The Solution of the 4*"-Order Runge-Kutta Equations of Condition

In order to determine a 4""-Order Runge-Kutta with only four evaluations per step (a.k.a., the number of
stages), you would have to solve eight nonlinear algebraic equations in ten unknowns. A simplified
solution is shown below.

Any 4™-order RK method with four stages must normally satisfy the following eight equations.
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In order to obtain your method, select values for a; and «a,, then calculate the remaining coefficients as
shown above. Note that you cannot normally choose any of the following:

1 3-4a
a;1=0, =1 a1==,1=0a,, a; =0, ay, =1, or a, = 1, because that would cause some
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of the above denominators to be zero.

Note, there is a special solution for the equations of condition when a; = a5, but then you would have
to satisfy the following conditions, in order to find a 4"-order method.

1 1 1 1

Co = 6'01 = §(2 —3c3),¢3 = g'oﬁ = E'az = 5'“3 =1,021= 6_c2'ﬁ3'1 =1—-3cy,f32 =3¢,

. ” 1 1
The “classical” 4"-order RK method has a; = 3 and a, = > but | do not want you to use that method
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(or any method with a; = 3 and a, = > ). Please see the instructions for Assignment #4.



