
Technical Report
CMU/SEI-92-TR-30
ESC-TR-92-030

Software Development Risk:
Opportunity, Not Problem

Roger L. Van Scoy

September 1992

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-92-TR-30

ESC-TR-92-030
September 1992

Software Development Risk:
Opportunity, Not Problem

Roger L. Van Scoy

Software Risk Management Program

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1992 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-92-TR-30 1

Software Development Risk:
Opportunity, Not Problem

Abstract

What is risk? What is risk management? What does risk management have
to do with software? Noted software expert Tom Gilb says:

If you don’t actively attack the risks, they will actively attack you [Gilb88, p. 72].

But what does it mean to actively attack risks? We answer these questions
by examining the problems that exist in software development today and
presenting the SEI Risk Program approach to turning risk into opportunity.

We begin by reviewing the fundamental concepts of risk and elaborating on
how these basic concepts apply to the development of large, software-inten-
sive systems. We then develop our strategy for seeing a systematic approach
to risk management in software development be routinely practiced.

There are two key activities we are using to implement our strategy. The
first is our risk management paradigm. The paradigm defines a set of con-
tinuous activities that must be undertaken to resolve technical risk in a sys-
tematic and structured way. The second is our risk assessment process for
collaborating with clients to identify their technical risks.

We end with our ultimate goal: establishing an effective risk management
ethic as standard practice in the software engineering industry.

2 CMU/SEI-92-TR-30

Background

Why is software important? Software flies our airplanes [Tomayko91],
controls our automated teller machines [Kanter90], and even controls our
car engines [Woolnough90]. While software is prevalent in our everyday
lives, it is the lifeblood of complex Department of Defense (DoD) sys-
tems. Consider the following:

TheReport of the Secretary of Defense to the Congress on the FY 1985 Budget
identifies 160 key programs....Of the programs identified in the report, at least
120 (or 75%) were determined to have a significant software component
[Redwine84, p. 2].

Also, Robert Charette [Charette88] found that:

The AEGIS cruiser is a prime example of a system that could not operate with-
out computers [and hence software]. It requires computers to help run every
one of its major systems... [p. 12].

As software has taken a central role in DoD systems, the failures of soft-
ware development efforts have come to the forefront. For instance, in a
small sample of DoD programs (nine programs totalling $6.8 million) the
Comptroller General [CompGen79] found that less than 2% of the soft-
ware was usable as delivered. In addition, Charette [Charette88] chroni-
cles a long list of cost overruns and failures in software-intensive
programs.

Yet programs are planned to succeed. They are planned to produce the
product needed by the customer, within cost and schedule. But there are
many obstacles to their success. One key obstacle is the inability to see
cost and schedule problems as symptoms of a more fundamental, under-
lying problem.

This underlying problem is often unresolved technical risk. It occurs
because programs are unable to cope with technical risk in the develop-
ment process. The introduction to a 1986 General Accounting Office
(GAO) report entitledTechnical Risk Assessment [GAO86] begins:

Technical risks are inherent in the development of new weapon systems, whose
advanced performance requirements may exceed the capabilities of current
technology. Not to anticipate technical risks before and during the develop-
ment process creates the potential for scheduling and cost problems and,
worse, the possibility that a system will fail to meet its design specifications
and will not function as intended. In line with this, a 1983 Air Force report on
an ‘affordable acquisition approach’ found technical problems a factor in more
than 50 percent of the programs that experienced cost growth [p. 10].

Software

software

software
unusable

usable

(2%)

(98%)

CMU/SEI-92-TR-30 3

Technical risks that become technical problems cause programs to fail.
Since software has become critical in DoD systems, the effects of failing
to manage software technical risks during development are magnified.

But what is technical risk? For that matter, what is risk? Everyone has an
intuitive understanding of risk; it surrounds us in the world. But how can
understanding risk help programs be more successful? First, we need to
understand that a risk is not a problem. Rather, a risk is something that
might occur in the future: a possibility, not a certainty. To be technically
precise, there are two factors that comprise a risk:

1. Probability or likelihood that it will occur.

2. Loss resulting from its occurrence.

Risk is a part of any activity and can never be eliminated, nor can all risks
ever be known. Risk in itself is not bad; risk is essential to progress, and
failure is often a key part of learning. But we must learn to balance the
possible negative consequences of risk against the potential benefits of its
associated opportunity.

So what is technical risk? Technical risk is the possibility that the appli-
cation of software engineering theory, principles, and techniques will fail
to yield the right software product. Technical risk is comprised of the
underlying technological factors that may cause the final product to be:

overly expensive,

delivered late, or

unacceptable to the customer.

Technical risk lies at the heart of many problems causing the failure of
software programs today. The essence of technical risk is the failure to
build the right product. As the GAO [GAO86] pointed out, the ultimate
consequence of a risk is that the delivered system will not perform as
needed. The final risk always belongs to the customer.

As bleak as the picture is for system technical risk (as reported in
[GAO86]), the picture for software is worse. There is very little experi-
ence in dealing with software technical risk. It is not clear how to iden-
tify, measure, or manage software technical risk. In the final analysis,
little is known about software technical risk in the context of the overall
system.

Where do these risks come from? Why aren’t software risks identified
and resolved before they become problems? Detecting software risks
during development is especially difficult because we operate at the state

Risk Opportunity

4 CMU/SEI-92-TR-30

of the art in our system developments and must continually cope with the
uncertainty inherent in that environment.

So what can be done? According to Henry Petroski, “experience has
proven that technology risks are controllable” [Petroski82]. What does
that mean for software and the technical risks of developing software
intensive systems? It should mean that if other engineering disciplines
can control their technical risks, then software engineering is capable of
doing the same.

What does it take to control software technical risk? We believe there are
three key elements:

1. Identify. We must find the risks while there is still time to take
action. This involves looking into the future and considering the
path we have chosen from a risk perspective.

2. Communicate.We must accept that the risks exist and communi-
cate the risks to those empowered to resolve them.

3. Resolve. We must make a conscious decision to act on the risks.
This is turning risk into an opportunity to enhance our chances of
success.

We call these three elements “risk management.” The heart of risk man-
agement is informed decisionmaking under uncertainty. Risk manage-
ment is about being active, not passive. Or as Charette [Charette91] has
said, “Risk engineering [management] does not deal with future deci-
sions, but with the future of present decisions.”

Most software development managers see their job as managing risk.
Unfortunately, these managers are seldom given the information they
need to effectively manage their program’s risks. The result is reactive
crisis management based solely on cost and schedule indicators. Few
managers are systematically identifying, analyzing, planning, tracking,
and controlling their technical risks. When managers address technical
risks, the issues tend to be based solely on their own experience, and their
methods are generally incomplete and undocumented.1 For software risk
management to be effective, we must get away from the ad hoc, “experi-
ence is the only teacher” approach that currently dominates software risk
management.

1. These findings are based on the field work of the SEI Risk Program and are discussed
in detail in [Kirkpatrick92].

Identify

Communicate

Resolve

CMU/SEI-92-TR-30 5

Yet we should not fool ourselves into thinking that risk management is
the next “silver bullet.”2 To be successful, a program manager must be
able to balance all the program concerns, among which are cost, sched-
ule, and technical considerations. Managing cost and schedule are just as
important as managing technical risk.3 To be effective, risk management
must be an integral part of the way programs are managed by the contrac-
tor and the customer, not just in terms of cost and schedule risk, but in
terms of technical risk as well. If risk management is going to help pro-
grams succeed, then there needs to be a means to assess and manage the
technical risk in programs.

Unfortunately, the difficulties of applying risk management do not end
with its incorporation into program management. Even when the risks are
known, we have found strong cultural barriers that prevent risk communi-
cation.4 This problem exists within programs, where everyone belongs to
the same corporate team, as well as between the contractor and the cus-
tomer, where the current environment leads to unshared and competing
program objectives. If risk management is to be effective, the culture that
inhibits people from admitting that there might be a risk (or a problem)
must be changed.

The good news is that the evidence from other disciplines suggests that
managing technical risk during software development can result in more
successful software programs. The strategy the SEI Risk Program has
developed to make this happen is the topic of the next section.

Risk Program Strategy

Our strategy can be summarized by the following statement:

Until we use a disciplined and systematic way to identify and confront techni-
cal risk, we will never be able to control the quality, cost, or schedule of our
software products.

This does not mean that programs that practice risk management will not
have problems or even fail. But risk management helps programs succeed

2. See [Brooks87].

3. Again from [GAO86], “GAO believes that the findings [the GAO’s findings] demon-
strate a need for more clarity in, and attention to, technical risk assessment in the DoD.
The findings do not suggest that technical risk is more critical than cost or schedule risk,
or that DoD’s attention to cost or schedule risk be reduced” [p. 5].

4. See [Kirkpatrick92] for more details.

Technical

ScheduleCost

Success

6 CMU/SEI-92-TR-30

by providing them with the tools to understand and make better decisions
about the technical risks that may prevent their success.

The goal of the Software Risk Management Program at the SEI is to help
software programs succeed. We believe one way to achieve this goal is to
improve the practice of risk management for software-intensive systems
so that customers and suppliers routinely use a structured process for
managing and communicating program risks throughout the entire pro-
gram life cycle.

We have chosen to focus on technical risk in the software development
process because very little is understood about software technical risk.
We have chosen to focus on software because it is such a key part of
many DoD systems. However, to properly address software technical risk
requires a system perspective, because software never exists in a vacuum.
Recognizing this, we have chosen to focus on software technical risk in
the context of the total system.

Our strategy consists of the four phases shown in Figure 1.

Figure 1. Risk Program Phases

In Phase I we determined that software risk management would be an
effective area for the SEI to address and a valuable asset to our clients.

In Phase II, we have developed a risk management paradigm and risk
assessment process (discussed in the next two sections). These activities
include: building an awareness of software risk management within the
software development and risk management communities; developing
mechanisms and methods for applying our risk management paradigm;
testing these with our strategic partners5 by risk assessments; and refining
our paradigm, mechanisms, and methods according to how well they
work in practice.

5. A strategic partner is an organization that works collaboratively with us to test and
refine our approach to software risk management and has a long-term commitment to
adopting risk management practices.

SUCCESS

Phase I
Improvement

Prototype

Phase I
Capability

Improvement

Phase I
Program Risk

Assessment

Phase I
Concept

Exploration

CMU/SEI-92-TR-30 7

In Phase III, we will continue to refine our risk management paradigm,
its mechanisms, and methods. The emphasis in Phase III shifts from test-
ing by risk assessments to pilot capability improvement6 efforts.

Finally, in Phase IV, we will move from working with individual pro-
grams to working with whole organizations. Here, we want our risk man-
agement paradigm, methods, and tools to be institutionalized in the
program management process of our strategic partners.

By the end of Phase IV, we will have developed and tested a balanced
approach, using both qualitative and quantitative methods, to software
risk management. Our strategy is based on an evolutionary approach that
builds credibility and awareness through interaction with actual programs
and hands-on application. We are dependent on customer contact
throughout this work; strategic partnerships establish our operating base
and apply their experience and knowledge to software risk management.
As we develop the foundation for software technical risk management,
we will work with our clients as they seek to apply risk management in
their programs.

To achieve our goal of helping programs succeed through the application
of risk management, we have established two objectives that meet the
needs described previously. These objectives are:

1. To establish a foundation for addressing software-related risk.

2. To strengthen the ability of organizations to evaluate and manage
software-related risk.

The key to implementing software risk management is to establish the
needed foundation. Our first step toward that foundation is the creation of
a risk management paradigm, which is our disciplined and systematic
approach for managing software risk. As this paradigm is implemented
with specific risk management methods, we are testing the paradigm to
understand what will or will not work in the real world. As we test, we
collect information on the best practice in software risk management and
the kinds of risks programs encounter. We are analyzing this information
base for common risks that span industry sectors and program types.

6. Capability improvement is incorporating our risk management paradigm into pro-
gram management on pilot programs.

Risk Management Paradigm

8 CMU/SEI-92-TR-30

The ability of organizations to evaluate and manage software-related risk
requires a baseline from which to work. To create this baseline, we have
developed a risk assessment process that organizations can use to identify
and start managing their software development risks. From this baseline,
we plan to pilot efforts to integrate software risk management into pro-
gram management and software process management on individual pro-
grams. These pilot integration efforts will lead naturally into risk
management improvement at the organizational level.

Throughout this entire effort we are interacting with the larger software
community for input and feedback. We are interviewing program staff
from industry and government to determine what people know about
software risk management, how they approach software risk manage-
ment, and how software risk management can fit into program manage-
ment. These interviews help us formulate our vision of the future. As a
broader forum, we are conducting conferences and workshops to build
awareness of software risk management.

We can summarize the steps in our strategy as:

1. Define software risk management by research and interviews.

2. Develop an effective software risk management paradigm by test-
ing and prototyping with individual programs.

3. Transfer software risk management from successful programs to
organizations and the larger community.

To better understand how our strategy is being implemented, we next dis-
cuss our risk management paradigm and risk assessment process in more
detail.

Risk Management Paradigm

The risk management paradigm, shown in Figure 2, is our view of a
repeatable process for software risk management. The paradigm is a
model of how the different elements of software risk management inter-
act and a framework for describing how software risk management can
be implemented. The paradigm has a circular form to highlight its contin-
uous nature. The arrows signify the logical flow of information between
the elements of the paradigm. Communication is the core. It is the means
by which all the information flows.

Risk Assessment Process

CMU/SEI-92-TR-30 9

Figure 2. Risk Management Paradigm

We can summarize the elements of our paradigm as:

Identify – locate risks before they become problems and adversely
affect the program.

Analyze – turn the raw risk data into decisionmaking information.

Plan – turn the risk information into decisions and actions (both
present and future).

Track – monitor the status of risks and actions taken against risks.

Control – correct for deviations from the planned risk actions.

Communicate – provide the feedback on the active risk activities,
current risks, and emerging risks among the paradigm elements and
within the program.

For each element in the paradigm, we plan to provide guidance on spe-
cific implementation techniques. These techniques will come from exist-
ing practice or will be developed specifically to support the risk
paradigm.7 In essence, the paradigm is a framework that encapsulates the
best practice in software risk management. Using this framework, a pro-
gram will draw together the pieces of risk management practice that fit

7. Much is known about risk management in other domains, such as medicine, nuclear
energy, and hardware reliability. There is also a large body of knowledge in decision
theory that deals with decisionmaking under uncertainty. Researchers in the social and
psychological sciences have done extensive work on how to elicit sound data from peo-
ple. These domains have useful insights that are needed for constructing different ele-
ments of the paradigm. We plan to adapt the proven techniques from these (and other)
domains and apply them to the management of software risk.

10 CMU/SEI-92-TR-30

into its program management structure. A brief overview of each para-
digm element is presented below.

Risk identification is the first element in the risk management paradigm.
Before risks can be managed, they must be identified. Risk identification
aims to find the major risks before they adversely affect a program. We
are developing techniques to discover risks by exploiting and communi-
cating the risk knowledge of the program team.

Risk analysis is the next element in the risk management paradigm. Risk
analysis is the conversion of risk data into risk management information.
Each risk must be understood sufficiently to allow a manager to make
decisions. Risk analysis sifts the known risks, and places the information
in the hands of the decision maker. Analysis provides the information
that allows managers to work on theright risks.

Risk planning is needed after a risk is identified and analyzed. This ele-
ment includes developing actions to address individual risks, prioritizing
risk actions, and orchestrating the total risk management plan. An indi-
vidual risk action plan could take many forms, for example:

• Mitigate the impact of the risk by developing a contingency plan
(with a triggering event) should the risk occur.

• Avoid a risk by changing the product design.

• Accept the risk and take no further action, thus accepting the con-
sequence if the risk occurs.

• Study the risk further to acquire more information and better
determine the uncertainty or loss associated with the risk.

The key to risk action planning is to consider the future consequences of
each decision made today.

Risk tracking is required to ensure effective action plan implementation.
This means that we must devise the risk metrics and triggering events
needed to ensure that the planned risk actions are working. Tracking is
the watch dog function of the risk action plan.

Risk control is the next element in our paradigm. Once the risk metrics
and the triggering events have been chosen, there is nothing unique about
risk management. Rather, risk management melds into program manage-
ment and relies on program management processes to control the risk
action plans, correct for variations from the plans, respond to triggering
events, and improve the risk management process. In fact, if risk manage-

CMU/SEI-92-TR-30 11

ment is not integrated with day-to-day program management, it will soon
be relegated to an ineffective background activity.

Finally, risk communication is at the center of our paradigm because,
without effective communication, no risk management approach is via-
ble. Communication is critical because it facilitates interaction among the
elements of the paradigm. But there are higher level communications to
consider as well. Risks must be communicated to the appropriate organi-
zational levels so the risks can be analyzed and managed effectively. This
includes levels within the development organization, within the customer
organization, and most especially, across that threshold between the
developer and the customer.

Example

As an example of applying the risk management paradigm, consider the
use of commercial off-the-shelf (COTS) software in a system. COTS
software is often viewed as a means to manage system risk by reducing
the amount of new software developed on a program or by incorporating
a working design element into a system.

But does the use of COTS software really reduce system risk? Conven-
tional wisdom would say yes, but the answer may not be that obvious.
How could we identify the risks associated with using COTS software?

We could take each COTS product and map the capability of the product
to the customer requirements we are trying to meet. For each of those
intersections, we might consider the following questions:

• Can software developers use the COTS product to implement this
requirement?

• What if the COTS product does not meet the requirement?

• What if the requirement changes: will the COTS product still pro-
vide the required functionality?

• What if the vendor changes the COTS product: will it still be
compatible with the rest of the system?

• What if the COTS vendor does not deliver on time?

Next, we need to analyze the situation. Suppose the vendor has a reputa-
tion for changing products. Could this be a problem down the road? How
big of a problem might this be?

COTS
Capabilities

Customer
Requirements

12 CMU/SEI-92-TR-30

If the analysis shows that changes to this particular COTS product could
be bad for the program, then we need a plan to deal with this risk. Is there
some action we can take today to remove the risk? Is there some action
we should take later if it appears that the product will change? How does
handling this particular risk fit into the program plan?

As the COTS example illustrates, risk management requires a long-term
systems perspective. Risk management is not a one-time activity. It is an
ongoing activity that must be an integral part of the way we do business.
To obtain the full benefit of risk management, it must be a continuous
process that is integrated into the way we manage programs.

Risk Assessment Process

Risk assessment provides a snapshot of the risk situation and is part of a
viable risk management program. Although snapshots are valuable,
effective risk management requires continuous vigilance and applica-
tion–a risk ethic. A risk ethic involves everyone and is a continuous pro-
cess of identifying, communicating, and resolving risks in an open and
non-threatening environment.

For the Risk Program, the risk assessment process, shown in Figure 3, is
the first application of our risk management paradigm.

Figure 3. Risk Assessment Process

Select Program

• potential programs
• team candidates
• overview

Pre-Training

• team building
• program overview
• process overview

Training

• team building
• collaboration
• process

Quick Look

• identification
• analysis
• probe selection

Probe

• identification
• analysis
• action planning

Report

• site briefings
• final report
• final briefing

Executive

contact

CMU/SEI-92-TR-30 13

To execute a risk assessment, we have drawn selected risk management
elements from the paradigm and put them together in a way that allows a
team of trained software professionals to assist a program in identifying
and managing risk.

The risk assessment process begins with executive management buy-in
and cooperation. Only executive management has the authority and
resources to make risk management a success.8 In a risk assessment, the
risk assessment team has both client organization and SEI Risk Program
members. The team then works collaboratively with a single program
within the client organization. This gives the team a technical, product-
oriented focus and allows it to work in detail with people at all levels of
the program, both customer and contractor. The role of the assessment
team is to facilitate, that is, the team’s job is to help the client program
work through the process of identifying and managing program risks.

 The risk assessment begins with team training. The team meets prior to
the risk assessment for team building and training in the details of our
risk management paradigm and risk assessment process. This training
includes instruction in the risk management mechanisms to be applied
during the assessment as well as practice exercises using the mecha-
nisms. Another important part of the training period is familiarizing the
assessment team with the program to be assessed. This takes place in two
ways: by the interaction among the team members and by program brief-
ings given by the client organization team members.

The first on-site activity is referred to as Quick Look. The Quick Look is
designed to be just that–a quick, top-level look at the entire program.We
examine the software from a system perspective, giving the assessment
team a general, system-level understanding of the program. The assess-
ment team seeks to identify broad areas of risk for the next on-site period
(referred to as Probe). During Quick Look, the assessment team:

• Applies selected risk identification and analysis mechanisms.

• Consolidates the results across the different mechanisms.

• Identifies possible risk areas for further investigation.

• Briefs program participants on the Quick Look findings.

The Quick Look ends with a briefing that outlines areas that the assess-
ment team feels need further investigation. The final decision on when to

8. For additional verification, see [Humphrey89].

14 CMU/SEI-92-TR-30

proceed with the Probe and which areas to investigate belongs to the pro-
gram manager.

The Probe on-site period is an in-depth investigation into the risk areas
selected by the program manager. It is here that the actual risks a program
may have in the probe areas and what the program may do about them are
identified. During Probe, the assessment team:

• Applies selected risk identification mechanism(s) in depth to the
selected probe areas.

• Analyzes the identified risks.

• Identifies possible risk actions that could be taken.

• Briefs the program participants on the Probe findings.

Again, the results of the Probe belong to the program manager. Table 1
compares the Quick Look and Probe activities.

Once the Probe on-site period is complete, the risk assessment concludes
by bringing the results of Quick Look and Probe together into one pack-
age for the program manager. The results of the risk assessment belong to
the sponsoring program manager. No assessment results are attributed to
any group or individual within the client program. While this reporting
step is the conclusion of the risk assessment process, it is just the begin-
ning of our strategic follow-up process. Our strategy is to continue work

Table 1: Quick Look and Probe Comparison

Quick Look Probe

Input Participants
Request for Proposal
Requirements documents
System design documents

Participants
Detailed design documents
Requirements documents
System design documents

Participants System engineers
Software engineers
Functional area specialists
Program management

System engineers
Software engineers
Functional area specialists
Program management

Activities Identification
Analysis (limited)

Identification
Analysis
Action planning

Output Risk areas
Possible sources of risk

Specific risks
Possible risk actions

CMU/SEI-92-TR-30 15

with assessment clients to evaluate the long-term impact of risk manage-
ment and to assist our clients in adopting risk management as a regular,
routine activity.

Conclusion

Risk does not have to be negative. In fact, knowing our risks provides
opportunities to manage and improve our chances of success. However,
this view of risk is only possible in a “risk aware” culture where risks can
be communicated freely and openly. Indeed, changing the way people
work and think is no small feat. It can only be accomplished by demon-
strating that software development risk management works, and demon-
strating it in a way that is not threatening or burdensome to managers or
developers.

Fortunately, the evidence from other engineering disciplines strengthens
our belief that software technical risks can be managed. Risk manage-
ment must become a routine part of the software development process.
Risk management cannot be an audit, a check mark on a standard, or
something done only during “risk management season.”

The key to reducing the surprises in our software development efforts is
to incorporate a disciplined and systematic approach to managing techni-
cal risk into the software development process. We cannot escape risk,
but risk management can equip us to deal more effectively with the
future, because,

“The only thing harder than predicting the future is changing the past.”9

Acknowledgments

This paper is a summary of the hard work by all the members of the SEI
Software Risk Management Program.

9. Source unknown.

16 CMU/SEI-92-TR-30

References

[Brooks87] Brooks, F.P. “No Silver Bullet: Essence and Accidents of
Software Engineering.”IEEE Computer, 20, 4 (April 1987),
10-19.

[Charette88] Charette, R.N. Software Engineering Risk Analysis and Man-
agement. New York: McGraw-Hill, 1988.

[Charette91] Charette, R.N.Information Technology Risk Engineering.
SEI/NSIA Workshop on Software Risk, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA,
February 1991.

[CompGen79] Comptroller General.Contracting for Computer Software
Development. FGMSD-80-4, Government Accounting Of-
fice, Washington, D.C., September 1979.

[GAO86] Government Accounting Office.Technical Risk Assessment:
The Current Status of DOD Efforts. GAO/PEMD-86-5, Gov-
ernment Accounting Office, Washington, D.C., 1986.

[Gilb88] Gilb, T. Principles of Software Engineering Management.
Addison-Wesley, 1988.

[Humphrey89] Humphrey, W.S.Managing the Software Process. Reading,
MA: Addison-Wesley, 1989.

[Kanter90] Kanter, J., S. Schiffman, and J.F. Horn. “Let the customer do
it; from grocery robots to photo kiosks, computerized self-
service is in.”Computerworld, 24, 35 (August 1990).

[Kirkpatrick92] Kirkpatrick, R.J., J.A. Walker, and R. Firth. “Software De-
velopment Risk Management: An SEI Appraisal.”1992 SEI
Technical Review, R.L. Van Scoy, ed. Software Engineering
Institute: Carnegie Mellon University, Pittsburgh, PA, 1992.

[Petroski82] Petroski, H.To Engineer is Human: The Role of Failure in
Successful Design. New York: St. Martin's Press, 1982.

[Redwine84] Redwine, S.T., Jr., L.G. Becker, A.B. Marmor-Squires, R. J.
Martin, S.H. Nash, and W.E. Riddle.DoD Related Software
Technology Requirements, Practices, and Prospects for the
Future. IDA Paper P-1788, Institute for Defense Analyses,
Alexandria, Virginia, June 1984.

[Tomayko91] Tomayko, J.E. “The Airplane as Computer Peripheral.”
American Heritage of Inventions & Technology, 7, 3 (Winter
1991).

[Woolnough90] Woolnough, R. “TI drives at Euro autos; makes 'PACT' to
win microcontroller business.”Electronic Engineering Times
(August 1990).

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESC/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

Tom Miller, Lt Col, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/AVS (SEI)
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESC/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63756E N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-92-TR-30 ESC-TR-92-030

Software Development Risk: Opportunity, Not Problem

September 1992 20

Software Risk Management
Software Development
Risk

What is risk? What is risk management? What does risk management have to do with software? Noted
software expert Tom Gilb says:

If you don’t actively attack the risks, they will actively attack you [Gilb88, p. 72].

But what does it mean to actively attack risks? We answer these questions by examining the problems
that exist in software development today and presenting the SEI Risk Program approach to turning risk
into opportunity.

Roger L. Van Scoy

ABSTRACT —continued from page one, block 19

We begin by reviewing the fundamental concepts of risk and elaborating on how these basic con-
cepts apply to the development of large, software-intensive systems. We then develop our strategy
for seeing a systematic approach to risk management in software development be routinely prac-
ticed.

There are two key activities we are using to implement our strategy. The first is our risk management
paradigm. The paradigm defines a set of continuous activities that must be undertaken to resolve
technical risk in a systematic and structured way. The second is our risk assessment process for
collaborating with clients to identify their technical risks.

We end with our ultimate goal: establishing an effective risk management ethic as standard practice
in the software engineering industry.

	Software Development Risk: Opportunity, Not Problem
	Abstract
	Background
	Risk Program Strategy
	Risk Management Paradigm
	Example
	Risk Assessment Process
	Conclusion
	Acknowledgments
	References

