
COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 15

Practical Programmer

Robert L. Glass

I
’m sure you already know
about how all information
systems will go berserk when
the year 2000 comes, the so-

called “date crisis” everyone is
talking about.

This column is about a date
crisis. But not that date crisis. I
want to talk about the one that
comes after the one everyone knows
about.

First, to make sure we’re all on the
same page, let me describe the date
crisis everyone already knows about.
Dates in most information systems
are stored in the form MM/DD/YY.
That is, two digits are used for each
month, day, and year. That’s not a
problem for months or days, of
course.

But years? Big problem. Even
though most of us say “the 90s” and
in many other ways use years as if
two digits were enough, we’re
approaching 2000, when two digits
simply aren’t sufficient to do the job.
Lots of information systems do arith-
metic on dates (e.g., how old is a per-
son whose birthdate is 02/03/32?).
Information-system arithmetic will

fail come the year 2000. (By the way,
here’s the answer to the question—in
1999, 67. In 2000—“minus” 32.)

Remember, this column is not
about that date crisis. I’m assuming
nearly everyone has read and listened
to some of the thousands of words
spilled over the last several years on
this topic. And I’m also assuming
nearly everyone is aware the crisis is
almost inevitable because hardly any

companies have allocated and spent
the resources necessary to fix the
problem. There will be a crisis at the
turn of the century, although it prob-
ably won’t be the World War III
some consultants are hyping it to be.

What, then, is the date crisis I
want to discuss?

No matter how—or if—an enter-
prise solves its year-2000 date crisis,
another one is coming. And the form
of the solution chosen for this partic-
ular crisis may determine when the
next crisis will occur.

First of all, let’s state the obvious:
There is no permanent solution to
the date crisis. Whereas the months
of the year recycle after 12, and days
of the months recycle after about 30,
years just keep marching on toward
infinity. And computers with their
finite word lengths cannot hold
them forever. That explains part, but
not all of, the next date crisis.

Let’s say you decide to employ
what to most people in 1997 is the
obvious solution to this date crisis—
the four-digit year. You change all
your data files and data declarations to
accommodate a couple more digits per
year, test all the software affected by
the change, and sit back and sigh the
sigh of satisfied relief: one more crisis
solved. Not so fast. Your solution is
certainly valid for the foreseeable
future, of course. But it will fail come
the year 10000. As surely—and in the
same way—as the 2000 date crisis.

The Next Date Crisis and
the Ones After That

R
O

B
ER

T
N

EU
B

EC
K

ER

Reality is the murder
of a beautiful theory by
a gang of ugly facts.

16 January 1997/Vol. 40, No. 1 COMMUNICATIONS OF THE ACM

It’s hard to get excited about a
future 8,000 years ahead. For one
thing, you’re probably saying, “What
are the odds that information systems
as such will be around that long?”
Except that’s the same kind of think-
ing that got us into the year 2000
mess. No one believed, back in 1975,
the information systems of that day
would last another 25 years.

Still, no one is really going to
worry about the four-digit solution.
After all, the five-digit solution—or
any other solution you contem-
plate—will also have its very own
day of doom associated with it. How
far off is it necessary to postpone this
problem?

There are other, more sinister,
forms the next date crisis can take. In
fact, the Unix operating system
apparently has its own built-in date

crisis ticking away like a time bomb,
and it’s difficult to predict precisely
when this particular bomb is going
to explode.

But for now let’s continue to talk
about IS applications. Most enter-
prises, as I’ve said, will employ the
four-digit-year approach. Some are
troubled by the expansion of data-
bases if all the two-digit years get
converted to a bigger number.

Because of that, some companies
are trying another solution: Keeping
the two-digit dates on file, but hav-
ing a procedure in the program to
convert each date before its four-digit
equivalent is used. So far, so good.
This solution contains a serious prob-
lem, however. For instance, how does
the procedure decide whether the

date 56 represents 1956 or 2056?
The answer is usually a bad one,
going like this: Pick an arbitrary date
that will be accurate today and use it
as a watershed date. For example, any
year less than 50 is in the next cen-
tury, and any greater than or equal to
50 is in the previous one. Ergo, 56 =
1956. Problem solved?

Today, perhaps. But what happens
as we approach 2050? The solution
comes unglued, just as badly as the
year-2000 problem. Or perhaps
worse, because the solution is local to
the enterprise (other companies
might have chosen 60 or 70 instead
of 50) and thus there will be fewer
cries of warning next time. But no
one would use this solution, you may
say. Not true. A consultant writing
in a leading journal proposed it
within the last 10 months. How

many companies are following that
very bad advice?

The point is the date crisis is a
“pay me now, and pay me later” kind
of problem. There will be another
date crisis sometime in the future,
and the decisions enterprise IS people
make today will determine when that
next crisis will be.

At this point, you may find your-
self sympathetic with those con-
cerned about the increase in storage
consumed by the four-or-more digit
year. Given that the “greater than
50” solution is a bad one, is there any
other solution that will prevent data-
base expansion?

Turns out there is one and hardly
anyone is talking about it. Because
dates have always been kept in deci-

mal form in our binary (and, before
that, decimal) computers, we assume
blindly it must always be so. In
doing so we neglect another form of
data that computers use—binary.
Suppose we store the year in binary
rather than decimal form?

Most years today, being in YY
form, occupy 16 bits (two eight-bit
bytes). (This is not universally true.
For example, Cobol has a numeric
form called “packed decimal” that
alternatively allows digits to be
stored in four-bit form, so with
packed decimal, a year would require
8 bits.) If a number is stored in
binary form in 16 bits, it can be as
large as 65,536 (64K). That is, using
the same two bytes that YY occupies,
a year of up to 65536 could be stored
without increasing the memory size
in the database. In order to use this

solution, however, the database
would have to be rewritten with
years in binary form, the program
logic would have to declare years as
binary (there’s a form of computational
in Cobol that will do the trick), and
all the program date logic would
need to be checked to make sure
nothing more is affected by the
change (it is possible the logic may
not need to change, except for
human-readable outputs). (Note this
solution is not valid for packed deci-
mal dates, discussed earlier. Whereas
16 bits gives 64K, 8 bits only gives
256, insufficient to store years.)

So in this “pay me now and pay
me later” game, you pay your money
and you take your chances. You can
have another date crisis in the next

NO ONE BELIEVED, BACK IN 1975,
the information systems of that day

would last another 25 years.

Practical Programmer

century (around 2050 or so), at
10000, or at 65536. The choice is
yours. There are pros and cons to each
approach. Only the technologist in
charge of an enterprise’s suite of
applications can make the best deci-
sion, because there is no universal
best one. Although the four-digit
solution comes close.

And what about the Unix-unique
date crisis mentioned earlier?

Here’s my understanding of what
happens in Unix. Bear in mind that I
am not a Unix guru. It may very well
be that I’m wrong. I hope I am. But
if I am correct there may be a date
crisis for applications on Unix sys-
tems that could become the mother
of all date crises.

Unix has a device called “Unix
time,” the measurement of time in
seconds from a base time—the first
day of 1970. Unix time, by 1997, has
gotten quite large. There are roughly
31 million seconds in a year. In 27
years, we have piled up 27*31 mil-

lion, or 837 million seconds. The
number is constantly increasing—by,
for example, 300 or more since you
started reading this column.

Numbers in computer speak are
finite. No matter how large a fixed
space you set aside, as numbers
charge madly toward infinity they
will outgrow their space. Will Unix
time outgrow its space? Inevitably.
The question is, when?

The answer is hardware depen-
dent. A computer’s word length
probably determines the date on
which Unix time will overflow. (Go
from the biggest number back to 0
when the capacity is exceeded). Let’s
make a typical case assumption and
say a computer has a 32-bit word. If
my arithmetic is correct, Unix time
will overflow around 2035. Sooner
than even the worst of the date crisis
solutions contemplated, and even
sooner for smaller-word processors.

This is one of those “surely I’m
wrong” kinds of findings. Surely the

designers of Unix anticipated such a
problem and have provided for it.
Does anyone in my reading audience
know? If so, tell me and I’ll pass the
answer on in a later column. In a way,
it sounds like I’m crying “fire” in a
crowded theater. If there is no fire, it’s
important I be set straight. But if I’m
right, it’s time to begin talking about
what Unix and its application pro-
grammers must do.

So we see that there’s yet another
software date crisis (YASDC) com-
ing. That if you’re using Unix you
may have very little choice about the
date it arrives. That for all IS appli-
cations, using Unix or not, there’s no
choice as to whether there will be
YASDC. Your only choice is when to
schedule it.

Robert Glass is the publisher of the
Software Practitioner newsletter and editor of
Elsevier’s Journal of Systems and Software. He
welcomes feedback: 1416 Sare Rd., Bloomington,
IN 47401.

C

COMMUNICATIONS OF THE ACM January 1997/Vol. 40, No. 1 17

Communications of the ACM
March 1997
Collaborative Filtering (Recommendation Systems)

Also in this issue:
Robots/Telecommunications Bill
and the Impact on Business/VR
in the Real World

essential
learn about this new area of
filtering information using
people and computers

effective
Reach the decision makers interested in
the competitive edge

advertising Close: january 20,1997 +1-212-626-0685 acm-advertising@acm.org

