role of the temporary branch in which
development can be made in isolation and where update and merge can be performed. Thus branches due to (1)
and can be avoided. In some cases larger projects must exist and branches may then be a good strategy. In many
cases , however, it is possible to divide the large project to smaller increments which then can be implemented
following the general rule of short iterations, each followed by build and test (successfully proposed in both
Daily build [McConnell,1996] and XP [Beck,1999]). Such a strategy also makes it easier to create frequent
baselines, and we increase the group awareness. (No big bang integration needed towards release since all
development is made in short increments. Even so, 'feature freeze' is used near ma jor releases to reduce the
number of bugs in newly developed code.) In this way we do not need to branch that often due to (2) either. To
maintain many releases increase the complexity of change management, but may unfortunately be needed due to
market requirements. I.e. reason (3) still remains for these cases.

It is important to protect your code base. Traditional CS puts a lot of effort to classify and to give priority to
change requests and to decide whether they should be implemented or not, but does not protect the code base for
bad implementations (as reflected in the figures depicting the change processes). A role similar to a moderator
or co-ordinator may be a good idea.

Use one CM model that works for clients both on-line and off-line, especially if the development is
geographically distributed or there are other reasons for developers to (also) work off-line. If the model only
works on-line, or hardly work off-line, there is a large risk that developers 'cheat' and not follow the
model/process at all, which often is much worse than having a more light-weight process that is followed. It is
also important that the tool really support the model used.

Let developers communicate directly with each other. If all communication goes through a deep hierarchy of
management it will be too slow and not that effective/stimulating. In a traditional project 50% of a developer’s
time is spent communicating, 30% working alone, and 20% unproductive "work". I.e. it is very important to
support communication and awareness.

Practice collective ownership . It is important though that communication and awareness is supported to let the
developers together solve the synchronization needed to avoid complicated merge conflicts and
misunderstandings. Do not mix up modularisation and toolbox architecture with ownership. It is important to
have an architecture that allows concurrent work without creating merge conflicts and that makes it easy for a
developer to add-on functionality (e.g. a driver to a specific hardware), but there is no need to have access
restrictions on such modules.

Important to the success of OSS is self assigned tasks and the fact that the developers almost always also are
users and testers of the system. This is unfortunately hard to copy to CS development, but if possible a project
should strive towards a similar process. Instead of automatically assign each developer their tasks based on
some document management system they could assign their own tasks from a set of tasks. If possible they could
use the developed application. If this is not possible extensive testing should be performed, e.g. in the style of
XP.

Most OSS projects lack the control and visibility of the 'requirements' and change requests implemented and the
ones still on the wish list. In CS this is often managed by separate tools and considered one of the most
important activities of CM. Most OSS projects had probably benefited from an updated wish list and a better
traceability between a change request (wish) and the actual change made to the code.

In CS it is also important to set the correct priority on all requirements, depending on severity, how much it
costs to implement, importance to different markets, etc. This is harder to do in OSS since all tasks are self
assigned, i.e. each developer makes their own priorities independent of how other users/developers set their
priority.

6. Conclusions
In this paper, we have examined the configuration management (CM) aspects of OSS projects with thee goals in
mind: (1) to make the CM process within an OSS project explicit and understood and thus make it possible to
copy its properties correctly when starting new OSS projects, (2) to analyse the reasons for the apparent success
of the OSS CM process and (3) to discuss which parts of this proces s could be transferred with success to
conventional software development and how.

We note that OSS development is can be considered as 'Individual development in groups'. In OSS, the
developer has a direct personal interest or gain from his contributions to the project, which normally is not the
case in traditional (commercial) development projects. As a consequence of this there is a minimum of
administrative overhead and management. Instead all steps in the process (that exists and actually is followed)
have a clear return of investment for the developer himself.

The configuration management process in OSS has the following characteristics that you have to pay attention
to if you want to manage an OSS project of your own:

?? there is a very high degree of awareness and developers communicate directly with each other.
?? many clients are working distributed and off-line against one single server. Workspaces are

coordinated following the long transactions CM model.
?? the task is simplified through not maintaining old releases and thus avoids branching.
?? the process encourages many small and quick increments on the main line. This results in early testing,

high awareness, many baselines that are usable - the goal is to use the product.
?? the moderator/coordinator protects the code base from the entry of bad contributions. This is an

important role and he has to be able and quick to reduce the risk of becoming a bottleneck in the
change process.

It may be possible to transfer the lessons learned from the following parts of the OSS configuration management
process to conventional development projects:

?? OSS development is most similar to the maintenance phase of CS development. Before adopting the
OSS process, a toolbox architecture should be designed.

?? practice collective ownership and let the developers communicate directly with each other.
?? protect the code base from bad implementation, not only from implementing lower priority change

requests.
?? use the long transaction model and work directly on the main development line.
?? develop small increments and commit often to increase awareness and enable early testing.
?? consider the knowledge of your developers as an intellectual capital that can create better awareness if

shared.

Some of these lessons have already been followed, as they are in line with some of the recommendations in
[Wingerd et al,1998]. In our opinion, the CM process in OSS shows great potential. Especially if augmented
with another change control board to eliminate also upstream defects earlier, which is one of the four major
problems that [McConnell,1999] sees with the overall OSS process.

It is outside the scope of this article to attempt an evaluation of how efficient OSS development really is. Future
work could, however, be to take a look at the following topics specifically related to the configuration
management process: how long does it take to respond to a bug report, how much double/useless work is there

in submissions, how many contributions are lost because of bad change management, can the OSS model (for
CM) be used for the start-up phase too?

References

[Berlack,1992]: H. Ronald Berlack: Software Configuration Management, John Wiley & Sons, 1992.
[Leon,2000]: Alexis Leon. A Guide to Software Configuration Management. Artech House Computer Library,

2000.
[Babich,1986]: Wayne A. Babich: Software Configuration Management - Coordination for Team Productivity,

Addison-Wesley Publishing Company, 1986.
[Dart,2000]: Susan Dart: Configuration Management - The Missing Link in Web Engineering, Artech House,

2000.
[Feldman,1979]: Stuart I. Feldman: Make - A program for Maintaining Computer Programs, Software - Practice

and Experience, April 1979.
[Raymond,2000]: Eric S. Raymond. The Cathedral and the Bazaar,

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
[Mockus et al,2000]: Audris Mockus, Roy T. Fielding, James Herbsleb: A Case Study of Open Source Software

Development: The Apache Server, in Proceedings of the International Conference on Software
Engineering, Limerick, Ireland, June 4-11, 2000.

[Feller et al,2000]: Joseph Feller and Brian Fitzgerald. A Framework Analysis of the Open Source Development
Paradigm, 2000.

[KDE,2000]: The K Desktop Environment. 2000. http://www.kde.org.
[Mozilla,2000]: The Mozilla Project. 2000. http://mozilla.org
[Linux,2000]: The Linux Project. 2000. http://www.linuxworld.com.
[Berliner,1990]: Brian Berliner: CVSII - parallelizing software development, in Proceedings of USENIX Winter

1990, Washington D.C.
[Beck,1999]: Kent Beck. Extreme Programming explained: embrace change. Addison-Wesley. 1999.
[Feiler,1991]: Peter H. Feiler: Configuration Management Models in Commercial Environments, CMU/SEI-91-

TR-7, Carnegie-Mellon University/Software Engineering Institute, March 1991.
[McConnell,1996]: Steve McConnell: Daily Build and Smoke Test, IEEE Software, July 1996.
[Wingerd et al,1998]: Laura Wingerd, Christopher Seiwald: High-Level Best Practices in Software

Configuration Management, in Proceedings of the Eight Symposium on System Configuration
Management, Brussels, Belgium, July 20-21, 1998 (LNCS 1439).

[McConnell,1999]: Steve McConnell: Open Source Methodology - Ready for Prime Time?, IEEE Software,
July/August 1999.

