Encryption Fundamentals

DEFENSE AND COUNTERMEASURES Principles and Practices Based on slides accompanying the book Network Defense and Countermeasures by Chuck Easttom (2018)

CHUCK EASTTOM

Objectives

- Explain encryption concepts
- Describe the history of encryption and modern encryption methods
- Use some simple decryption techniques

Introduction

A basic level of understanding encryption is provided in this chapter.

 No matter how many firewalls or security instruments are in place, if traffic is not encrypted, it is vulnerable.

Q: Why?

History of Encryption

- Originally used in military communications
- Associated with written communications initially
- Evolved to include telephone, radio, Internet/computer communications
- Encryption methods have become more complicated over the decades

- Single-Alphabet Substitution
 - □ The Caesar Cipher: Shift *key* positions to the right
 - □ ROT 13: Rotate 13 characters to the right
 - Atbash Cipher: reverse the alphabet

0	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
Α	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Υ	Ζ

Q: Issues with Single-Alphabet Substitution?

- Language features are not diffused in the ciphertext.
- □ Key space is too small.

- Multi-Alphabet Substitution
 - e.g., Vigenère ciphers
 - Like Cæsar cipher, but use a phrase as the key
 - Example
 - Message THE BOY HAS THE BALL
 - Key VIG
 - Encipher using Cæsar cipher for each letter:

key	VIGVIGVIGVIGV
plain	THEBOYHASTHEBALL
cipher	OPKWWECIYOPKWIRG

The Vigenère Table

Source: http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Q: How would the table be used for decryption?

computer security

Attacking the Vigenère Cipher

- Approach: the Kasiski method
 - 1. Establish period; call it *n*
 - 2. Break message into *n* parts, each part being enciphered using the same key letter
 - 3. Solve each part
 - □ You can leverage one part from another

- Transposition Ciphers
 - e.g., Rail Fence Cipher
 - Rearrange letters in plaintext to produce ciphertext
 - Example Rail-Fence Cipher
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

- Ciphertext is HLOOL ELWRD
- Question: What is the key?

Enigma

Q: Is Enigma a substitution or transposition cipher?

Q: Is it monoalphabetic or polyalphabetic?

11001010100110010100111010011110010011

- Binary Operations
 - □ AND This operation states that 1 AND 1 \rightarrow 1
 - OR There must be a 1 (one) in either of the numbers to result in 1 for that position
 - XOR If a position has 1 in one number but not the other, then the result is 1
- If s1 XOR s2 → s3, then s2 XOR s3 → s1.
 Q: How would you prove it?

Additional Information on Cryptography

http://practicalcryptography.com/ciphers/

Check out the slides on <u>http://sceweb.uhcl.edu/yang/teaching/csci523</u> <u>3fall2018/</u>

Modern Encryption Methods

- Symmetric Encryption vs Public Key Encryption
 - Symmetric crypto: aka secret-key or shared-key crypto
- Key generation methods
 - Key Stretching
 - PRNG (or Pseudo-Random Number Generator)
- Digital Signatures

Q: Is DS an encryption method?

Symmetric Encryption

DES

- Uses a symmetric key system
- Data is divided and transposed
- Data is then sent through a series of steps (16 rounds)
- Further scrambled with a swapping algorithm
- Finally transposed one last time

Blowfish

- Symmetric block cipher
- Designed in 1993 by Bruce Schneier
- "Blowfish is a variable-length key, 64-bit block cipher. The algorithm consists of two parts: a key-expansion part and a data-encryption part. Key expansion converts a key of at most 448 bits into several subkey arrays totaling 4168 bytes." (https://www.schneier.com/academic/archives/1994/09/description_of_a_new.htm l)

Symmetric Encryption

- Advanced Encryption Standard (AES)
 - Uses Rijndael algorithm
 - Block cipher
 - □ Specifies three key sizes: 128, 192, and 256 bits
- International Data Encryption Algorithm (IDEA)
- Serpent
- Twofish

Pseudo-Random Number Generators (PRNG)

- Symmetric ciphers need a cipher key; PRNG generates these keys.
- "A pseudorandom process is a process that appears to be random but is not."

https://en.m.wikipedia.org/wiki/Pseudorandomness

 Example algorithms of 'Cryptographically secure pseudorandom number generator': https://en.m.wikipedia.org/wiki/Cryptographically_secure_pseudoran_dom_number_generator

Key Stretching

- "to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources (time and possibly space) it takes to test each possible key" (https://en.wikipedia.org/wiki/Key_stretching)
- Two widely used key stretching algorithms:
 - Password-Based Key Derivation Function 2 (PBKDF2)
 - Part of PKCS #5 v 2.01
 - Applies some function to a password or passphrase along with salt to produce a derived key
 - bcrypt
 - A derivation of the Blowfish algorithm used with passwords

Selecting a Symmetric Encryption Method

- For standard business data, any method should work.
- For large amounts of data, speed is almost as important as security.
- <u>Highly sensitive data</u> should be secure regardless of speed.
- Variable length keys are only important if you need them.
 - For example, when different types of data require different encryption methods/keys.

Public Key Encryption

- One key is used to encrypt (e.g., public key)
- Another is used to decrypt (e.g., private key)
- The two keys are inverse of each other.
- You can freely distribute your public key so anyone can encrypt a message to you
- Only you can decrypt the messages
- Slower than symmetric ciphers

Public Key Encryption Methods

RSA

- Rivest, Shamir, and Adleman created in 1977
- Widely used encryption algorithm
- Diffie-Hellman
- ElGamal
- MQV
- Digital Signature Algorithm (DSA)
- Elliptic Curve

Identifying Good Encryption

Be suspicious of encryption methods that
 Are advertised as unbreakable
 Are advertised as certified
 Are put forth by inexperienced vendors

Digital Signatures

- Digital signatures use asymmetric cryptography in reverse order
- They can verify who sent the message
- Some part of the message is encrypted or signed with the user's private key
- Any recipient can verify the signature using the sender's public key
- Note: DS is not an encryption method.
- **Q:** What security service(s) does DS provide?

Digital Certificates

- A digital document that contains a <u>public key</u> (and other information) signed by a trusted third party, a Certificate Authority (CA)
- Distributes a public key securely (against man-inthe-middle attack)
- Provides a means to verify whose public key it is
- □ X.509
 - An international standard for the format and information contained in a digital certificate

Q: Security services provided by certificates?

Certificate Authorities (CA)

- Primary role is to digitally sign the public key of a given user
- A Registration Authority (RA) is often used to handle verification prior to certificates being issued
- Public Key Infrastructure (PKI)
 - An arrangement that binds public keys with respective user identities by means of a CA
 - A network of trusted CA servers

PGP Certificates

- Pretty Good Privacy (PGP) is a system, not a specific algorithm
- Offers digital signatures, asymmetric encryption, and symmetric encryption
- Often found in e-mail clients
- Uses its own certificate format
- PGP certificates are self-generated, not using a CA

Hashing

- A function that takes a variable-size input and returns a fixed-size string (the *hash value*)
- Hashing is one-way; you cannot un-hash something
- Hashing is how Windows stores passwords
- Salt refers to random bits that are used as one of the inputs to the hash
 - Complicates dictionary and rainbow table attacks

NOTE: Hashing is not an encryption method.

Q: What security services are provided by hashing?

Hashing Methods

- Secure Hash Algorithm (SHA)
 - Most widely used
 - □ SHA-1, SHA-2, SHA-3, SHA-256
- MD5
 - Not collision resistant
- RACE Integrity Primitives Evaluation Message Digest (RIPEMD)
- HAVAL

Cracking Passwords

- Administrators can use password crackers to test their own systems' defenses
- John the Ripper well-known cracking app
- Rainbow tables
- Other password crackers
 - Russian password crackers: www.passwordcrackers.com/crack.html
 - Password recovery: www.elcomsoft.com/prs.html
 - LastBit password recovery: http://lastbit.com/mso/Default.asp

John the Ripper

- Found at <u>www.openwall.com/john/</u>
- A free download
- Works with password files, not live passwords
- Password file is stored in different places depending on the operating system
- Cracked passwords are stored in a file named john.pot

General Cryptanalysis

- Cryptanalysis: The science of trying to find alternate ways to break cryptography
- Usually not very successful
- Can be quite tedious, with no guarantee of success

Methods

- Brute force
- Frequency analysis
- Known plaintext
- Chosen plaintext
- Related key attack
- Birthday attack
- Differential cryptanalysis
- Linear cryptanalysis

Steganography

- Steganography: The art and science of writing hidden messages in such a way that nobody other than the sender and intended recipient suspects the existence of the message.
- Message is often hidden in some other file such as a digital picture or audio file.
- Messages do not attract attention to themselves.

Steganography

- Key Terms
 - Payload: The data to be covertly communicated
 - *Carrier*: The signal, stream, or data file into which the payload is hidden
 - Channel: The type of medium used (e.g., photos, video, audio)

- Tools Available
 - QuickStego
 - Invisible Secrets
 - MP3Stego
 - Stealth Files 4
 - SNOW

Steganalysis

- Steganalysis: Detecting hidden messages
- Raw Quick Pair (RQP) method
 - for analyzing an image to detect hidden messages
- Chi-square analysis

. . .

- calculates the average Least Significant Bit (LSB),
- Examining noise distortion in audio carrier files

Quantum Computing and Quantum Cryptography

- Quantum computing allows more values than binary states
- Quantum based algorithms are superior at factoring large numbers
 - Widely used RSA algorithm is based on the difficulty of factoring a large number into its prime factors
 - □ When factoring becomes less difficult, RSA will be obsolete
- Other algorithms may also become obsolete

"NIST is publishing **NIST Internal Report (NISTIR) 8240, Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process.**"

- https://csrc.nist.gov/News/2019/pqc-standardization-process-2nd-round-candidates

- Encryption had simple beginnings
- Those beginnings fostered more complex mathematical structures that can be used for encryption
- Modern encryption methods are very complex algorithms

- Modern encryption methods can be symmetric or asymmetric
 - Symmetric uses a single key for encryption and decryption
 - Asymmetric uses a public key and a private key
- Symmetric methods include DES, Blowfish, AES, IDEA, Serpent, and Twofish

- Asymmetric methods (Public Key Encryption) include RSA, Diffie-Hellman, ElGamal, MQV, DSA, and Elliptical Curve
- No encryption is unbreakable or certified
- Digital signatures use asymmetric cryptology in reverse order
- Digital certificate validate user identity
- Certificate authorities provide trusted verification of certificates

- PGP digital certificates do not use certificate authorities
- Hashing takes a variable-size input and returns a fixed-size string
 - MD5 and SHA are common hashes
 - Other hashes include RIPEMD and HAVAL
- Decryption (without the proper key) is difficult and not usually successful

- Passwords can be cracked with utilities such as John the Ripper or with Rainbow tables
- Cryptanalysis attempts to break cryptography
 - Methods include brute force, frequency analysis, known plaintext, chosen plaintext, related key attack, birthday attack, differential cryptanalysis, and linear cryptanalysis
- Steganography is the art/science of placing hidden messages within seemingly ordinary files, such as graphics or audio clips

- Quantum computing introduces additional states besides binary on/off states.
- Quantum-based algorithms may make it easier to crack encoding and may render current cryptography methods obsolete
- \rightarrow NIST is trying to standardize next-generation crypto methods against these threats.