

E–1

E

A n O v e r v i e w o f t h e
N e t w o r k D a t a M o d e l

T

his appendix provides an overview of the network data model.

1

 The original network
model and language were presented in the

CODASYL

 Data Base Task Group’s 1971
report; hence it is sometimes called the

DBTG

 model. Revised reports in 1978 and 1981
incorporated more recent concepts. In this appendix, rather than concentrating on the
details of a particular

CODASYL

 report, we present the general concepts behind net-
work-type databases and use the term

network model

 rather than

CODASYL

 model or

DBTG

 model.
The original

CODASYL

/

DBTG

 report used

COBOL

 as the host language. Regardless of
the host programming language, the basic database manipulation commands of the net-
work model remain the same. Although the network model and the object-oriented data
model are both navigational in nature, the data structuring capability of the network
model is much more elaborate and allows for explicit insertion/deletion/modification
semantic specification. However, it lacks some of the desirable features of the object mod-
els that we discussed in Chapter 11, such as inheritance and encapsulation of structure
and behavior.

1. The complete chapter on the network data model and about the

IDMS

 system from the second
edition of this book is available at http://www.awl.com/cseng/titles/0-8053-1755-4. This appendix is
an edited excerpt of that chapter.

A P P E N D I X

Elmasri_APPC Page 1 Monday, April 3, 2006 3:40 PM

E–

2

A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

E . 1

Network Data Model ing Concepts

There are two basic data structures in the network model: records and sets.

E . 1 . 1

Records, Record Types, and Data Items

Data is stored in

records;

 each record consists of a group of related data values. Records
are classified into

record types,

 where each record type describes the structure of a group
of records that store the same type of information. We give each record type a name, and
we also give a name and format (data type) for each

data item

 (or attribute) in the record
type. Figure E.1 shows a record type

STUDENT

 with data items

NAME

,

SSN

,

ADDRESS

,

MAJORDEPT

, and

BIRTHDATE

.
We can declare a virtual data item (or derived attribute)

AGE

 for the record type
shown in Figure E.1 and write a procedure to calculate the value of

AGE

 from the value of
the actual data item

BIRTHDATE

 in each record.
A typical database application has numerous record types—from a few to a few hun-

dred. To represent relationships between records, the network model provides the model-
ing construct called

set type,

 which we discuss next.

E . 1 . 2

Set Types and Their Basic Properties

A

set type

 is a description of a 1:N relationship between two record types. Figure E.2
shows how we represent a set type diagrammatically as an arrow. This type of diagram-
matic representation is called a

Bachman diagram.

 Each set type definition consists of
three basic elements:

• A name for the set type.

• An owner record type.

• A member record type.

data item name

NAME
SSN
ADDRESS
MAJORDEPT
BIRTHDATE

format

CHARACTER 30
CHARACTER 9
CHARACTER 40
CHARACTER 10
CHARACTER 9

STUDENT

NAME SSN ADDRESS MAJORDEPT BIRTHDATE

F i g u r e E . 1 A record type STUDENT.

Elmasri_APPC Page 2 Monday, April 3, 2006 3:40 PM

E . 1 N e t w o r k D a t a M o d e l i n g C o n c e p t s

E–

3

The set type in Figure E.2 is called

MAJOR

_

DEPT

;

DEPARTMENT

 is the

owner

 record
type, and

STUDENT

 is the

member

 record type. This represents the 1:N relationship
between academic departments and students majoring in those departments.

In the data-
base itself, there will be many

set occurrences

 (or

set instances

) corresponding to a set
type. Each instance relates one record from the owner record type—a

DEPARTMENT

record in our example—to the set of records from the member record type related to it—
the set of

STUDENT

 records for students who major in that department. Hence, each set
occurrence is composed of:

• One owner record from the owner record type.

• A number of related member records (zero or more) from the member record type.

A record from the member record type

cannot exist in more than one set occurrence

 of a
particular set type. This maintains the constraint that a set type represents a 1:N relation-
ship. In our example a

STUDENT

 record can be related to at most one major

DEPARTMENT

and hence is a member of at most one set occurrence of the

MAJOR

_

DEPT

 set type.
A set occurrence can be identified either by the

owner record

 or by

any of the member
records.

 Figure E.3 shows four set occurrences (instances) of the

MAJOR

_

DEPT

 set type.
Notice that each set instance

must

 have one owner record but can have any number of
member records (

zero

 or more). Hence, we usually refer to a set instance by its owner
record. The four set instances in Figure E.3 can be referred to as the ‘Computer Science’,
‘Mathematics’, ‘Physics’, and ‘Geology’ sets. It is customary to use a different representa-
tion of a set instance (Figure E.4) where the records of the set instance are shown linked
together by pointers, which corresponds to a commonly used technique for implementing
sets.

DEPARTMENT

DNAME

MAJOR_DEPT

STUDENT

SNAME

F i g u r e E . 2 The set type MAJOR_DEPT.

Elmasri_APPC Page 3 Monday, April 3, 2006 3:40 PM

E–

4

A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

In the network model, a set instance is

not identical

 to the concept of a set in mathe-
matics. There are two principal differences:

• The set instance has one

distinguished element

—the owner record—whereas in a
mathematical set there is no such distinction among the elements of a set.

• In the network model, the member records of a set instance are

ordered,

 whereas
order of elements is immaterial in a mathematical set. Hence, we can refer to the
first, second, i

th

, and last member records in a set instance. Figure E.4 shows an alter-
nate “linked” representation of an instance of the set

MAJOR

_

DEPT

. In Figure E.4 the

Computer Science Mathematics

John De Witt

Robert Boniek

Ed Spencer

Manuel Rivera

William Smith

Jane Wong

Ram Prasad

Kareem Rashad

Physics

Marc Weinstein

Simon Roberts

Geology

DEPARTMENT
owner
record

member
records

STUDENT

DEPARTMENT
owner
record

member
records

STUDENT

F i g u r e E . 3 Four set instances of the set type MAJOR_DEPT.

Elmasri_APPC Page 4 Monday, April 3, 2006 3:40 PM

E . 1 N e t w o r k D a t a M o d e l i n g C o n c e p t s

E–

5

record of ‘Manuel Rivera’ is the first

STUDENT

 (member) record in the ‘Computer
Science’ set, and that of ‘Kareem Rashad’ is the last member record. The set of the
network model is sometimes referred to as an

owner-coupled set

 or

co-set,

 to distin-
guish it from a mathematical set.

E . 1 . 3

Special Types of Sets

One special type of set in the

CODASYL

 network model is worth mentioning:

SYSTEM

-
owned sets.

System-owned (Singular) Sets.

A

system-owned

 set is a set with no owner record type;
instead, the system is the owner.

2

 We can think of the system as a special “virtual” owner
record type with only a single record occurrence. System-owned sets serve two main pur-
poses in the network model:

• They provide

entry points

 into the database via the records of the specified member
record type. Processing can commence by accessing members of that record type, and
then retrieving related records via other sets.

• They can be used to

order

 the records of a given record type by using the set ordering
specifications. By specifying several system-owned sets on the same record type, a
user can access its records in different orders.

2. By

system,

 we mean the

DBMS

 software.

Computer Science

Manuel Rivera

DEPARTMENT record

EMPLOYEE records
Jane Wong

Kareem Rashad

Ram Prasad

William Smith

F i g u r e E . 4 Alternate representation of a set instance as a linked list.

Elmasri_APPC Page 5 Monday, April 3, 2006 3:40 PM

E–

6

A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

A system-owned set allows the processing of records of a record type by using the
regular set operations that we will discuss in Section E.4.2. This type of set is called a

singular

 set because there is only one set occurrence of it. The diagrammatic represen-
tation of the system-owned set

ALL

_

DEPTS

 is shown in Figure E.5, which allows

DEPARTMENT

 records to be accessed in order of some field—say,

NAME

—with an appro-
priate set-ordering specification. Other special set types include recursive set types,
with the same record serving as an owner and a member, which are mostly disallowed;
multimember sets containing multiple record types as members in the same set type are
allowed in some systems.

E . 1 . 4

Stored Representations of Set Instances

A set instance is commonly represented as a

ring (circular linked list)

 linking the owner
record and all member records of the set, as shown in Figure E.4. This is also sometimes
called a

circular chain.

 The ring representation is symmetric with respect to all records;
hence, to distinguish between the owner record and the member records, the

DBMS

includes a special field, called the

type field,

 that has a distinct value (assigned by the

DBMS

) for each record type. By examining the type field, the system can tell whether the
record is the owner of the set instance or is one of the member records. This type field is
hidden from the user and is used only by the

DBMS

.
In addition to the type field, a record type is automatically assigned a

pointer field

 by
the

DBMS

 for

each set type in which it participates as owner or member.

 This pointer can be
considered to be

labeled

 with the set type name to which it corresponds; hence, the system
internally maintains the correspondence between these pointer fields and their set types.
A pointer is usually called the

NEXT

 pointer

 in a member record and the

FIRST pointer in
an owner record because these point to the next and first member records, respectively. In
our example of Figure E.4, each student record has a NEXT pointer to the next student
record within the set occurrence. The NEXT pointer of the last member record in a set
occurrence points back to the owner record. If a record of the member record type does
not participate in any set instance, its NEXT pointer has a special nil pointer. If a set
occurrence has an owner but no member records, the FIRST pointer points right back to
the owner record itself or it can be nil.

SYSTEM

ALL_DEPTS

DEPARTMENT

F i g u r e E . 5 A singular (SYSTEM-owned) set ALL_DEPTS.

Elmasri_APPC Page 6 Monday, April 3, 2006 3:40 PM

E . 1 N e t w o r k D a t a M o d e l i n g C o n c e p t s E–7

The preceding representation of sets is one method for implementing set instances.
In general, a DBMS can implement sets in various ways. However, the chosen representa-
tion must allow the DBMS to do all the following operations:

• Given an owner record, find all member records of the set occurrence.

• Given an owner record, find the first, ith, or last member record of the set occurrence.
If no such record exists, return an exception code.

• Given a member record, find the next (or previous) member record of the set occur-
rence. If no such record exists, return an exception code.

• Given a member record, find the owner record of the set occurrence.

The circular linked list representation allows the system to do all of the preceding
operations with varying degrees of efficiency. In general, a network database schema has
many record types and set types, which means that a record type may participate as owner
and member in numerous set types. For example, in the network schema that appears
later as Figure E.8, the EMPLOYEE record type participates as owner in four set TYPES—
MANAGES, IS_ A_SUPERVISOR, E_WORKSON, and DEPENDENTS_OF—and participates as
member in two set types—WORKS_FOR and SUPERVISEES. In the circular linked list repre-
sentation, six additional pointer fields are added to the EMPLOYEE record type. However,
no confusion arises, because each pointer is labeled by the system and plays the role of
FIRST or NEXT pointer for a specific set type.

Other representations of sets allow more efficient implementation of some of the
operations on sets noted previously. We briefly mention five of them here:

• Doubly linked circular list representation: Besides the NEXT pointer in a member record
type, a PRIOR pointer points back to the prior member record of the set occurrence.
The PRIOR pointer of the first member record can point back to the owner record.

• Owner pointer representation: For each set type an additional OWNER pointer is
included in the member record type that points directly to the owner record of the
set.

• Contiguous member records: Rather than being linked by pointers, the member
records are actually placed in contiguous physical locations, typically following the
owner record.

• Pointer arrays: An array of pointers is stored with the owner record. The ith element
in the array points to the ith member record of the set instance. This is usually imple-
mented in conjunction with the owner pointer.

• Indexed representation: A small index is kept with the owner record for each set occur-
rence. An index entry contains the value of a key indexing field and a pointer to the
actual member record that has this field value. The index may be implemented as a
linked list chained by next and prior pointers (the IDMS system allows this option).

These representations support the network DML operations with varying degrees of
efficiency. Ideally, the programmer should not be concerned with how sets are imple-
mented, but only with confirming that they are implemented correctly by the DBMS.
However, in practice, the programmer can benefit from the particular implementation of

Elmasri_APPC Page 7 Monday, April 3, 2006 3:40 PM

E–8 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

sets, to write more efficient programs. Most systems allow the database designer to choose
from among several options for implementing each set type, using a MODE statement to
specify the chosen representation.

E . 1 . 5 Using Sets to Represent M:N Relationships
A set type represents a 1:N relationship between two record types. This means that a
record of the member record type can appear in only one set occurrence. This constraint is
automatically enforced by the DBMS in the network model. To represent a 1:1 relation-
ship, the extra 1:1 constraint must be imposed by the application program.

An M:N relationship between two record types cannot be represented by a single set
type. For example, consider the WORKS_ON relationship between EMPLOYEEs and
PROJECTs. Assume that an employee can be working on several projects simultaneously
and that a project typically has several employees working on it. If we try to represent this
by a set type, neither the set type in Figure E.6(a) nor that in Figure E.6(b) will represent
the relationship correctly. Figure E.6(a) enforces the incorrect constraint that a PROJECT

record is related to only one EMPLOYEE record, whereas Figure E.6(b) enforces the incor-
rect constraint that an EMPLOYEE record is related to only one PROJECT record. Using
both set types E_P and P_E simultaneously, as in Figure E.6(c), leads to the problem of
enforcing the constraint that P_E and E_P are mutually consistent inverses, plus the prob-
lem of dealing with relationship attributes.

E_P

EMPLOYEE

PROJECT

PNUMBER

(a)

PROJECT

EMPLOYEE

EMPNUMBER

PNUMBER

(c)

P_E E_P

WORKS_ON

EMPLOYEE

EMPNUMBER

HOURS

PROJECT

PNUMBER

(d)

E_W P_W

PROJECT

PNUMBER

EMPLOYEE

EMPNUMBER

(b)

P_E

EMPNUMBER

F i g u r e E . 6 Representing M:N relationships. (a)–(c) Incorrect representations.
(d) Correct representation using a linking record type.

Elmasri_APPC Page 8 Monday, April 3, 2006 3:40 PM

E . 1 N e t w o r k D a t a M o d e l i n g C o n c e p t s E–9

EMPLOYEES PROJECTS

E1

E2

E3

E4

W7
(E4, P3, 40)

W1
(E2, P1, 30)

W2
(E2, P2, 10)

W6
(E3, P3, 10)

W5
(E3, P4, 10)

W4
(E3, P2, 20)

W3
(E1, P2, 40)

P1

P2

P3

P4

15

E1

FIRST (E_W)

E2

22

FIRST (E_W)

E3

39

FIRST (E_W)

E4

45

FIRST (E_W)

30

NEXT NEXT
(E_W) (P_W)

40

NEXT NEXT
(E_W) (P_W)

10

NEXT NEXT
(E_W) (P_W)

40

NEXT NEXT
(E_W) (P_W)

10

NEXT NEXT
(E_W) (P_W)

10

NEXT NEXT
(E_W) (P_W)

20

NEXT NEXT
(E_W) (P_W)

PROJECT
RECORDS:

101

P4

FIRST (P_W)

96

P3

FIRST (P_W)

83

P2

FIRST (P_W)

WORKS_ON
RECORDS:

EMPLOYEE
RECORDS:

W2 W4 W6

W3 W5 W7W1

55

P1

FIRST (P_W)

(e)

(f)

WORKS_ON

F i g u r e E . 6 (Continued) (e) Some instances. (f) Using linked representation.

Elmasri_APPC Page 9 Monday, April 3, 2006 3:40 PM

E–10 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

The correct method for representing an M:N relationship in the network model is to
use two set types and an additional record type, as shown in Figure E.6(d). This additional
record type—WORKS_ON, in our example—is called a linking (or dummy) record type.
Each record of the WORKS_ON record type must be owned by one EMPLOYEE record
through the E_W set and by one PROJECT record through the P_W set and serves to relate
these two owner records. This is illustrated conceptually in Figure E.6(e).

Figure E.6(f) shows an example of individual record and set occurrences in the linked
list representation corresponding to the schema in Figure E.6(d). Each record of the
WORKS_ON record type has two NEXT pointers: the one marked NEXT(E_W) points to the
next record in an instance of the E_W set, and the one marked NEXT(P_W) points to the
next record in an instance of the P_W set. Each WORKS_ON record relates its two owner
records. Each WORKS_ON record also contains the number of hours per week that an
employee works on a project. The same occurrences in Figure E.6(f) are shown in Figure
E.6(e) by displaying the W records individually, without showing the pointers.

To find all projects that a particular employee works on, we start at the EMPLOYEE

record and then trace through all WORKS_ON records owned by that EMPLOYEE, using the
FIRST(E_W) and NEXT(E_W) pointers. At each WORKS_ON record in the set occurrence,
we find its owner PROJECT record by following the NEXT(P_W) pointers until we find a
record of type PROJECT. For example, for the E2 EMPLOYEE record, we follow the FIRST(E_
W) pointer in E2 leading to W1, the NEXT(E_W) pointer in W1 leading to W2, and the
NEXT(E_W) pointer in W2 leading back to E2. Hence, W1 and W2 are identified as the
member records in the set occurrence of E_W owned by E2. By following the NEXT(P_W)
pointer in W1, we reach P1 as its owner; and by following the NEXT(P_W) pointer in W2
(and through W3 and W4), we reach P2 as its owner. Notice that the existence of direct
OWNER pointers for the P_W set in the WORKS_ON records would have simplified the pro-
cess of identifying the owner PROJECT record of each WORKS_ON record.

In a similar fashion, we can find all EMPLOYEE records related to a particular PROJECT.
In this case the existence of owner pointers for the E_W set would simplify processing. All
this pointer tracing is done automatically by the DBMS; the programmer has DML commands
for directly finding the owner or the next member, as we shall discuss in Section E.4.2.

Notice that we could represent the M:N relationship as in Figure E.6(a) or (b) if we
were allowed to duplicate PROJECT (or EMPLOYEE) records. In Figure E.6(a) a PROJECT

record would be duplicated as many times as there were employees working on the
project. However, duplicating records creates problems in maintaining consistency
among the duplicates whenever the database is updated, and it is not recommended in
general.

E . 2 Constraints in the Network Model
In explaining the network model so far, we have already discussed “structural” constraints
that govern how record types and set types are structured. In the present section we dis-
cuss “behavioral” constraints that apply to (the behavior of) the members of sets when
insertion, deletion, and update operations are performed on sets. Several constraints may
be specified on set membership. These are usually divided into two main categories, called

Elmasri_APPC Page 10 Monday, April 3, 2006 3:40 PM

E . 2 C o n s t r a i n t s i n t h e N e t w o r k M o d e l E–11

insertion options and retention options in CODASYL terminology. These constraints are
determined during database design by knowing how a set is required to behave when
member records are inserted or when owner or member records are deleted. The con-
straints are specified to the DBMS when we declare the database structure, using the data
definition language (see Section E.3). Not all combinations of the constraints are possi-
ble. We first discuss each type of constraint and then give the allowable combinations.

E . 2 . 1 Insertion Options (Constraints) on Sets
The insertion constraints—or options, in CODASYL terminology—on set membership
specify what is to happen when we insert a new record in the database that is of a member
record type. A record is inserted by using the STORE command (see Section E.4.3). There
are two options:

• AUTOMATIC: The new member record is automatically connected to an appropriate set
occurrence when the record is inserted.3

• MANUAL: The new record is not connected to any set occurrence. If desired, the pro-
grammer can explicitly (manually) connect the record to a set occurrence subse-
quently by using the CONNECT command.

For example, consider the MAJOR_DEPT set type of Figure E.2. In this situation we
can have a STUDENT record that is not related to any department through the MAJOR_
DEPT set (if the corresponding student has not declared a major). We should therefore
declare the MANUAL insertion option, meaning that when a member STUDENT record is
inserted in the database it is not automatically related to a DEPARTMENT record through
the MAJOR_DEPT set. The database user may later insert the record “manually” into a set
instance when the corresponding student declares a major department. This manual
insertion is accomplished by using an update operation called CONNECT, submitted to the
database system, as we shall see in Section E.4.4.

The AUTOMATIC option for set insertion is used in situations where we want to insert
a member record into a set instance automatically upon storage of that record in the data-
base. We must specify a criterion for designating the set instance of which each new record
becomes a member. As an example, consider the set type shown in Figure E.7(a), which
relates each employee to the set of dependents of that employee. We can declare the
EMP_DEPENDENTS set type to be AUTOMATIC, with the condition that a new DEPENDENT

record with a particular EMPSSN value is inserted into the set instance owned by the
EMPLOYEE record with the same SSN value.

E . 2 . 2 Retention Options (Constraints) on Sets
The retention constraints—or options, in CODASYL terminology—specify whether a
record of a member record type can exist in the database on its own or whether it must

3. The appropriate set occurrence is determined by a specification that is part of the definition of
the set type, the SET OCCURRENCE SELECTION.

Elmasri_APPC Page 11 Monday, April 3, 2006 3:40 PM

E–12 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

always be related to an owner as a member of some set instance. There are three retention
options:

• OPTIONAL: A member record can exist on its own without being a member in any
occurrence of the set. It can be connected and disconnected to set occurrences at will
by means of the CONNECT and DISCONNECT commands of the network DML (see
Section E.4.4).

• MANDATORY: A member record cannot exist on its own; it must always be a member
in some set occurrence of the set type. It can be reconnected in a single operation
from one set occurrence to another by means of the RECONNECT command of the
network DML (see Section E.4.4).

• FIXED: As in MANDATORY, a member record cannot exist on its own. Moreover, once
it is inserted in a set occurrence, it is fixed; it cannot be reconnected to another set
occurrence.

We now illustrate the differences among these options by examples showing when
each option should be used. First, consider the MAJOR_DEPT set type of Figure E.2. To pro-
vide for the situation where we may have a STUDENT record that is not related to any
department through the MAJOR_DEPT set, we declare the set to be OPTIONAL. In Figure

EMPLOYEE

NAME SSN SALARY DEPT JOB

DEPENDENT

SEXBIRTHDATEEMPSSN NAME

MANAGERLOCATION

DEPARTMENT

NAME

SALARYEMPSSN NAME

EMPLOYEE

JOB BDATE

EMP_DEPT

EMP_DEPENDENTS

(a)

(b)

F i g u r e E . 7 Different set options. (a) An AUTOMATIC FIXED set. (b) An
AUTOMATIC MANDATORY set.

Elmasri_APPC Page 12 Monday, April 3, 2006 3:40 PM

E . 2 C o n s t r a i n t s i n t h e N e t w o r k M o d e l E–13

E.7(a) EMP_DEPENDENTS is an example of a FIXED set type, because we do not expect a
dependent to be moved from one employee to another. In addition, every DEPENDENT

record must be related to some EMPLOYEE record at all times. In Figure E.7(b) a MANDA-

TORY set EMP_DEPT relates an employee to the department the employee works for. Here,
every employee must be assigned to exactly one department at all times; however, an
employee can be reassigned from one department to another.

By using an appropriate insertion/retention option, the DBA is able to specify the
behavior of a set type as a constraint, which is then automatically held good by the system.
Table E.1 summarizes the Insertion and Retention options.

E . 2 . 3 Set Ordering Options
The member records in a set instance can be ordered in various ways. Order can be based
on an ordering field or controlled by the time sequence of insertion of new member
records. The available options for ordering can be summarized as follows:

• Sorted by an ordering field: The values of one or more fields from the member record
type are used to order the member records within each set occurrence in ascending or
descending order. The system maintains the order when a new member record is con-
nected to the set instance by automatically inserting the record in its correct position
in the order.

• System default: A new member record is inserted in an arbitrary position determined
by the system.

Ta b l e E . 1 Set Insertion and Retention Options

Retention Option

OPTIONAL MANDATORY FIXED

MANUAL Application program is in
charge of inserting
member record into set
occurrence.

Can CONNECT,
DISCONNECT,
RECONNECT

Not very useful. Not very useful.

AUTOMATIC DBMS inserts a new mem-
ber record into a set
occurrence automati-
cally.

Can CONNECT,
DISCONNECT,
RECONNECT.

DBMS inserts a new mem-
ber record into a set
occurrence automati-
cally.

Can RECONNECT member
to a different owner.

DBMS inserts a new member
record into a set occur-
rence automatically.

Cannot RECONNECT member
to a different owner.

Elmasri_APPC Page 13 Monday, April 3, 2006 3:40 PM

E–14 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

• First or last: A new member record becomes the first or last record in the set occur-
rence at the time it is inserted. Hence, this corresponds to having the member records
in a set instance stored in chronological (or reverse chronological) order.

• Next or prior: The new member record is inserted after or before the current record of
the set occurrence.

The desired options for insertion, retention, and ordering are specified when the set
type is declared in the data definition language. Details of declaring record types and set
types are discussed in Section E.3 in connection with the network model data definition
language (DDL).

E . 2 . 4 Set Selection Options
The following options can be used to select an appropriate set occurrence:

• SET SELECTION IS STRUCTURAL: We can specify set selection by values of two fields
that must match—one field from the owner record type, and one from the member
record type. This is called a structural constraint in network terminology. Examples
are the P_WORKSON and E_WORKSON set type declarations in Figures E.8 and E.9(b).

• SET SELECTION BY APPLICATION: The set occurrence is determined via the applica-
tion program, which should make the desired set occurrence the “current of set”
before the new member record is stored. The new member record is then automati-
cally connected to the current set occurrence.

E . 2 . 5 Data Definition in the Network Model
After designing a network database schema, we must declare all the record types, set
types, data item definitions, and schema constraints to the network DBMS. The network
DDL is used for this purpose. Network DDL declarations for the record types of the COM-

PANY schema shown in Figure E.8 are shown in Figure E.9(a). Each record type is given a
name by using the RECORD NAME IS clause. Figure E.9(b) shows network DDL declara-
tions for the set types of the COMPANY schema shown in Figure E.8. These are more com-
plex than record type declarations, because more options are available. Each set type is
given a name by using the SET NAME IS clause. The insertion and retention options (con-
straints), discussed in Section E.2, are specified for each set type by using the INSERTION

IS and RETENTION IS clauses. If the insertion option is AUTOMATIC, we must also specify
how the system will select a set occurrence automatically to connect a new member
record to that occurrence when the record is first inserted into the database. The SET

SELECTION clause is used for this purpose.

E . 3 Data Manipulat ion in a Network Database
In this section we discuss how to write programs that manipulate a network database—
including such tasks as searching for and retrieving records from the database; inserting,
deleting, and modifying records; and connecting and disconnecting records from set
occurrences. A data manipulation language (DML) is used for these purposes. The DML

Elmasri_APPC Page 14 Monday, April 3, 2006 3:40 PM

E . 3 D a t a M a n i p u l a t i o n i n a N e t w o r k D a t a b a s e E–15

associated with the network model consists of record-at-a-time commands that are
embedded in a general-purpose programming language called the host language. Embed-
ded commands of the DML are also called the data sublanguage. In practice, the most
commonly used host languages are COBOL4 and PL/I. In our examples, however, we show
program segments in PASCAL notation augmented with network DML commands.

E . 3 . 1 Basic Concepts for Network Database Manipulation
To write programs for manipulating a network database, we first need to discuss some
basic concepts related to how data manipulation programs are written. The database sys-
tem and the host programming language are two separate software systems that are linked
together by a common interface and communicate only through this interface. Because
DML commands are record-at-a-time, it is necessary to identify specific records of the data-

EMPLOYEE

FNAME MINIT SSNLNAME BIRTHDATE ADDRESS SEX SALARY DEPTNAME

SUPERVISOR

SUPERVISOR_SSN

DEPARTMENT

NAME NUMBER LOCATIONS MGRSTART

WORKS_ON

ESSN PNUMBER HOURS

DEPENDENT

EMPSSN NAME SEX BIRTHDATE RELATIONSHIP

PROJECT

NAME NUMBER LOCATION

IS_A_SUPERVISOR

SUPERVISEES

MANAGES

SYSTEM

ALL_DEPTS

WORKS_FOR

E_WORKSON

DEPENDENTS_OF

P_WORKSON CONTROLS

f.k.

f.k.

f.k. f.k.

f.k.

*

F i g u r e E . 8 A network schema diagram for the COMPANY database.

4. The CODASYL DML in the DBTG report was originally proposed as a data sublanguage for COBOL.

Elmasri_APPC Page 15 Monday, April 3, 2006 3:40 PM

E–16 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

SCHEMA NAME IS COMPANY

RECORD NAME IS EMPLOYEE
 DUPLICATES ARE NOT ALLOWED FOR SSN
 DUPLICATES ARE NOT ALLOWED FOR FNAME, MINIT, LNAME

RECORD NAME IS DEPARTMENT
 DUPLICATES ARE NOT ALLOWED FOR NAME
 DUPLICATES ARE NOT ALLOWED FOR NUMBER

RECORD NAME IS PROJECT
 DUPLICATES ARE NOT ALLOWED FOR NAME
 DUPLICATES ARE NOT ALLOWED FOR NUMBER

RECORD NAME IS WORKS_ON
 DUPLICATES ARE NOT ALLOWED FOR ESSN, PNUMBER

RECORD NAME IS SUPERVISOR
 DUPLICATES ARE NOT ALLOWED FOR SUPERVISOR_SSN

RECORD NAME IS DEPENDENT
 DUPLICATES ARE NOT ALLOWED FOR EMPSSN, NAME

 FNAME
 MINIT
 LNAME
 SSN
 BIRTHDATE
 ADDRESS
 SEX
 SALARY
 DEPTNAME

 NAME
 NUMBER
 LOCATIONS
 MGRSTART

 NAME
 NUMBER
 LOCATION

 ESSN
 PNUMBER
 HOURS

 SUPERVISOR_SSN

 EMPSSN
 NAME
 SEX
 BIRTHDATE
 RELATIONSHIP

TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS

TYPE IS
TYPE IS
TYPE IS
TYPE IS

TYPE IS
TYPE IS
TYPE IS

TYPE IS
TYPE IS
TYPE IS

TYPE IS

TYPE IS
TYPE IS
TYPE IS
TYPE IS
TYPE IS

CHARACTER 15
CHARACTER 1
CHARACTER 15
CHARACTER 9
CHARACTER 9
CHARACTER 30
CHARACTER 1
CHARACTER 10
CHARACTER 15

CHARACTER 15
NUMERIC INTEGER
CHARACTER 15 VECTOR
CHARACTER 9

CHARACTER 15
NUMERIC INTEGER
CHARACTER 15

CHARACTER 9
NUMERIC INTEGER
NUMERIC (4,1)

CHARACTER 9

CHARACTER 9
CHARACTER 15
CHARACTER 1
CHARACTER 9
CHARACTER 10

(a)

F i g u r e E . 9 (a) Network DDL. (a) Record type declarations.

Elmasri_APPC Page 16 Monday, April 3, 2006 3:40 PM

E . 3 D a t a M a n i p u l a t i o n i n a N e t w o r k D a t a b a s e E–17

SET NAME IS ALL_DEPTS
 OWNER IS SYSTEM
 ORDER IS SORTED BY DEFINED KEYS
 MEMBER IS DEPARTMENT
 KEY IS ASCENDING NAME

SET NAME IS WORKS_FOR
 OWNER IS DEPARTMENT
 ORDER IS SORTED BY DEFINED KEYS
 MEMBER IS EMPLOYEE
 INSERTION IS MANUAL
 RETENTION IS OPTIONAL
 KEY IS ASCENDING LNAME, FNAME, MINIT
 CHECK IS DEPTNAME IN EMPLOYEE = NAME IN DEPARTMENT

SET NAME IS CONTROLS
 OWNER IS DEPARTMENT
 ORDER IS SORTED BY DEFINED KEYS
 MEMBER IS PROJECT
 INSERTION IS AUTOMATIC
 RETENTION IS MANDATORY
 KEY IS ASCENDING NAME
 SET SELECTION IS BY APPLICATION

SET NAME IS MANAGES
 OWNER IS EMPLOYEE
 ORDER IS SYSTEM DEFAULT
 MEMBER IS DEPARTMENT
 INSERTION IS AUTOMATIC
 RETENTION IS MANDATORY
 SET SELECTION IS BY APPLICATION

SET NAME IS P_WORKSON
 OWNER IS PROJECT
 ORDER IS SYSTEM DEFAULT
 DUPLICATES ARE NOT ALLOWED
 MEMBER IS WORKS_ON
 INSERTION IS AUTOMATIC
 RETENTION IS FIXED
 KEY IS ESSN
 SET SELECTION IS STRUCTURAL NUMBER IN PROJECT = PNUMBER IN
 WORKS_ON

SET NAME IS E_WORKSON
 OWNER IS EMPLOYEE
 ORDER IS SYSTEM DEFAULT
 DUPLICATES ARE NOT ALLOWED
 MEMBER IS WORKS_ON
 INSERTION IS AUTOMATIC
 RETENTION IS FIXED
 KEY IS PNUMBER
 SET SELECTION IS STRUCTURAL SSN IN EMPLOYEE = ESSN IN WORKS_ON

(b)

F i g u r e E . 9 (b) Network DDL. (b) Set type declarations.

Elmasri_APPC Page 17 Monday, April 3, 2006 3:40 PM

E–18 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

base as current records. The DBMS itself keeps track of a number of current records and
set occurrences by means of a mechanism known as currency indicators. In addition, the
host programming language needs local program variables to hold the records of different
record types so that their contents can be manipulated by the host program. The set of
these local variables in the program is usually referred to as the user work area (UWA).
The UWA is a set of program variables, declared in the host program, to communicate the
contents of individual records between the DBMS and the host program. For each record
type in the database schema, a corresponding program variable with the same format must
be declared in the program.

Currency Indicators. In the network DML, retrievals and updates are handled by mov-
ing or navigating through the database records; hence, keeping a trace of the search is
critical. Currency indicators are a means of keeping track of the most recently accessed
records and set occurrences by the DBMS. They play the role of position holders so that we
may process new records starting from the ones most recently accessed until we retrieve

SET NAME IS SUPERVISEES
 OWNER IS SUPERVISOR
 ORDER IS BY DEFINED KEY
 DUPLICATES ARE NOT ALLOWED
 MEMBER IS EMPLOYEE
 INSERTION IS MANUAL
 RETENTION IS OPTIONAL
 KEY IS LNAME, MINIT, FNAME

SET NAME IS IS_A_SUPERVISOR
 OWNER IS EMPLOYEE
 ORDER IS SYSTEM DEFAULT
 DUPLICATES ARE NOT ALLOWED
 MEMBER IS SUPERVISOR
 INSERTION IS AUTOMATIC
 RETENTION IS MANDATORY
 KEY IS SUPERVISOR_SSN
 SET SELECTION IS BY VALUE OF SSN IN EMPLOYEE
 CHECK IS SUPERVISOR_SSN IN SUPERVISION = SSN IN EMPLOYEE

SET NAME IS DEPENDENTS_OF
 OWNER IS EMPLOYEE
 ORDER IS BY DEFINED KEY
 DUPLICATES ARE NOT ALLOWED
 MEMBER IS DEPENDENT
 INSERTION IS AUTOMATIC
 RETENTION IS FIXED
 KEY IS ASCENDING NAME
 SET SELECTION IS STRUCTURAL SSN IN EMPLOYEE = EMPSSN IN
 DEPENDENT

F i g u r e E . 9 (b) (Continued)

Elmasri_APPC Page 18 Monday, April 3, 2006 3:40 PM

E . 4 N e t w o r k D a t a M a n i p u l a t i o n L a n g u a g e E–19

all the records that contain the information we need. Each currency indicator can be
thought of as a record pointer (or record address) that points to a single database record.
In a network DBMS, several currency indicators are used:

• Current of record type: For each record type, the DBMS keeps track of the most
recently accessed record of that record type. If no record has been accessed yet from
that record type, the current record is undefined.

• Current of set type: For each set type in the schema, the DBMS keeps track of the most
recently accessed set occurrence from the set type. The set occurrence is specified by
a single record from that set, which is either the owner or one of the member records.
Hence, the current of set (or current set) points to a record, even though it is used to
keep track of a set occurrence. If the program has not accessed any record from that
set type, the current of set is undefined.

• Current of run unit (CRU): A run unit is a database access program that is executing
(running) on the computer system. For each run unit, the CRU keeps track of the
record most recently accessed by the program; this record can be from any record type
in the database.

Each time a program executes a DML command, the currency indicators for the
record types and set types affected by that command are updated by the DBMS.

Status Indicators. Several status indicators return an indication of success or failure
after each DML command is executed. The program can check the values of these status
indicators and take appropriate action—either to continue execution or to transfer to an
error-handling routine. We call the main status variable DB_STATUS and assume that it is
implicitly declared in the host program. After each DML command, the value of DB_STA-

TUS indicates whether the command was successful or whether an error or an exception
occurred. The most common exception that occurs is the END_OF_SET (EOS) exception.

E . 4 Network Data Manipulat ion Language
The commands for manipulating a network database are called the network data manipu-
lation language (DML). These commands are typically embedded in a general-purpose
programming language, called the host programming language. The DML commands can
be grouped into navigation commands, retrieval commands, and update commands. Nav-
igation commands are used to set the currency indicators to specific records and set occur-
rences in the database. Retrieval commands retrieve the current record of the run unit
(CRU). Update commands can be divided into two subgroups—one for updating records,
and the other for updating set occurrences. Record update commands are used to store
new records, delete unwanted records, and modify field values, whereas set update com-
mands are used to connect or disconnect a member record in a set occurrence or to move
a member record from one set occurrence to another. The full set of commands is summa-
rized in Table E.2.

Elmasri_APPC Page 19 Monday, April 3, 2006 3:40 PM

E–20 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

We discuss these DML commands below and illustrate our discussion with examples
that use the network schema shown in Figure E.8 and defined by the DDL statements in
Figures E.9(a) and (b). The DML commands we present are generally based on the CODA-

SYL DBTG proposal. We use PASCAL as the host language in our examples, but in the
actual DBMSs in use, COBOL and FORTRAN are predominantly used as host languages. The
examples consist of short program segments without any variable declarations. In our pro-
grams, we prefix the DML commands with a $-sign to distinguish them from the PASCAL

language statements. We write PASCAL language keywords—such as if, then, while, and
for—in lowercase. In our examples we often need to assign values to fields of the PASCAL

UWA variables. We use the PASCAL notation for assignment.

E . 4 . 1 DML Commands for Retrieval and Navigation
The DML command for retrieving a record is the GET command. Before the GET com-
mand is issued, the program should specify the record it wants to retrieve as the CRU, by
using the appropriate navigational FIND commands. There are many variations of FIND;
we will first discuss the use of FIND in locating record instances of a record type and then
discuss the variations for processing set occurrences.

DML Commands for Locating Records of a Record Type. There are two main varia-
tions of the FIND command for locating a record of a certain record type and making that
record the CRU and current of record type. Other currency indicators may also be

Ta b l e E . 2 Summary of Network DML Commands

Retrieval
GET Retrieve the current of run unit (CRU) into the corresponding user

work area (UWA) variable.

Navigation
FIND Reset the currency indicators; always sets the CRU; also sets currency

indicators of involved record types and set types. There are many
variations of FIND.

Record Update
STORE Store the new record in the database and make it the CRU.
ERASE Delete from the database the record that is the CRU.
MODIFY Modify some fields of the record that is the CRU.

Set Update
CONNECT Connect a member record (the CRU) to a set instance.
DISCONNECT Remove a member record (the CRU) from a set instance.
RECONNECT Move a member record (the CRU) from one set instance to another.

Elmasri_APPC Page 20 Monday, April 3, 2006 3:40 PM

E . 4 N e t w o r k D a t a M a n i p u l a t i o n L a n g u a g e E–21

affected, as we shall see. The format of these two commands is as follows, where optional
parts of the command are shown in brackets, [...]:

• FIND ANY <record type name> [USING <field list>]

• FIND DUPLICATE <record type name> [USING <field list>]

We now illustrate the use of these commands with examples. To retrieve the
EMPLOYEE record for the employee whose name is John Smith and to print out his salary,
we can write EX1:

EX1: 1 EMPLOYEE.FNAME := ‘John’; EMPLOYEE.LNAME := ‘Smith’;

2 $FIND ANY EMPLOYEE USING FNAME, LNAME;

3 if DB_STATUS = 0

4 then begin

5 $GET EMPLOYEE;

6 writeln (EMPLOYEE.SALARY)

7 end

8 else writeln (‘no record found’);

The FIND ANY command finds the first record in the database of the specified
<record type name> such that the field values of the record match the values initialized
earlier in the corresponding UWA fields specified in the USING clause of the command. In
EX1, lines 1 and 2 are equivalent to saying: “Search for the first EMPLOYEE record that sat-
isfies the condition FNAME = ‘John’ and LNAME = ‘Smith’ and make it the current record
of the run unit (CRU).” The GET statement is equivalent to saying: “Retrieve the CRU

record into the corresponding UWA program variable.” The IDMS system combines FIND

and GET into a single command, called OBTAIN.
If more than one record satisfies our search and we want to retrieve all of them, we

must write a looping construct in the host programming language. For example, to
retrieve all EMPLOYEE records for employees who work in the Research department and to
print their names, we can write EX2.

EX2: EMPLOYEE.DEPTNAME := ‘Research’;

$FIND ANY EMPLOYEE USING DEPTNAME;

while DB_STATUS = 0 do

 begin

 $GET EMPLOYEE;

 writeln (EMPLOYEE.FNAME, EMPLOYEE.LNAME);

 $FIND DUPLICATE EMPLOYEE USING DEPTNAME

 end;

The FIND DUPLICATE command finds the next (or duplicate) record, starting from
the current record, that satisfies the search.

E . 4 . 2 DML Commands for Set Processing
For set processing, we have the following variations of FIND:

• FIND (FIRST | NEXT | PRIOR | LAST | ...) <record type name>

• FIND OWNER WITHIN <set type name>

Elmasri_APPC Page 21 Monday, April 3, 2006 3:40 PM

E–22 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

Once we have established a current set occurrence of a set type, we can use the FIND

command to locate various records that participate in the set occurrence. We can locate
either the owner record or one of the member records and make that record the CRU. We
use FIND OWNER to locate the owner record and one of FIND FIRST, FIND NEXT, FIND

LAST, or FIND PRIOR to locate the first, next, last, or prior member record of the set
instance, respectively.

Consider the request to print the names of all employees who work full-time—40
hours per week—on the ‘ProductX’ project; this example is shown as EX3:

EX3: PROJECT.NAME := ‘ProductX’;

$FIND ANY PROJECT USING NAME;

if DB_STATUS = 0 then

 begin

 WORKS_ON.HOURS:= ‘40.0’;

 $FIND FIRST WORKS_ON WITHIN P_WORKSON USING HOURS;

 while DB_STATUS = 0 do

 begin

 $GET WORKS_ON;

 $FIND OWNER WITHIN E_WORKSON; $GET EMPLOYEE;

 writeln (EMPLOYEE.FNAME, EMPLOYEE.LNAME),

 $FIND NEXT WORKS_ON WITHIN P_WORKSON USING HOURS

 end

 end;

In EX3, the qualification USING HOURS in FIND FIRST and FIND NEXT specifies that
only the WORKS_ON records in the current set instance of P_WORKSON whose HOURS

field value matches the value in WORKS_ON.HOURS of the UWA, which is set to ‘40.0’ in
the program, are found. Notice that the USING clause with FIND NEXT is used to find the
next member record within the same set occurrence; when we process records of a record type
regardless of the sets they belong to, we use FIND DUPLICATE rather than FIND NEXT.

We can use numerous embedded loops in the same program segment to process sev-
eral sets. For example, consider the following query: For each department, print the
department’s name and its manager’s name; and for each employee who works in that
department, print the employee’s name and the list of project names that the employee
works on.

This query requires us to process the system-owned set ALL_DEPTS to retrieve
DEPARTMENT records. Using the WORKS_FOR set, the program retrieves the EMPLOYEE

records for each DEPARTMENT. Then, for each employee found, the E_WORKSON set is
accessed to locate the WORKS_ON records. For each WORKS_ON record located, a “FIND

OWNER WITHIN P_WORKSON” locates the appropriate PROJECT.

E . 4 . 3 DML Commands for Updating the Database
The DML commands for updating a network database are summarized in Table E.2. Here,
we first discuss the commands for updating records—namely the STORE, ERASE, and
MODIFY commands. These are used to insert a new record, delete a record, and modify
some fields of a record, respectively. Following this, we illustrate the commands that mod-
ify set instances, which are the CONNECT, DISCONNECT, and RECONNECT commands.

Elmasri_APPC Page 22 Monday, April 3, 2006 3:40 PM

E . 4 N e t w o r k D a t a M a n i p u l a t i o n L a n g u a g e E–23

The STORE Command. The STORE command is used to insert a new record. Before
issuing a STORE, we must first set up the UWA variable of the corresponding record type so
that its field values contain the field values of the new record. For example, to insert a
new EMPLOYEE record for John F. Smith, we can prepare the data in the UWA variables,
then issue

$STORE EMPLOYEE;

The result of the STORE command is insertion of the current contents of the UWA

record of the specified record type into the database. In addition, if the record type is an
AUTOMATIC member of a set type, the record is automatically inserted into a set instance.

The ERASE and ERASE ALL Commands. To delete a record from the database, we first
make that record the CRU and then issue the ERASE command. For example, to delete the
EMPLOYEE record inserted above, we can use EX4:

EX4: EMPLOYEE.SSN := ‘567342793’;

$FIND ANY EMPLOYEE USING SSN;

if DB_STATUS = 0 then $ERASE EMPLOYEE;

The effect of an ERASE command on any member records that are owned by the record
being deleted is determined by the set retention option. A variation of the ERASE com-
mand, ERASE ALL, allows the programmer to remove a record and all records owned by it
directly or indirectly. This means that all member records owned by the record are
deleted. In addition, member records owned by any of the deleted records are also deleted,
down to any number of repetitions.

The MODIFY Command. The final command for updating records is the MODIFY com-
mand, which changes some of the field values of a record.

E . 4 . 4 Commands for Updating Set Instances
We now consider the three set update operations—CONNECT, DISCONNECT, and RECON-

NECT—which are used to insert and remove member records in set instances. The CON-

NECT command inserts a member record into a set instance. The member record should
be the current of run unit and is connected to the set instance that is the current of set for
the set type. For example, to connect the EMPLOYEE record with SSN = ‘567342793’ to the
WORKS_FOR set owned by the Research DEPARTMENT record, we can use EX5:

EX5: DEPARTMENT.NAME := ‘Research’;

$FIND ANY DEPARTMENT USING NAME;

if DB_STATUS = 0 then

 begin

 EMPLOYEE.SSN := ‘567342793’;

 $FIND ANY EMPLOYEE USING SSN;

 if DB_STATUS = 0 then

 $CONNECT EMPLOYEE TO WORKS_FOR;

 end;

Elmasri_APPC Page 23 Monday, April 3, 2006 3:40 PM

E–24 A p p e n d i x E / A n O v e r v i e w o f t h e N e t w o r k D a t a M o d e l

Notice that the EMPLOYEE record to be connected should not be a member of any set
instance of WORKS_FOR before the CONNECT command is issued. We must use the
RECONNECT command for the latter case. The CONNECT command can be used only with
MANUAL sets or with AUTOMATIC OPTIONAL sets. With other AUTOMATIC sets, the sys-
tem automatically connects a member record to a set instance, governed by the SET

SELECTION option specified, as soon as the record is stored.
The DISCONNECT command is used to remove a member record from a set instance

without connecting it to another set instance. Hence, it can be used only with OPTIONAL

sets. We make the record to be disconnected the CRU before issuing the DISCONNECT

command. For example, to remove the EMPLOYEE record with SSN = ‘836483873’ from
the SUPERVISEES set instance of which it is a member, we use EX6:

EX6: EMPLOYEE.SSN := ‘836483873’;

$FIND ANY EMPLOYEE USING SSN;

if DB_STATUS = 0 then

 $DISCONNECT EMPLOYEE FROM SUPERVISEES;

Finally, the RECONNECT command can be used with both OPTIONAL and MANDA-

TORY sets, but not with FIXED sets. The RECONNECT command moves a member record
from one set instance to another set instance of the same set type. It cannot be used with
FIXED sets because a member record cannot be moved from one set instance to another
under the FIXED constraint.

Selected Bibl iography
Early work on the network data model was done by Charles Bachman during the develop-
ment of the first commercial DBMS, IDS (Integrated Data Store, Bachman and Williams
1964) at General Electric and later at Honeywell. Bachman also introduced the earliest
diagrammatic technique for representing relationships in database schemas, called data
structure diagrams (Bachman 1969) or Bachman diagrams. Bachman won the 1973 Tur-
ing Award, ACM’s highest honor, for his work, and his Turing Award lecture (Bachman
1973) presents the view of the database as a primary resource and the programmer as a
“navigator” through the database.

The DBTG of CODASYL was set up to propose DBMS standards. The DBTG 1971 report
(DBTG 1971) contains schema and subschema DDLs and a DML for use with COBOL. A
revised report (CODASYL 1978) was made in 1978, and another draft revision was made in
1981. The X3H2 committee of ANSI (American National Standards Institute) proposed a
standard network language called NDL.

The design of network databases is discussed by Dahl and Bubenko (1982), Whang et
al. (1982), Schenk (1974), Gerritsen (1975), and Bubenko et al. (1976). Irani et al.
(1979) discuss optimization techniques for designing network schemas from user require-
ments. Bradley (1978) proposes a high-level query language for the network model.
Navathe (1980) discusses structural mapping of network schemas to relational schemas.
Mark et al. (1992) discuss an approach to maintaining a network and relational database
in a consistent state.

Other popular network model-based systems include VAX-DBMS (of Digital), IMAGE

(of Hewlett-Packard), DMS-1100 of UNIVAC, and SUPRA (of Cincom).

Elmasri_APPC Page 24 Monday, April 3, 2006 3:40 PM

