
RRaattiioonnaall UUnniiffiieedd PPrroocceessss
BBeesstt PPrraaccttiicceess ffoorr SSooffttwwaarree
DDeevveellooppmmeenntt TTeeaammss

A Rational Software Corporation White Paper

Rational Unified Process
Best Practices for Software Development Teams

WHAT IS THE RATIONAL UNIFIED PROCESS? .. 1

EFFECTIVE DEPLOYMENT OF 6 BEST PRACTICES.. 1

PROCESS OVERVIEW .. 3

TWO DIMENSIONS .. 3

PHASES AND ITERATIONS - THE TIME DIMENSION .. 3

INCEPTION PHASE... 4
ELABORATION PHASE .. 4
CONSTRUCTION PHASE .. 5
TRANSITION PHASE.. 6
ITERATIONS .. 7

STATIC STRUCTURE OF THE PROCESS .. 7

ACTIVITIES, ARTIFACTS, AND WORKERS.. 8
WORKFLOWS .. 9

CORE WORKFLOWS .. 10

BUSINESS MODELING... 10
REQUIREMENTS.. 11
ANALYSIS & DESIGN.. 11
IMPLEMENTATION.. 12
TEST.. 12
DEPLOYMENT ... 12
PROJECT MANAGEMENT .. 13
CONFIGURATION & CHANGE MANAGEMENT ... 13
ENVIRONMENT ... 14

RATIONAL UNIFIED PROCESS - THE PRODUCT.. 14

INTEGRATION WITH TOOLS ... 16

A BRIEF HISTORY OF THE RATIONAL UNIFIED PROCESS... 17

Abstract

This paper presents an overview of the Rational Unified Process® The Rational Unified Process is a
software engineering process, delivered through a web-enabled, searchable knowledge base. The
process enhances team productivity and delivers software best practices via guidelines, templates and
tool mentors for all critical software lifecycle activities. The knowledge base allows development
teams to gain the full benefits of the industry-standard Unified Modeling Language (UML).

What is the Rational Unified Process?

The Rational Unified Process® is a Software Engineering Process. It provides a disciplined approach to
assigning tasks and responsibilities within a development organization. Its goal is to ensure the production
of high-quality software that meets the needs of its end-users, within a predictable schedule and budget.
[11, 13]

The Rational Unified Process is a process product, developed and maintained by Rational® Software. The
development team for the Rational Unified Process are working closely with customers, partners, Rational's
product groups as well as Rational's consultant organization, to ensure that the process is continuously
updated and improved upon to reflect recent experiences and evolving and proven best practices.

The Rational Unified Process enhances team productivity, by providing every team member with easy
access to a knowledge base with guidelines, templates and tool mentors for all critical development
activities. By having all team members accessing the same knowledge base, no matter if you work with
requirements, design, test, project management, or configuration management, we ensure that all team
members share a common language, process and view of how to develop software.

The Rational Unified Process activities create and maintain models. Rather than focusing on the production
of large amount of paper documents, the Unified Process emphasizes the development and maintenance of
models—semantically rich representations of the software system under development. [3, 7, 8]

The Rational Unified Process is a guide for how to effectively use the Unified Modeling Language
(UML). The UML is a industry-standard language that allows us to clearly communicate requirements,
architectures and designs. The UML was originally created by Rational Software, and is now maintained by
the standards organization Object Management Group (OMG). [4]

The Rational Unified Process is supported by tools, which automate large parts of the process. They are
used to create and maintain the various artifacts—models in particular—of the software engineering
process: visual modeling, programming, testing, etc. They are invaluable in supporting all the bookkeeping
associated with the change management as well as the configuration management that accompanies each
iteration.

The Rational Unified Process is a configurable process. No single process is suitable for all software
development. The Unified Process fits small development teams as well as large development
organizations. The Unified Process is founded on a simple and clear process architecture that provides
commonality across a family of processes. Yet, it can be varied to accommodate different situations. It
contains a Development Kit, providing support for configuring the process to suit the needs of a given
organization.

The Rational Unified Process captures many of the best practices in modern software development in a
form that is suitable for a wide range of projects and organizations. Deploying these best practicesusing
the Rational Unified Process as your guideoffers development teams a number of key advantages. In
next section, we describe the six fundamental best practices of the Rational Unified Process.

Effective Deployment of 6 Best Practices

The Rational Unified Process describes how to effectively deploy commercially proven approaches to
software development for software development teams. These are called “best practices” not so much
because you can precisely quantify their value, but rather, because they are observed to be commonly used
in industry by successful organizations. The Rational Unified Process provides each team member with the
guidelines, templates and tool mentors necessary for the entire team to take full advantage of among others
the following best practices:

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

1

4. Visually model software

5. Verify software quality

6. Control changes to software

Develop Software Iteratively Given today’s sophisticated software systems, it is not possible to
sequentially first define the entire problem, design the entire solution, build the software and then test the
product at the end. An iterative approach is required that allows an increasing understanding of the problem
through successive refinements, and to incrementally grow an effective solution over multiple iterations.
The Rational Unified Process supports an iterative approach to development that addresses the highest risk
items at every stage in the lifecycle, significantly reducing a project’s risk profile. This iterative approach
helps you attack risk through demonstrable progressfrequent, executable releases that enable continuous
end user involvement and feedback. Because each iteration ends with an executable release, the
development team stays focused on producing results, and frequent status checks help ensure that the
project stays on schedule. An iterative approach also makes it easier to accommodate tactical changes in
requirements, features or schedule. [1, 2, 10]

Manage Requirements The Rational Unified Process describes how to elicit, organize, and document
required functionality and constraints; track and document tradeoffs and decisions; and easily capture and
communicate business requirements. The notions of use case and scenarios proscribed in the process has
proven to be an excellent way to capture functional requirements and to ensure that these drive the design,
implementation and testing of software, making it more likely that the final system fulfills the end user
needs. They provide coherent and traceable threads through both the development and the delivered
system. [7]

Use Component-based Architectures The process focuses on early development and baselining of a
robust executable architecture, prior to committing resources for full-scale development. It describes how
to design a resilient architecture that is flexible, accommodates change, is intuitively understandable, and
promotes more effective software reuse. The Rational Unified Process supports component-based software
development. Components are non-trivial modules, subsystems that fulfill a clear function. The Rational
Unified Process provides a systematic approach to defining an architecture using new and existing
components. These are assembled in a well-defined architecture, either ad hoc, or in a component
infrastructure such as the Internet, CORBA, and COM, for which an industry of reusable components is
emerging. [5]

Visually Model Software The process shows you how to visually model software to capture the
structure and behavior of architectures and components. This allows you to hide the details and write code
using “graphical building blocks.” Visual abstractions help you communicate different aspects of your
software; see how the elements of the system fit together; make sure that the building blocks are consistent
with your code; maintain consistency between a design and its implementation; and promote unambiguous
communication. The industry-standard Unified Modeling Language (UML), created by Rational Software,
is the foundation for successful visual modeling. [4, 12]

Verify Software Quality Poor application performance and poor reliability are common factors which
dramatically inhibit the acceptability of today’s software applications. Hence, quality should be reviewed
with respect to the requirements based on reliability, functionality, application performance and system
performance. The Rational Unified Process assists you in the planning, design, implementation, execution,
and evaluation of these test types. Quality assessment is built into the process, in all activities, involving all
participants, using objective measurements and criteria, and not treated as an afterthought or a separate
activity performed by a separate group.

Control Changes to Software The ability to manage changemaking certain that each change is
acceptable, and being able to track changesis essential in an environment in which change is inevitable.
The process describes how to control, track and monitor changes to enable successful iterative
development. It also guides you in how to establish secure workspaces for each developer by providing
isolation from changes made in other workspaces and by controlling changes of all software artifacts (e.g.,
models, code, documents, etc.). And it brings a team together to work as a single unit by describing how to
automate integration and build management.

2

Process Overview

Two Dimensions
The process can be described in two dimensions, or along two axis:

• the horizontal axis represents time and shows the dynamic aspect of the process as it is enacted, and it
is expressed in terms of cycles, phases, iterations, and milestones.

• the vertical axis represents the static aspect of the process: how it is described in terms of activities,
artifacts, workers and workflows.

Elaboration Construction TransitionInception

Phases

Requirements

Analysis & Design

Implementation
Test

Environment

Deployment

Core Process Workflows

Core Supporting Workflows

Iterations

preliminary
iteration(s)

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

iter.
#m+1

Configuration & Change Mgmt

Business Modeling

Organization along time

Organization
along content

The Iterative Model graph shows how the process is structured along two dimensions.

Phases and Iterations - The Time Dimension

This is the dynamic organization of the process along time.

The software lifecycle is broken into cycles, each cycle working on a new generation of the product. The
Rational Unified Process divides one development cycle in four consecutive phases [10]

• Inception phase

• Elaboration phase

• Construction phase

• Transition phase

Each phase is concluded with a well-defined milestone—a point in time at which certain critical decisions
must be made, and therefore key goals must have been achieved [2].

time

Major Milestones

Elaboration Construction TransitionInception

The phases and major milestones in the process.

Each phase has a specific purpose.

3

Inception Phase

During the inception phase, you establish the business case for the system and delimit the project scope. To
accomplish this you must identify all external entities with which the system will interact (actors) and
define the nature of this interaction at a high-level. This involves identifying all use cases and describing a
few significant ones. The business case includes success criteria, risk assessment, and estimate of the
resources needed, and a phase plan showing dates of major milestones. [10, 14]

The outcome of the inception phase is:

• A vision document: a general vision of the core project’s requirements, key features, and main
constraints.

• An initial use-case model (10%-20% complete).

• An initial project glossary (may optionally be partially expressed as a domain model).

• An initial business case, which includes business context, success criteria (revenue projection, market
recognition, and so on), and financial forecast.

• An initial risk assessment.

• A project plan, showing phases and iterations.

• A business model, if necessary.

• One or several prototypes.

Milestone : Lifecycle Objectives

Inception Elaboration Construction Transition

Lifecycle
Objective

At the end of the inception phase is the first major project milestone: the Lifecycle Objectives Milestone.
The evaluation criteria for the inception phase are:

• Stakeholder concurrence on scope definition and cost/schedule estimates.

• Requirements understanding as evidenced by the fidelity of the primary use cases.

• Credibility of the cost/schedule estimates, priorities, risks, and development process.

• Depth and breadth of any architectural prototype that was developed.

• Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it fails to pass this milestone.

Elaboration Phase

Inception Elaboration Construction Transition

The purpose of the elaboration phase is to analyze the problem domain, establish a sound architectural
foundation, develop the project plan, and eliminate the highest risk elements of the project. To accomplish
these objectives, you must have the “mile wide and inch deep” view of the system. Architectural decisions
have to be made with an understanding of the whole system: its scope, major functionality and
nonfunctional requirements such as performance requirements.

It is easy to argue that the elaboration phase is the most critical of the four phases. At the end of this phase,
the hard “engineering” is considered complete and the project undergoes its most important day of
reckoning: the decision on whether or not to commit to the construction and transition phases. For most
projects, this also corresponds to the transition from a mobile, light and nimble, low-risk operation to a
high-cost, high-risk operation with substantial inertia. While the process must always accommodate
changes, the elaboration phase activities ensure that the architecture, requirements and plans are stable
enough, and the risks are sufficiently mitigated, so you can predictably determine the cost and schedule for

4

Inceptio
n

the completion of the development. Conceptually, this level of fidelity would correspond to the level
necessary for an organization to commit to a fixed-price construction phase.

In the elaboration phase, an executable architecture prototype is built in one or more iterations, depending
on the scope, size, risk, and novelty of the project. This effort should at least address the critical use cases
identified in the inception phase, which typically expose the major technical risks of the project. While an
evolutionary prototype of a production-quality component is always the goal, this does not exclude the
development of one or more exploratory, throw-away prototypes to mitigate specific risks such as
design/requirements trade-offs, component feasibility study, or demonstrations to investors, customers, and
end-users.

The outcome of the elaboration phase is:

• A use-case model (at least 80% complete) — all use cases and actors have been identified, and most
use-case descriptions have been developed.

• Supplementary requirements capturing the non functional requirements and any requirements that are
not associated with a specific use case.

• A Software Architecture Description.

• An executable architectural prototype.

• A revised risk list and a revised business case.

• A development plan for the overall project, including the coarse-grained project plan, showing
iterations” and evaluation criteria for each iteration.

• An updated development case specifying the process to be used.

• A preliminary user manual (optional).

Milestone : Lifecycle Architecture

Inception Elaboration Construction Transition

Lifecycle
Architecture

At the end of the elaboration phase is the second important project milestone, the Lifecycle Architecture
Milestone. At this point, you examine the detailed system objectives and scope, the choice of architecture,
and the resolution of the major risks.

The main evaluation criteria for the elaboration phase involves the answers to these questions:

• Is the vision of the product stable?

• Is the architecture stable?

• Does the executable demonstration show that the major risk elements have been addressed and
credibly resolved?

• Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible
basis of estimates?

• Do all stakeholders agree that the current vision can be achieved if the current plan is executed to
develop the complete system, in the context of the current architecture?

• Is the actual resource expenditure versus planned expenditure acceptable?

The project may be aborted or considerably re-thought if it fails to pass this milestone.

Construction Phase

During the construction phase, all remaining components and application features are developed and
integrated into the product, and all features are thoroughly tested. The construction phase is, in one sense, a
manufacturing process where emphasis is placed on managing resources and controlling operations to
optimize costs, schedules, and quality. In this sense, the management mindset undergoes a transition from
the development of intellectual property during inception and elaboration, to the development of
deployable products during construction and transition.

5

Many projects are large enough that parallel construction increments can be spawned. These parallel
activities can significantly accelerate the availability of deployable releases; they can also increase the
complexity of resource management and workflow synchronization. A robust architecture and an
understandable plan are highly correlated. In other words, one of the critical qualities of the architecture is
its ease of construction. This is one reason why the balanced development of the architecture and the plan is
stressed during the elaboration phase.

The outcome of the construction phase is a product ready to put in hands of its end-users. At minimum, it
consists of:

• The software product integrated on the adequate platforms.

• The user manuals.

• A description of the current release.

Milestone : Initial Operational Capability
Inception Elaboration Construction Transition

Initial Operational
Capability

At the end of the construction phase is the third major project milestone (Initial Operational Capability
Milestone). At this point, you decide if the software, the sites, and the users are ready to go operational,
without exposing the project to high risks. This release is often called a “beta” release.

The evaluation criteria for the construction phase involve answering these questions:

• Is this product release stable and mature enough to be deployed in the user community?

• Are all stakeholders ready for the transition into the user community?

• Are the actual resource expenditures versus planned expenditures still acceptable?

Transition may have to be postponed by one release if the project fails to reach this milestone.

Transition Phase
Inception Elaboration Construction Transition

The purpose of the transition phase is to transition the software product to the user community. Once the
product has been given to the end user, issues usually arise that require you to develop new releases, correct
some problems, or finish the features that were postponed.

The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain.
This typically requires that some usable subset of the system has been completed to an acceptable level of
quality and that user documentation is available so that the transition to the user will provide positive
results for all parties. This includes:

• “beta testing” to validate the new system against user expectations

• parallel operation with a legacy system that it is replacing

• conversion of operational databases

• training of users and maintainers

• roll-out the product to the marketing, distribution, and sales teams

The transition phase focuses on the activities required to place the software into the hands of the users.
Typically, this phase includes several iterations, including beta releases, general availability releases, as
well as bug-fix and enhancement releases. Considerable effort is expended in developing user-oriented
documentation, training users, supporting users in their initial product use, and reacting to user feedback.
At this point in the lifecycle, however, user feedback should be confined primarily to product tuning,
configuring, installation, and usability issues.

The primary objectives of the transition phase include:

• Achieving user self-supportability

• Achieving stakeholder concurrence that deployment baselines are complete and consistent with the
evaluation criteria of the vision

6

• Achieving final product baseline as rapidly and cost effectively as practical

This phase can range from being very simple to extremely complex, depending on the type of product. For
example, a new release of an existing desktop product may be very simple, whereas replacing a nation's air-
traffic control system would be very complex.

Milestone: Product Release

At the end of the transition phase is the fourth important project milestone, the Product Release Milestone.
At this point, you decide if the objectives were met, and if you should start another development cycle. In
some cases, this milestone may coincide with the end of the inception phase for the next cycle.

The primary evaluation criteria for the transition phase involve the answers to these questions:

• Is the user satisfied?

• Are the actual resources expenditures versus planned expenditures still acceptable?

Iterations
Each phase in the Rational Unified Process can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external) of an executable product, a subset of
the final product under development, which grows incrementally from iteration to iteration to become the
final system [10].

Benefits of an iterative approach

Compared to the traditional waterfall process, the iterative process has the following advantages:

• Risks are mitigated earlier

• Change is more manageable

• Higher level of reuse

• The project team can learn along the way

• Better overall quality

Static Structure of the Process

A process describes who is doing what, how, and when. The Rational Unified Process is represented using
four primary modeling elements:

• Workers, the ‘who’

• Activities, the ‘how’

• Artifacts, the ‘what’

• Workflows, the ‘when’

7

Activities, Artifacts, and Workers

Use-Case DesignUse-Case AnalysisDesigner

Use Case Realization

Worker Activities

Artifact responsible for

Workers, activities and artifacts.

Worker

A worker defines the behavior and responsibilities of an individual, or a group of individuals working
together as a team. You could regard a worker as a "hat" an individual can wear in the project. One
individual may wear many different hats. This is an important distinction because it is natural to think of a
worker as the individual or team itself, but in the Unified Process the worker is more the role defining how
the individuals should carry out the work. The responsibilities we assign to a worker includes both to
perform a certain set of activities as well as being owner of a set of artifacts.

Resource Worker Activities

Paul

Mary

Joe

Sylvia

Stefan

Designer

Use-Case Author

Use-Case Designer

Design Reviewer

Architect

Object Design
...

Detail a Use Case
...

Use-Case Design
...

Review the Design
...

Architectural Analysis
Architectural Design
...

People and Workers.

Activity

An activity of a specific worker is a unit of work that an individual in that role may be asked to perform.
The activity has a clear purpose, usually expressed in terms of creating or updating some artifacts, such as a
model, a class, a plan. Every activity is assigned to a specific worker. The granularity of an activity is
generally a few hours to a few days, it usually involves one worker, and affects one or only a small number
of artifacts. An activity should be usable as an element of planning and progress; if it is too small, it will be
neglected, and if it is too large, progress would have to be expressed in terms of an activity’s parts.

Example of activities:

• Plan an iteration, for the Worker: Project Manager

• Find use cases and actors, for the Worker: System Analyst

• Review the design, for the Worker: Design Reviewer

• Execute performance test, for the Worker: Performance Tester

8

Artifact

An artifact is a piece of information that is produced, modified, or used by a process. Artifacts are the
tangible products of the project, the things the project produces or uses while working towards the final
product. Artifacts are used as input by workers to perform an activity, and are the result or output of such
activities. In object-oriented design terms, as activities are operations on an active object (the worker),
artifacts are the parameters of these activities.

Artifacts may take various shapes or forms:

• A model, such as the Use-Case Model or the Design Model

• A model element, i.e. an element within a model, such as a class, a use case or a subsystem

• A document, such as Business Case or Software Architecture Document

• Source code

• Executables

Workflows
A mere enumeration of all workers, activities and artifacts does not quite constitute a process. We need a
way to describe meaningful sequences of activities that produce some valuable result, and to show
interactions between workers.

A workflow is a sequence of activities that produces a result of observable value.

In UML terms, a workflow can be expressed as a sequence diagram, a collaboration diagram, or an activity
diagram. We use a form of activity diagrams in this white paper.

Architect

Use-Case
Designer

Designer

Design
Reviewer

Architectural Analysis

Review the
Design

Review the
Analysis

Review the
Architecture

Object DesignObject Analysis

Use-Case DesignUse-Case Analysis

Architectural Design Describe Concurrency Describe Distribution

Example of workflow.

Note that it is not always possible or practical to represent all of the dependencies between activities. Often
two activities are more tightly interwoven than shown, especially when they involve the same worker or the
same individual. People are not machines, and the workflow cannot be interpreted literally as a program for
people, to be followed exactly and mechanically.

In next section we will discuss the most essential type of workflows in the process, called Core Workflows.

9

Core workflows

There are nine core process workflows in the Rational Unified Process, which represent a partitioning of all
workers and activities into logical groupings.

Elaboration Construction TransitionInception

Phases

Requirements

Analysis & Design

Implementation
Test

Environment

Deployment

Core Process Workflows

Core Supporting Workflows

Iterations

preliminary
iteration(s)

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

iter.
#m+1

Configuration & Change Mgmt

Business Modeling

The nine core process workflows.

The core process workflows are divided into six core “engineering” workflows:

1. Business modeling workflow

2. Requirements workflow

3. Analysis & Design workflow

4. Implementation workflow

5. Test workflow

6. Deployment workflow

And three core “supporting” workflows:

1. Project Management workflow

2. Configuration and Change Management workflow

3. Environment workflow

Although the names of the six core engineering workflows may evoke the sequential phases in a traditional
waterfall process, we should keep in mind that the phases of an iterative process are different and that these
workflows are revisited again and again throughout the lifecycle. The actual complete workflow of a
project interleaves these nine core workflows, and repeats them with various emphasis and intensity at each
iteration.

Business Modeling
One of the major problems with most business engineering efforts, is that the software engineering and the
business engineering community do not communicate properly with each other. This leads to that the
output from business engineering is not used properly as input to the software development effort, and vice-
versa. The Rational Unified Process addresses this by providing a common language and process for both
communities, as well as showing how to create and maintain direct traceability between business and
software models.

In Business Modeling we document business processes using so called business use cases. This assures a
common understanding among all stakeholders of what business process needs to be supported in the
organization. The business use cases are analyzed to understand how the business should support the

10

business processes. This is documented in a business object-model.

Many projects may choose not to do business modeling.

Requirements
The goal of the Requirements workflow is to describe what the system should do and allows the developers
and the customer to agree on that description. To achieve this, we elicit, organize, and document required
functionality and constraints; track and document tradeoffs and decisions.

A Vision document is created, and stakeholder needs are elicited. Actors are identified, representing the
users, and any other system that may interact with the system being developed. Use cases are identified,
representing the behavior of the system. Because use cases are developed according to the actor's needs, the
system is more likely to be relevant to the users. The following figure shows an example of a use-case
model for a recycling-machine system.

Recycle ItemsCustomer

Print Daily Report

Administer Deposit Item

Operator

An example of a use-case model with actors and use cases.

Each use case is described in detail. The use-case description shows how the system interacts step by step
with the actors and what the system does. Non-functional requirements are described in Supplementary
Specifications.

The use cases function as a unifying thread throughout the system's development cycle. The same use-case
model is used during requirements capture, analysis & design, and test.

Analysis & Design
The goal of the Analysis & Design workflow is to show how the system will be realized in the
implementation phase. You want to build a system that:

• Performs—in a specific implementation environment—the tasks and functions specified in the use-
case descriptions.

• Fulfills all its requirements.

• Is structured to be robust (easy to change if and when its functional requirements change).

 Analysis & Design results in a design model and optionally an analysis model. The design model serves as
an abstraction of the source code; that is, the design model acts as a 'blueprint' of how the source code is
structured and written.

 The design model consists of design classes structured into design packages and design subsystems with
well-defined interfaces, representing what will become components in the implementation. It also contains
descriptions of how objects of these design classes collaborate to perform use cases. The next figure shows
part of a sample design model for the recycling-machine system in the use-case model shown in the
previous figure.

 11

Customer Package Alarm and PrinterPackage

Receipt Printer

Alarm DeviceDeposit Item
Receiver

CustomerPanel

 Part of a design model with communicating design classes, and package group design classes.

 The design activities are centered around the notion of architecture. The production and validation of this
architecture is the main focus of early design iterations. Architecture is represented by a number of
architectural views [9]. These views capture the major structural design decisions. In essence, architectural
views are abstractions or simplifications of the entire design, in which important characteristics are made
more visible by leaving details aside. The architecture is an important vehicle not only for developing a
good design model, but also for increasing the quality of any model built during system development.

 Implementation
 The purpose of implementation are:

• To define the organization of the code, in terms of implementation subsystems organized in layers.

• To implement classes and objects in terms of components (source files, binaries, executables, and
others).

• To test the developed components as units.

• To integrate the results produced by individual implementers (or teams), into an executable
system.

 The system is realized through implementation of components. The Rational Unified Process describes
how you reuse existing components, or implement new components with well defined responsibility,
making the system easier to maintain, and increasing the possibilities to reuse.

 Components are structured into Implementation Subsystems. Subsystems take the form of directories, with
additional structural or management information. For example, a subsystem can be created as a directory or
a folder in a file system, or a subsystem in Rational/Apex for C++ or Ada, or packages using Java.™

 Test
 The purposes of testing are:

• To verify the interaction between objects.

• To verify the proper integration of all components of the software.

• To verify that all requirements have been correctly implemented.

• To identify and ensure defects are addressed prior to the deployment of the software.

The Rational Unified Process proposes an iterative approach, which means that you test throughout the
project. This allows you to find defects as early as possible, which radically reduces the cost of fixing the
defect. Test are carried out along three quality dimensions reliability, functionality, application
performance and system performance. For each of these quality dimensions, the process describes how you
go through the test lifecycle of planning, design, implementation, execution and evaluation.

Strategies for when and how to automate test are described. Test automation is especially important using
an iterative approach, to allow regression testing at then end of each iteration, as well as for each new
version of the product.

Deployment
The purpose of the deployment workflow is to successfully produce product releases, and deliver the
software to its end users. It covers a wide range of activities including:

12

♦ Producing external releases of the software.

♦ Packaging the software.

♦ Distributing the software.

♦ Installing the software.

♦ Providing help and assistance to users.

In many cases, this also includes activities such as:

♦ Planning and conduct of beta tests.

♦ Migration of existing software or data.

♦ Formal acceptance.

Although deployment activities are mostly centered around the transition phase, many of the activities need
to be included in earlier phases to prepare for deployment at the end of the construction phase.

The Deployment and Environment workflows of the Rational Unified Process contain less detail than other
workflows.

Project Management
Software Project Management is the art of balancing competing objectives, managing risk, and overcoming
constraints to deliver, successfully, a product which meets the needs of both customers (the payers of bills)
and the users. The fact that so few projects are unarguably successful is comment enough on the difficulty
of the task.

This workflow focuses mainly on the specific aspect of an iterative development process. Our goal with
this section is to make the task easier by providing:

♦ A framework for managing software-intensive projects.

♦ Practical guidelines for planning, staffing, executing, and monitoring projects.

♦ A framework for managing risk.

It is not a recipe for success, but it presents an approach to managing the project that will markedly
improve the odds of delivering successful software. [14]

Configuration & Change Management
In this workflow we describe how to control the numerous artifacts produced by the many people who
work on a common project. Control helps avoid costly confusion, and ensures that resultant artifacts are not
in conflict due to some of the following kinds of problems:

• Simultaneous Update When two or more workers work separately on the same artifact, the last
one to make changes destroys the work of the former.

• Limited Notification When a problem is fixed in artifacts shared by several developers, and
some of them are not notified of the change.

• Multiple Versions Most large programs are developed in evolutionary releases. One release
could be in customer use, while another is in test, and the third is still in development. If problems
are found in any one of the versions, fixes need to be propagated between them. Confusion can
arise leading to costly fixes and re-work unless changes are carefully controlled and monitored.

 This workflow provides guidelines for managing multiple variants of evolving software systems, tracking
which versions are used in given software builds, performing builds of individual programs or entire
releases according to user-defined version specifications, and enforcing site-specific development policies.

 We describe how you can manage parallel development, development done at multiple sites, and how to
automate the build process. This is especially important in an iterative process where you may want to be
able to do builds as often as daily, something that would become impossible without powerful automation.
We also describe how you can keep an audit trail on why, when and by whom any artifact was changed.

 This workflow also covers change request management, i.e. how to report defects, manage them through
their lifecycle, and how to use defect data to track progress and trends.

 13

 Environment
 The purpose of the environment workflow is to provide the software development organization with the
software development environment—both processes and tools—that are needed to support the development
team.

 This workflow focuses on the activities to configure the process in the context of a project. It also focus on
activities to develop the guidelines needed to support a project. A step-by-step procedure is provided
describing how you implement a process in an organization.

 The environment workflow also contains a Development Kit providing you with the guidelines, templates
and tools necessary to customize the process. The Development Kit is described in more detail in the
section " Development Kit for Process Customization" found later in this paper.

 Certain aspects of the Environment workflow are not covered in the process such as selecting, acquiring,
and making the tools work, and maintaining the development environment.

 Rational Unified Process - The Product

The Rational Unified Process product consists of:

• A web-enabled searchable knowledge base providing all team members with guidelines,
templates, and tool mentors for all critical development activities. The knowledge base can
further be broken down to:

• Extensive guidelines for all team members, and all portions of the software
lifecycle. Guidance is provided for both the high-level thought process, as well
as for the more tedious day-to-day activities. The guidance is published in
HTML form for easy platform-independent access on your desktop.

• Tool mentors providing hands-on guidance for tools covering the full lifecycle.
The tool mentors are published in HTML form for easy platform-independent
access on your desktop. See section "Integration with Tools" for more details.

• Rational Rose® examples and templates providing guidance for how to
structure the information in Rational Rose when following the Rational Unified
Process (Rational Rose is Rational's tool for visual modeling)

• SoDA® templates more than 10 SoDA templates that helps automate
software documentation (SoDA is Rational's Document Automation Tool)

• Microsoft® Word templates more than 30 Word templates assisting
documentation in all workflows and all portions of the lifecycle

• Microsoft Project Plans Many managers find it difficult to create project plans
that reflects an iterative development approach. Our templates jump start the creation
of project plans for iterative development, according to the Rational Unified Process.

• Development Kit describes how to customize and extend the Rational Unified
Process to the specific needs of the adopting organization or project, as well as
provides tools and templates to assist the effort. This development kit is described in
more detail later in this section.

• Access to Resource Center containing the latest white papers, updates, hints, and
techniques, as well as references to add-on products and services.

• A book "Rational Unified Process — An Introduction", by Philippe
Kruchten, published by Addison-Wesley. The book is on 277 pages and
provides a good introduction and overview to the process and the knowledge
base.

14

 Navigating the Knowledge Base

 The Rational Unified Process knowledge allows you to access the content with any of the popular web
browsers, such as Microsoft¨ Internet Explorer and Netscape Navigator.

 With the Rational Unified Process, you’re never more than a few mouse clicks away from the information
you want. The knowledge base contains a lot of hypertext links, and overviews of the various process
elements are presented through interactive images, making it easy to find relevant information in an
intuitive fashion. The powerful search engine, the index, and the “explorer looking” tree browser make it
easy to use the process. Navigational buttons allow you to move to the next or previous page as if reading a
book.

 Information is presented in many different views, allowing you to look at information relevant to your role,
to a specific activity, or to a workflow. Guided tours for easy learning of the process are provided for key
project roles.

 Interactive images and navigational buttons make it easy to find the specific information you are
looking for.

 Development Kit for Process Customization

 The Rational Unified Process is general and complete enough to be used “as is” by some software
development organizations. However in many circumstances, this software engineering process will need
to be modified, adjusted, and tailored to accommodate the specific characteristics, constraints, and history
of the adopting organization. In particular a process should not be followed blindly, generating useless
work, producing artifacts that are of little added value. It must be made as lean as possible and still be able
to fulfill its mission to produce rapidly and predictably high quality software.

 The process contains a Development Kit, which contains guidelines for how you can customize the
process to fit the specific needs of the adopting organization or project. Templates are also included for
process authoring, as well as tools for generation or manipulation of search engine, index, site map, tree

 15

 browser, etc. The Development Kit enables the customizing organization to maintain the look and feel of
the Rational Unified Process.

 The more the process is customized, the more difficult will it be to move over customizations to future
releases of the process. The Development Kit describes strategies, tools and techniques to minimize the
work associated with moving customizations to future releases.

 Integration with Tools

 A software-engineering process requires tools to support all activities in a system's lifecycle, especially to
support the development, maintenance and bookkeeping of various artifacts—models in particular. An
iterative development process puts special requirements on the tool set you use, such as better integration
among tools and round-trip engineering between models and code. You also need tools to keep track of
changes, to support requirements traceability, to automate documentation, as well as tools to automate tests
to facilitate regression test. The Rational Unified Process can be used with a variety of tools, either from
Rational or other vendors. However, Rational provides many well-integrated tools that efficiently support
the Rational Unified Process.

 Below you find a list of some of Rational's tools that support the Rational Unified Process.

 The Rational Unified Process contains Tool Mentors for almost all of these products. A Tool Mentor is a
step-by-step guide describing in detail how to operate a tool, (i.e. what menus to launch, what information
to enter into dialog boxes, and how to navigate a tool) to carry out an activity within the process. The Tool
Mentors allow us to link the tool-independent process to the actual manipulation of the tools in your daily
work.

• Rational Requisite®Pro Keeps the entire development team updated and on track throughout the
application development process by making requirements easy to write, communicate and change.

• Rational ClearQuest™ — A Windows and Web-based change-request management product that
enables project teams to track and manage all change activities that occur throughout the development
lifecycle.

• Rational Rose® 98 — The world’s leading visual modeling tool for business process modeling,
requirements analysis, and component architecture design.

• Rational SoDA® Automates the production of documentation for the entire software development
process, dramatically reducing documentation time and costs.

• Rational Purify® A run-time error checking tool for application and component software
developers programming in C/C++; helps detect memory errors.

• Rational Visual Quantify™ — An advanced performance profiling tool for application and
component software developers programming in C++, Visual Basic, and Java; helps eliminate
performance bottlenecks.

• Rational Visual PureCoverage™ — Automatically pinpoints areas of code not exercised in testing so
developers can thoroughly, efficiently and effectively test their applications.

• Rational TeamTest — Creates, maintains and executes automated functional tests, allowing you to
thoroughly test your code and determine if your software meets requirements and performs as
expected.

• Rational PerformanceStudio™ — An easy-to-use, accurate and scalable tool that measures and
predicts the performance of client/server and Web systems.

• Rational ClearCase® — Market-leading software configuration management tool, giving project
managers the power to track the evolution of every software development project.

16

A brief history of the Rational Unified Process

The Rational Unified Process has matured over many years and reflects the collective experience of the
many people and companies that make up today Rational Software’s rich heritage.

Let us have a quick look at the process’s ancestry, as illustrated in the figure below.

Genealogy of the Rational Unified Process

Going backwards in time, the Rational Unified Process is the direct successor to the Rational Objectory
Process (version 4). The Rational Unified Process incorporates more material in the areas of data
engineering, business modeling, project management, and configuration management, the latter as a result
of the merger with Pure-Atria. It also brings a tighter integration to the Rational Software suite of tools.

The Rational Objectory Process was the result of the integration of the “Rational Approach” and the
Objectory process (version 3), after the merger of Rational Software Corporation and Objectory AB in
1995. From its Objectory ancestry, the process has inherited its process structure and the central concept of
use case. From its Rational background, it gained the current formulation of iterative development and
architecture. This version also incorporated material on requirements management from Requisite, Inc. and
a detailed test process inherited from SQA,® Inc., companies which also merged with Rational Software.
Finally, this process was the first one to use the newly created Unified Modeling Language (UML 0.8).

The Objectory process was created in Sweden in 1987 by Ivar Jacobson as the result of his experience with
Ericsson. This process became a product at his company, Objectory AB. Centered around the concept of
use case and an object-oriented design method, it rapidly gained recognition in the software industry and
has been adopted and integrated by many companies worldwide. A simplified version of the Objectory
process was published as a text book in 1992.

The Rational Unified Process is a specific and detailed instance of a more generic process described by Ivar
Jacobson, Grady Booch, and James Rumbaugh in the textbook, The Unified Software Development
Process.

17

References

1. Barry W. Boehm, A Spiral Model of Software Development and Enhancement, Computer, May 1988,
IEEE, pp.61-72

2. Barry W. Boehm, Anchoring the Software Process, IEEE Software, 13, 4, July 1996, pp. 73-82.
3. Grady Booch, Object Solutions, Addison-Wesley, 1995.

4. Grady Booch, Ivar Jacobson, and James Rumbaugh, Unified Modeling Language 1.3, White paper,
Rational Software Corp., 1998.

5. Alan W. Brown (ed.), Component-Based Software Engineering, IEEE Computer Society, Los
Alamitos, CA, 1996, pp.140.

6. Michael T. Devlin, and Walker E. Royce, Improving Software Economics in the Aerospace and
Defense Industry, Technical paper TP-46, Santa Clara, CA, Rational Software Corp., 1995

7. Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard, Object-Oriented Software
Engineering—A Use Case Driven Approach, Wokingham, England, Addison-Wesley, 1992, 582p.

8. Ivar Jacobson, M. Griss, and P. Jonsson, Software Reuse—Architecture, Process and Organization for
Business Success, Harlow, England, AWL, 1997.

9. Philippe Kruchten, The 4+1 View Model of Architecture, IEEE Software, 12 (6), November 1995,
IEEE, pp.42-50.

10. Philippe Kruchten, A Rational Development Process, CrossTalk, 9 (7), STSC, Hill AFB, UT, pp.11-16.

11. Ivar Jacobson, Grady Booch, and Jim Rumbaugh, Unified Software Development Process, Addison-
Wesley, 1999.

12. Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified Modeling Language—User’s Guide,
Addison-Wesley, 1999.

13. Philippe Kruchten, Rational Unified Process—An Introduction, Addison-Wesley, 1999.

14. Walker Royce, Software Project Management—A Unified Framework, Addison-Wesley, 1998.

R

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014

Toll-free: 800-728-1212
Tel: 408-863-9900
Fax: 408-863-4120
E-mail: info@rational.com
Web: www.rational.com

Australia +61-2-9419-0100
Belgium +32-16-46-24-11
Brazil +55-11-829-7585
Canada 613-599-8581
Finland +358-9-6969-2616
France +33-1-30-12-09-50
Germany +49 89-628-38-0
India +91-80-553 8082/9864
Japan +81-3-5423-3611
Korea +82-2-556-9420
The Netherlands +31-23-569-4300
New Zealand +64-4-568-9591
South Africa +27-12-663-5677
Sweden +46-8-566-282-00
Switzerland +41-1-445-36-00
Taiwan +886-2-720-1938
UK +44-1344-295-000

Rational, the Rational logo, Rational
Unified Process, Rational Apex, Rational
Rose, RequisitePro, ClearQuest,
ClearCase, Purify, Visual Quantify,
Visual PureCoverage, PerformanceStudio,
and SQA are trademarks or registered
trademarks of Rational Software
Corporation in the United States and in
other countries. Microsoft and Microsoft
Internet Explorer are trademarks or
registered trademarks of Microsoft
Corporation. Java is a registered
trademark of Sun Microsystems. All other
names are used for identification purposes
only and are trademarks or registered
trademarks of their respective companies.

© Copyright 1998 Rational Software
Corporation. ALL RIGHTS RESERVED.
TP-026A Rev. 11/98

