Jan 8, 2001

Requirements Development Workflow

The purpose of this lecture is to understand the requirements development workflow. The workflow for the requirements development is:

· To establish and maintain agreement with the customers and other stakeholders on what the system should do.

· To provide system developers with a better understanding of the system requirements.

· To define the boundaries and delimiters for the system.

· To provide a basis for planning the technical contents of each system iteration.

· To provide a basis for estimating cost and time to develop the system.

· To define a user-interface for the system, focusing on the needs and goals of the users.

To achieve these goals, it is important, first of all, to understand the definition and scope of the problem, which systems analyst and software engineers are trying to solve with this system. The Business Rules, Business Use-Case Model and Business Object Model developed during Business Modeling will serve as valuable input to this effort. Stakeholders are identified and Stakeholder Requests are elicited, gathered and analyzed.

A Vision document, a use-case model, use cases and Supplementary Specification are developed to fully describe the system - what the system will do - in an effort that views all stakeholders, including customers and potential users, as important sources of information (in addition to system requirements).

Stakeholder Requests are both actively elicited and gathered from existing sources to get a "wish list" of what different stakeholders of the project (customers, users, product champions) expect or desire the system to include, together with information on how each request has been considered by the project.

The Vision document provides a complete vision for the software system under development and supports the contract between the funding authority and the development organization. Every project needs a source for capturing the expectations among stakeholders. The vision document is written from the customers' perspective, focusing on the essential features of the system and acceptable levels of quality. The Vision should include a description of what features will be included as well as those considered but not included. It should also specify operational capacities (volumes, response times, accuracies), user profiles, and interoperational interfaces with entities outside the system boundary, where applicable. The Vision document provides the contractual basis for the requirements visible to the stakeholders.

The use-case model should serve as a communication medium and can serve as a contract between the customer, the users, and the system developers on the functionality of the system, which allows:

· Customers and users to validate that the system will become what they expected.

· System developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the model is described in detail, showing step-by-step how the system interacts with the actors, and what the system does in the use case. Use cases function as a unifying thread throughout the software lifecycle; the same use-case model is used in system analysis, design, implementation, and testing.

The Supplementary Specifications are an important complement to the use-case model, because together they capture all software requirements (functional and nonfunctional) that need to be described to serve as a complete software requirements specification.

A complete definition of the software requirements described in the use cases and Supplementary Specifications may be packaged together to define a Software Requirements Specification (SRS) for a particular "feature" or other subsystem grouping.

Complementary to the above-mentioned artifacts, the following artifacts are also developed:

· Glossary

· Use-Case Storyboard

· User-Interface Prototype

The Glossary is important because it defines a common terminology, which is used consistently across the project or organization.

The Use-Case Storyboard and User-Interface Prototype are all results of user-interface modeling and prototyping, which are done in parallel with other requirements activities. These artifacts provide important feedback mechanisms in later iterations for discovering unknown or unclear requirements.

· The Business Modeling workflow provides Business Rules, a Business Use-Case Model and a Business Object Model, including a Domain Model and an organizational context for the system.

· The Analysis & Design workflow gets its primary input (the use-case model and the Glossary) from Requirements. Flaws in the use-case model can be discovered during analysis & design; change requests are then generated, and applied to the use-case model.

· The test workflow tests the system to verify the code against the Use-Case Model. Use Cases and Supplementary Specifications provide input on requirements used in planning and designing tests.

· The Environment workflow develops and maintains the supporting artifacts that are used during requirement management and use-case modeling, such as the Use-Case-Modeling Guidelines and User-Interface Guidelines.

· The Management workflow plans the project, develops the Requirements Management Plan, and each iteration (described in an Iteration Plan). The use-case model is an important input to the iteration planning activities.

USE-CASE VIEW

The Use-case view or model provides a basis for planning the technical contents of iterations, an architectural view called the use-case view is used in the requirements workflow. There is only one use-case view of the system, which illustrates the use cases and scenarios that encompass architecturally significant behavior, classes, or technical risks. The use-case view is refined and considered initially in each iteration. The use-case view shows an architecturally significant subset of the use-case model, a subset of the use cases and actors.

The analysis, design, and implementation activities subsequent to requirements are centered on the notion of architecture. The production and validation of that architecture is the main focus of the early iterations, especially during the Elaboration phase. Architecture is represented by a number of different architectural views, which in their essence are extracts illustrating the "architecturally significant" elements of the models.

There are four additional views:

1. Logical View
2. Process View
3. Deployment View
4. Implementation View.

These views are handled in the Analysis & Design and Implementation workflow. The architectural views are documented in a Software Architecture Document. The system engineer may add different views, such as a security view, to convey other specific aspects of the software architecture. The architectural views can be seen as abstractions or simplifications of the models built, in which the system engineer make important characteristics more visible by leaving the details aside. The architecture is an important means for increasing the quality of any model built during system development.

The Requirements workflow is related to other process workflows.

· The Business Modeling workflow provides Business Rules, a Business Use-Case Model and a Business Object Model, including a Domain Model and an organizational context for the system.

· The Analysis & Design workflow gets its primary input (the use-case model and the Glossary) from Requirements. Flaws in the use-case model can be discovered during analysis & design; change requests are then generated, and applied to the use-case model.

· The Test workflow tests the system to verify the code against the Use-Case Model. Use Cases and Supplementary Specifications provide input on requirements used in planning and designing tests.

· The Environment workflow develops and maintains the supporting artifacts that are used during requirements management and use-case modeling, such as the Use-Case-Modeling Guidelines and User-Interface Guidelines.

· The Management workflow plans the project, develops the Requirements Management Plan, and each iteration (described in an Iteration Plan). The use-case model is an important input to the iteration planning activities.

REQUIREMENTS DEFINED

A requirement is defined as "a condition or capability to which a system must conform". There are a many different kinds of requirements. One way of categorizing requirements is described as the FURPS+ model by Grady Booch in 1992, using the acronym FURPS to describe the major categories of requirements with subcategories as shown below.

· Functionality,

· Usability,

· Reliability,

· Performance and

· Supportability

The "+" in FURPS+ helps you to also remember to also include such requirements as:

· Design constraints,

· Implementation requirements,

· Interface requirements and

· Physical requirements.

(See also [IEEE Std 610.12.1990].)

Functional requirements specify actions that a system must be able to perform, without taking physical constraints into consideration. These are often best described in a use-case model and in use cases. Functional requirements thus specify the input and output behavior of a system.

Requirements that are not functional, such as the ones listed below, are sometimes called non-functional requirements. Many requirements are non-functional, and describe only attributes of the system or attributes of the system environment. Although some of these may be captured in use cases, those that cannot may be specified in the Supplementary Specifications. Nonfunctional requirements are those that address issues such as those described below.

For a complete definition of the software requirements, use cases and Supplementary Specifications may be packaged together to define a Software Requirements Specification (SRS) for a particular "feature" or other subsystem grouping.

Functionality

Functional requirements may include:

· Feature sets

· Capabilities

· Security.

Usability

Usability requirements may include such sub-categories as:

· Human factors

· Aesthetics

· Consistency in the user interface

· Online and context-sensitive help

· Wizards and agents

· User documentation

· Training materials

Reliability

Reliability requirements to be considered are:

· Frequency / severity of failure

· Recoverability

· Predictability

· Accuracy

· Mean time between failure (MTBF).

Performance

A performance requirement imposes conditions on functional requirements. For example, for a given action, it may specify performance parameters for:

· Speed

· Efficiency

· Availability

· Accuracy

· Throughput

· Response time

· Recovery time

· Resource usage.

Supportability

Supportability requirements may include:

· Testability

· Extensibility

· Adaptability

· Maintainability

· Compatibility

· Configurability

· Serviceability

· Installability

· Localizability

· Internationalization.

Design Requirement

A design requirement, often called a design constraint, specifies or constrains the design of a system.

Implementation Requirement

An implementation requirement specifies or constrains the coding or construction of a system.

Examples are:

· Required standards

· Implementation languages

· Policies for database integrity

· Resource limits

· Operation environments.

Interface Requirement

An interface requirement specifies

· An external item with which a system must interact, or

· Constraints on formats, timings, or other factors used by such an interaction.

Physical Requirement

A physical requirement specifies a physical characteristic that a system must possess; for example,

· Material

· Shape

· Size

· Weight.

This type of requirement can be used to represent hardware requirements, such as

· The physical network configurations required.

Requirements management

Requirements management is a systematic approach to finding, documenting, organizing and tracking the changing requirements of a system. A requirement was defined as:

A condition or capability to which the system must conform.

A formal definition of requirements management is that it is a systematic approach to:

· Eliciting, organizing, and documenting the requirements of the system, and

· Establishing and maintaining agreement between the customer and the project team on the changing requirements of the system.

The key to effective requirements management includes maintaining a clear statement of the requirements, along with applicable attributes for each requirement type and traceability to other requirements and other project artifacts.

Collecting requirements may seem like a rather straightforward task. In real projects, however, software engineers will run into difficulties because:

· Requirements are not always obvious, and can come from many sources.

· Requirements are not always easy to express clearly in words.

· There are many different types of requirements at different levels of detail.

· The number of requirements can become unmanageable if not controlled.

· Requirements are related to one another and also to other deliverables of the software engineering process.

· Requirements have unique properties or property values. For example, they are neither equally important nor equally easy to meet.

· There are many interested parties, which means requirements need to be managed by cross-functional groups of people.

· Requirements change.

So, what skills do software engineers need to develop in their organization to help them manage these difficulties? Software engineers e have learned that the following skills are important to master:

· Problem analysis

· Understanding stakeholder needs

· Defining the system

· Managing scope of the project

· Refining the system definition

· Managing changing requirements

Problem Analysis

Problem analysis is done to understand problems, initial stakeholder needs, and propose high-level solutions. It is an act of reasoning and analysis to find "the problem behind the problem". During problem analysis, agreement is gained on the real problem(s), and who the stakeholders are. Also, software engineers define what from a business perspective are the boundaries of the solution, as well as business constraints on the solution. Software engineers should also have analyzed the business case for the project so that there is a good understanding of what return is expected on the investment made in the system being built.

Analyze the Problem Workflow

The following workflow for how to Analyze the Problem can be used by the system analysts and software engineers. The team must:

· Gain agreement on the problem being solved

· Identify stakeholders

· Define the system boundaries

· Identify constraints imposed on the system

The first step in any problem analysis is to make sure that all parties involved agree on what is the problem that systems analyst and software engineers are trying to solve with their system. In order to avoid misunderstandings, it is important to agree on common terminology, which will be used throughout the project. Early on, we should begin defining our project terms in a glossary, which will be maintained throughout the project lifecycle.

In order to fully understand the problem(s) the systems analyst and software engineers should be addressing, it is very important to know who are their stakeholders. Actors in their use-case model will represent some of these stakeholders who are the users of the system.

The Requirements Management Plan will provide guidance on the requirements artifacts that should be developed, the types of requirements that should be managed for the project, the requirements attributes that should be collected and the requirements traceability that will be used in managing the product requirements.

The primary artifact in which the systems analyst and software engineers document the problem analysis information is the Vision document, which identifies the high-level user or customer view of the system to be built. In the Vision, initial high-level requirements are expressed as key features the system might possess in order to solve the most critical problems.

Key stakeholders should be involved in gathering the set of features to be considered, which might be gathered in a Requirements Workshop. The features should be assigned attributes such as rationale, relative value or priority, source of request and so on, so that dependencies can begin to be managed.

To determine the initial scope for our project, the boundaries of the system must be agreed upon. The system analyst identifies users and systems - represented by actors - which will interact with the system.

If you have developed a domain model, a business use-case model or a business object model, these will be key input, along with the business rules, to helping to perform this analysis. See also Guidelines: Going from Business Models to Systems for more guidance.

This workflow detail should be revisited several times during inception and early elaboration. Then, throughout the lifecycle of the project, it should be revisited as necessary while managing the inevitable changes that will occur in the project, in order to ensure that the systems analyst and software engineers continue to address the correct problem(s).

Understanding Stakeholder Needs

Requirements come from many sources; examples would be customers, partners, end users, and domain experts. Software engineers need to know how to best determine what the sources should be, get access to those sources, and also how to best elicit information from them. The individuals who provide the primary sources for this information are referred to as stakeholders in the project. If a software engineer is developing an information system to be used internally within your company, you may include people with end user experience and business domain expertise in your development team. Very often the software engineer will start the discussions at a business model level rather than a system level. If a software engineer is developing a product to be sold to a market place, they may make extensive use of your marketing people to better understand the needs of customers in that market.

Elicitation activities may occur using techniques such as interviews, brainstorming, conceptual prototyping, questionnaires, and competitive analysis. The result of the elicitation would be a list of requests or needs that are described textually and graphically, and that have been given priority relative one another.

Workflow for Understand Stakeholder Needs

The system analysts and software engineers can use the workflow for Understand Stakeholder Needs. The purpose of this workflow detail is to collect and elicit information from the stakeholders of the project in order to understand what their needs really are. The collected stakeholder requests can be regarded as a "wish list" that will be used as primary input to defining the high-level features of our system, as described in the Vision, which drive the specification of the software requirements, as described in the use-case model, use cases and supplementary specifications.

Typically, this activity is mainly performed during iterations in the inception and elaboration phases, however stakeholder requests should be gathered throughout the project by using Change Requests following the Change Request Management Process.

The key activity is to elicit stakeholder requests using such input as business rules, enhancement requests, and interviews and requirements workshops. The primary outputs are collection(s) of prioritized features and their critical attributes, which will be used in defining the system and managing the scope of the system.

This information results in a refinement of the Vision document, as well as a better understanding of the requirement attributes. Also, during this workflow you may start discussing the functional requirements of the system in terms of its use cases and actors. Those non-functional requirements, which do not fit easily into the use-case model, should be documented in the Supplementary Specifications.

Another important output is an updated Glossary of terms to facilitate common vocabulary among team members.

Defining the System

To define the system means to translate and organize the understanding of stakeholder needs into a meaningful description of the system to be built. Early in system definition, decisions are made on what constitutes a requirement, documentation format, language formality, degree of requirements specificity (how many and in what detail), request priority and estimated effort (two very different valuations usually assigned by different people in separate exercises), technical and management risks, and initial scope. Part of this activity may include early prototypes and design models directly related to the most important stakeholder requests. The outcome of system definition is a description of the system that is both natural language and graphical.

Defining the System Workflow

The following workflow for how to Define the System can be used by the system analysts and software engineers. The team must:

· Align the project team in their understanding of the system.

· Perform a high-level analysis on the results of collecting stakeholder requests.

· Refine the Vision to include the features to include in the system, along with appropriate attributes.

· Refine the use-case model, to include outlined use cases.

· More formally document the results in models and documents.

Problem Analysis and activities for understanding stakeholder needs create early iterations of key system definitions, including the features defined in the Vision document, a first outline to the use-case model and the Requirements Attributes. In Defining the System you will focus on identifying actors and use cases more completely, and expand the global non-functional requirements as defined in the Supplementary Specifications.

Typically, this is primarily performed in iterations during the inception and elaboration phases, however it may be revisited as needed when managing scope and responding to changing requirements, as well as other changing conditions.

Managing the Scope of the

To efficiently run a project, the system engineer needs to carefully prioritize the requirements, based on input from all stakeholders, and manage its scope. Too many projects suffer from developers working on so-called "Easter eggs" (features the developer finds interesting and challenging), rather than early focusing on tasks that mitigate a risk in the project or stabilize the architecture of the application. To make sure that the system engineer resolves or mitigate risks in a project as early as possible, they should develop the system incrementally, carefully choosing requirements to for each increment that mitigates known risks in the project. To do so, they need to negotiate the scope (of each iteration) with the stakeholders of the project. This typically requires good skills in managing expectations of the output from the project in its different phases. The system engineers also need to have control of the sources of requirements, of how the deliverables of the project look as well as the development process itself.

Refining the System Definition

The detailed definition of the system needs to be presented in such a way that the stakeholders can understand, agree to, and sign off on them. It needs to cover not only functionality, but also compliance with any legal or regulatory requirements, usability, reliability, performance, supportability, and maintainability. An error often committed is to believe that what you feel is complex to build needs to have a complex definition. This leads to difficulties in explaining the purpose of the project and the system. People may be impressed, but they will not give good input since they don’t understand. The system engineers should put lots effort in understanding the audience for the documents they are producing to describe the system. The system engineer may often see a need to produce different kinds of description for different audiences.

The use-case methodology, in combination with simple visual prototypes, is a very efficient way of communicating the purpose of the system and defining the details of the system. Use cases help put requirements into a context, they tell a story of how the system will be used.

Another component of the detailed definition of the system is to state how the system will be tested. Test plans and definitions of what tests to perform tells the project manager and customer what system capabilities will be verified.

Managing Changing Requirements

No matter how careful the system engineers are about defining your requirements, there will always be things that change. What makes changing requirements complex to manage is not only that a changed requirement means that more or less time has to be spent on implementing a particular new feature, but also that a change to one requirement may have an impact on other requirements. The system engineers need to make sure that they give a requirements a structure that is resilient to changes, and that they use traceability links to represent dependencies between requirements and other artifacts of the development lifecycle. Managing change include activities like establishing a baseline, determining which dependencies are important to trace, establishing traceability between related items, and change control.

To perform effective requirement management, system engineers have learned that it helps to extend what they maintain as requirements beyond only the detailed software requirements. therefore, the notion of requirements types is used to help separate the different levels of abstraction and purposes of the requirement. Each requirement type may have a unique set of attributes associated with it defined at lower levels.

The system engineers may want to keep track of ambiguous "wishes", as well as formal requests, from our stakeholders to make sure they are taken care of. The Vision document helps keep track of key "user needs" and "features" of the system. The use-case model is an effective way of expressing detailed functional "software requirements", therefore use cases may need to be tracked and maintained as requirements, as well as perhaps individual statements within the use case properties which state "conditions or capabilities to which the system must conform". Supplementary Specifications may contain other "software requirements", such as design constraints or legal or regulatory requirements on our system. For a complete definition of the software requirements, use cases and Supplementary Specifications may be packaged together to define a Software Requirements Specification (SRS) for a particular "feature" or other subsystem grouping.

Test cases are ways of stating how testers will verify what the system actually does, and therefore testers may also want to track these by maintaining separate "test requirements". Similarly, quality assurance (QA) may wish to track "documentation requirements" for those requirements relating to how a technical writer may need to develop end-user support documentation and training material.

The larger and more intricate the system developed, the more expressions, or types of requirements appear and the greater the volume of requirements. "Business rules" and "vision" statements for a project trace to "user needs", "features" or other "product requirements". Use cases or other forms of modeling and other Supplementary Specifications drive design requirements, which may be further decomposed to functional and non-functional "software requirements" represented in analysis & design models and diagrams. "Test requirements" derived from the above decompose to test procedures and other testing artifacts.

Traceability

The purpose of establishing traceability is to help the system engineering team:

· Understand the source of requirements

· Manage the scope of the project

· Manage changes to requirements

· Assess the project impact of a change in a requirement

· Assess the impact of a failure of a test on requirements (i.e. if test fails the requirement may not be satisfied)

· Verify that all requirements of the system are fulfilled by the implementation.

· Verify that the application does only what it was intended to do.

Traceability helps the team understand and manage how input to the requirements, such as business rules and stakeholder requests, are translated into a set of key stakeholder/user needs and system features, as specified in the Vision document. The use-case model, in turn, outlines the how these features are translated to the functionality of the system. The details of how the system interacts with the outside world are captured in use cases, with other important requirements (such as non-functional requirements, design constraints, etc.) in the Supplementary Specifications. Traceability allows system-engineering team to also follow how these detailed specifications are translated into a design, how it is tested, and how it is documented for the user. For a large system, use cases and Supplementary Specifications may be packaged together to define a Software Requirements Specification (SRS) for a particular "feature" or other subsystem grouping.

A key concept in helping to manage changes in requirements is that of a "suspect" traceability link. When a requirement (or other traceability item) changes at either end of a traceability link, all links associated with that requirement are marked as "suspect". This flags the responsible worker to review the change and determine if the associated items will need to change also. This concept also helps in analyzing the impact of potential changes.

Traceabilities may be set up to help answer the following sample set of queries:

· Show me user needs that are not linked to product features.

· Show me the status of tests on all use cases in iteration #n.

· Show me all supplementary requirements linked to tests whose status is untested.

· Show me the results of all tests that failed, in order of criticality.

· Show me the features scheduled for this release, which user needs they satisfy, and their status.

Example:

For a Recycling Machine system, the Vision document specifies the following feature:

· FEAT10: The recycling machine will allow the addition of new bottle types.

This feature is traced to a use case "Add New Bottle Type":

· The use case Add New Bottle Type allows the Operator to teach the Recycling Machine to recognize new kinds of bottles.

This traceability helps the system engineering team verify that all features have been accounted for in use cases and supplementary specifications.

Conducting a Requirements Workshop

The systems analysts and the software engineers will conduct a requirements workshop for the following purpose:

· To make the project team meet the stakeholders of the project.

· To gather a comprehensive "wish list" from stakeholders of the project.

· To prioritize the collected requirements based on stakeholders attending the work

The project must consider the following five activities to ensure a successful requirements workshop:

1. Preparation for the Workshop

2. Before the Workshop

3. Conduct the Session

4. Consolidate Results

5. Tricks of the Trade

Preparation for the Workshop

To conduct a requirements workshop, means to gather all stakeholders together for an intensive, focused period. A System Analyst acts as facilitator of the meeting. Everyone attending should actively contribute, and the results of the session should be made immediately available to the attendants.
The requirements workshop provides a framework for applying the other elicitation techniques, such as brainstorming, storyboarding, role playing, review of existing requirements. These techniques can be used on their own or combined. All can be combined with the use-case approach. For example, you can produce one or a few storyboards for each use case you envision in the system. You can use role playing as a way of understanding how actors will use the system and help you define the use cases.
A facilitator of a requirements workshop needs to be prepared for the following difficulties:

· Stakeholders know what they want but may not be able to articulate it.

· Stakeholders may not know what they want.

· Stakeholders think they know what they want until you give them what they said they wanted.

· Analysts think they understand user problems better than users.

· Everybody believes everybody else is politically motivated.

The results of the requirements workshops are documented in one or several Stakeholder Requests artifacts. Provided you have good tool support, it is often good to allow the stakeholders to enter this information. If you have chosen to discuss the system in terms of and use cases, you may also have an outline to a use-case model.

Before the Workshop

The facilitator needs to "sell" the workshop to stakeholders that should attend, and to establish the group that will participate in the workshop. The attendees should be given "warm-up" material to review before they arrive. The facilitator is responsible for the logistics surrounding the workshop, such as sending out invitations, finding an appropriate room with the equipment needed for the session, as well as distributing an agenda for the workshop.

Conduct the Session

The facilitator leads the session, which includes:

· Giving everyone an opportunity to speak.

· Keeping the session on track.

· Gathering input for applicable Requirement Attributes

· Recording the findings.

· Summarizing the session and working out conclusions.

Consolidate Results

After the requirement workshop, the facilitator (together with fellow system analysts) needs to spend some time to synthesize the findings and condense the information into a presentable format.

Tricks of the Trade

The table below lists a collection of problems and suggested solutions that could come in handy for the facilitator. The solutions are referring to a set of "tickets" that may sound unnecessary to have, but in most cases turn out to be very effective:

PRIVATE
Problem
Solution

Hard to get restarted after breaks.
Anyone who is late gets a "Late From Break" ticket, use a kitchen timer to catch peoples attention, use a charitable contribution box (say $1 for each ticket used).

Pointed criticism - petty biases, turf wars, politics and cheap shots.
"1 Free Cheap Shot" ticket, "That’s a Great Idea!!" ticket.

Grandstanding, domineering positions, uneven input from participants.
Use a trained facilitator, limit speaking time to a "Five Minute Position Statement".

Energy low after lunch.
Light lunches, breaks, coffee, soda, candies, cookies, rearrange room, change temperature.

Work Guidelines useful in a Requirements Workshop:

· Brainstorming and Idea Reduction,

· Storyboarding,

· Role Playing,

· Review Existing Requirements

Brainstorming and Idea Reduction

Brainstorming means to spend a short amount of time, say 15 minutes, where everyone in the room is allowed to say whatever they feel is important to the project. After that, a facilitator leads the group in organizing and prioritizing the results. Rules for brainstorming are the following:

· Start out by clearly stating the objective of the brainstorming session.

· Generate as many ideas as possible.

· Let your imagination soar.

· Do not allow criticism or debate while you are gathering information.

· Once information is gathered, mutate and combine ideas.

The information gathering is typically very informal. Ideas are expressed to the facilitator, who writes them down on self-stick notes, and then posts the notes on easel charts. The information is then "pruned," meaning that similar ideas are combined and outrageous ideas are eliminated.

Other techniques to reduce the amount of self-stick notes are to:

· Have everyone take a simple vote, or

· Let everyone prioritize each idea by category (for example, critical, important, and nice to have), which have assigned weights (for example, 3, 2, 1). The sum of the priorities for each idea will tell you its importance in relation to the other.

Some ideas may simply be stored away for a later session if they need more development. The remaining self-stick notes are then moved around and organized in a way that makes sense.

Storyboards

Movies, cartoons, and animated features all begin with storyboards that tell who the players are what happens to them, and how it happens.

· Help gather and refine customer requirements in a user friendly way.

· Encourage more creative and innovative design solutions.

· Encourage team review and prevent features no one wants.

· Ensure that features are implemented in an accessible and intuitive way.

· Ease the interviewing process - avoiding the blank-page syndrome.

Storyboarding means to use a tool to illustrate (and sometimes animate) to the users (actors) how the system will fit into the organization, and indicate how the system will behave. A facilitator shows an initial storyboard to the group, and the group provides comments. The storyboard then evolves in "real time" during the workshop. So, you need a graphical drawing tool that allows you to easily change the storyboard. To avoid distractions, it is usually wise to use simple tools, such as easel charts, a whiteboard, or PowerPoint™.

There are two distinct groups of tools to use for storyboarding: passive tools and active tools. Passive means you show non-animated pictures, while active tools have more sophisticated capabilities built in.

Examples of passive tools for storyboarding are:

· Paper and pencil

· Post-it® notes

· GUI builders

· Different kinds of presentation managers

Examples of active tools for storyboarding are:

· Hypercard, Supercard

· Bricklin’s Demo-It™ II

· Macromedia Director and other animation tools

· PowerPoint

Caveats and comments:

· Storyboards need to be easy to create and change. If you did not change anything, you did not learn anything.

· Do not make a storyboard too good. It’s neither a prototype nor a demo of the real thing ("realware" perception).
Role Playing

Each member of the group is assigned a role that is of interest to the system. Roles are users, the system itself, other systems, and sometimes entities that are maintained by the system. The group then walks through how the system is used. Along the way, there will be discussions about who is responsible for what–take notes on the responsibilities of each role. Having the system analyst play the role of the user or customer helps gain real insights into the problem domain.
As a frame work for the role-play, you may perform scripted walkthroughs of how the system is used. If you have some use cases outlined, you can use them as a basis for the script. The walkthrough can also be performed at a business level, using the business use cases as a basis for the script.
Another technique often combined with role playing is Class Responsibility Collaboration (CRC) cards.
Reviewing Existing Documents

You may have requirements specifications from previous or otherwise related systems for reference – these may be helpful to walk through. Or you may have started using the Rational Unified Process some time after the project started.

With the group, walk through each requirement to find application behaviors or behavioral attributes. In general, during the walkthrough, you should ignore explanatory information like introductions and general system descriptions.

Keep a list of all issues you identify and make sure someone is tasked to resolve each issue. You may need to make some assumptions if a requirement is unclear. Keep track of these assumptions so you can verify them with the stakeholders.

Remember who wrote the requirements. Look for possible "misplaced requirements", meaning things that are out of scope for the project. If you don't know whether something is a requirement, ask the stakeholders.

It is very effective to perform this type of walkthroughs by using any existing use-case outlines as a framework. Each requirement needs to relate to at least one use case in your outline. If there is no use case to relate to, it is an indication that either a use case is missing or that the requirement is misplaced.

Software Requirements Specification

The template for the Software Requirements Specifications (SRS) is in Appendix A. The SRS template is the final document that you will use to complete the project in the requirements engineering course. The template provides the guidelines that the group should follow for their project. This document is a Microsoft Word document and you should modify it using Microsoft Word. Change the title, header and footer to meet the style of your project.

APPENDIX A

Software Requirements Specification

<Project Name>
Software Requirements Specification
For <Subsystem or Feature>

Version <1.0>

[Note: The following template is provided for use with the Rational Unified Process. Text enclosed in square brackets and displayed in blue italics (style=InfoBlue) is included to provide guidance to the author and should be deleted before publishing the document. A paragraph entered following this style will automatically be set to normal (style=Body Text).]

[To customize automatic fields in Microsoft Word (which display a gray background when selected), select File>Properties and replace the Title, Subject and Company fields with the appropriate information for this document. After closing the dialog, automatic fields may be updated throughout the document by selecting Edit>Select All (or Ctrl-A) and pressing F9, or simply click on the field and press F9. This must be done separately for Headers and Footers. Alt-F9 will toggle between displaying the field names and the field contents. See Word help for more information on working with fields.]

Revision History

Date
Version
Description
Author

<dd/mmm/yy>
<x.x>
<details>
<name>

Table of Contents

241.
Introduction

1.1
Purpose
24
1.2
Scope
24
1.3
Definitions, Acronyms and Abbreviations
24
1.4
References
24
1.5
Overview
24
2.
Overall Description
25
3.
Specific Requirements
25
3.1
Functionality
25
3.1.1
<Functional Requirement One>
25
3.2
Usability
26
3.2.1
<Usability Requirement One>
26
3.3
Reliability
26
3.3.1
<Reliability Requirement One>
26
3.4
Performance
27
3.4.1
<Performance Requirement One>
27
3.5
Supportability
27
3.5.1
<Supportability Requirement One>
27
3.6
Design Constraints
27
3.6.1
<Design Constraint One>
27
3.7
Online User Documentation and Help System Requirements
27
3.8
Purchased Components
28
3.9
Interfaces
28
3.9.1
User Interfaces
28
3.9.2
Hardware Interfaces
28
3.9.3
Software Interfaces
28
3.9.4
Communications Interfaces
28
3.10
Licensing Requirements
28
3.11
Legal, Copyright and Other Notices
28
3.12
Applicable Standards
28
4.
Supporting Information
29

Software Requirements Specification

Introduction

[The introduction of the Software Requirements Specification (SRS) should provide an overview of the entire SRS. It should include the purpose, scope, definitions, acronyms, abbreviations, references, and overview of the SRS.]

[Note: The Software Requirements Specification (SRS) captures the complete software requirements for the system, or a portion of the system. Following is a typical SRS outline for a project using only traditional natural-language style requirements – with no use-case modeling. It captures all requirements in a single document, with applicable sections inserted from the Supplementary Specifications (which would no longer be needed). For a template of an SRS using use-case modeling, which consists of a package containing Use-Cases of the use-case model and applicable Supplementary Specifications and other supporting information, see rup_SRS-uc.dot.]

[Many different arrangements of an SRS are possible. Refer to [IEEE830-1998] for further elaboration of these explanations, as well as other options for SRS organization.]

Purpose

[Specify the purpose of this SRS. The SRS should fully describe the external behavior of the application or subsystem identified. It also describes nonfunctional requirements, design constraints and other factors necessary to provide a complete and comprehensive description of the requirements for the software.]

Scope

[A brief description of the software application that the SRS applies to; the feature or other subsystem grouping; what Use-Case model(s) it is associated with; and anything else that is affected or influenced by this document.]

Definitions, Acronyms and Abbreviations

[This subsection should provide the definitions of all terms, acronyms, and abbreviations required to properly interpret the SRS. This information may be provided by reference to the project Glossary.]

References

[This subsection should provide a complete list of all documents referenced elsewhere in the SRS. Each document should be identified by title, report number (if applicable), date, and publishing organization. Specify the sources from which the references can be obtained. This information may be provided by reference to an appendix or to another document.]

Overview

[This subsection should describe what the rest of the SRS contains and explain how the document is organized.]

Overall Description

[This section of the SRS should describe the general factors that affect the product and its requirements. This section does not state specific requirements. Instead, it provides a background for those requirements, which are defined in detail in Section 3, and makes them easier to understand. Include such items as:

•
product perspective

•
product functions

•
 user characteristics

•
constraints

•
assumptions and dependencies

•
requirements subsets]

Specific Requirements

[This section of the SRS should contain all the software requirements to a level of detail sufficient to enable designers to design a system to satisfy those requirements, and testers to test that the system satisfies those requirements. When using use-case modeling, these requirements are captured in the Use-Cases and the applicable supplementary specifications. If use-case modeling is not used, the outline for supplementary specifications may be inserted directly into this section, as shown below.]

Functionality

[This section describes the functional requirements of the system for those requirements which are expressed in the natural language style. For many applications, this may constitute the bulk of the SRS Package and thought should be given to the organization of this section. This section is typically organized by feature, but alternative organization methods may also be appropriate, for example, organization by user or organization by subsystem. Functional requirements may include feature sets, capabilities, and security.

Where application development tools, such as requirements tools, modeling tools, etc., are employed to capture the functionality, this section document will refer to the availability of that data, indicating the location and name of the tool that is used to capture the data.]

<Functional Requirement One>

[The requirement description.]

Usability

[This section should include all of those requirements that affect usability. For example,

•
specify the required training time for a normal users and a power user to become productive at particular operations

•
specify measurable task times for typical tasks or base the new system’s usability requirements on other systems that the users know and like

•
specify requirement to conform to common usability standards, such as IBM’s CUA standards Microsoft’s GUI standards]

<Usability Requirement One>

[The requirement description goes here.]

Reliability

[Requirements for reliability of the system should be specified here. Some suggestions follow:

•
Availability—specify the percentage of time available (xx.xx%), hours of use, maintenance access, degraded mode operations, etc.

•
Mean Time Between Failures (MTBF) — this is usually specified in hours, but it could also be specified in terms of days, months or years.

•
Mean Time To Repair (MTTR)—how long is the system allowed to be out of operation after it has failed?

•
Accuracy—specify precision (resolution) and accuracy (by some known standard) that is required in the system’s output.

•
Maximum Bugs or Defect Rate—usually expressed in terms of bugs per thousand of lines of code (bugs/KLOC) or bugs per function-point(bugs/function-point).

•
Bugs or Defect Rate—categorized in terms of minor, significant, and critical bugs: the requirement(s) must define what is meant by a “critical” bug; for example, complete loss of data or a complete inability to use certain parts of the system’s functionality.]

<Reliability Requirement One>

[The requirement description.]

Performance

[The system’s performance characteristics should be outlined in this section. Include specific response times. Where applicable, reference related Use Cases by name.

•
response time for a transaction (average, maximum)

•
throughput, for example, transactions per second

•
capacity, for example, the number of customers or transactions the system can accommodate

•
degradation modes (what is the acceptable mode of operation when the system has been degraded in some manner)

•
resource utilization, such as memory, disk, communications, etc.

<Performance Requirement One>

[The requirement description goes here.]

Supportability

[This section indicates any requirements that will enhance the supportability or maintainability of the system being built, including coding standards, naming conventions, class libraries, maintenance access, maintenance utilities.]

<Supportability Requirement One>

[The requirement description goes here.]

Design Constraints

[This section should indicate any design constraints on the system being built. Design constraints represent design decisions that have been mandated and must be adhered to. Examples include software languages, software process requirements, prescribed use of developmental tools, architectural and design constraints, purchased components, class libraries, etc.]

<Design Constraint One>

[The requirement description goes here.]

On-line User Documentation and Help System Requirements

[Describes the requirements, if any, for on-line user documentation, help systems, help about notices, etc.]

Purchased Components

[This section describes any purchased components to be used with the system, any applicable licensing or usage restrictions, and any associated compatibility and interoperability or interface standards.]

Interfaces

[This section defines the interfaces that must be supported by the application. It should contain adequate specificity, protocols, ports and logical addresses, etc. so that the software can be developed and verified against the interface requirements.]

User Interfaces

[Describe the user interfaces that are to be implemented by the software.]

Hardware Interfaces

[This section defines any hardware interfaces that are to be supported by the software, including logical structure, physical addresses, expected behavior, etc.]

Software Interfaces

[This section describes software interfaces to other components of the software system. These may be purchased components, components reused from another application or components being developed for subsystems outside of the scope of this SRS but with which this software application must interact.]

Communications Interfaces

[Describe any communications interfaces to other systems or devices such as local area networks, remote serial devices, etc.]

Licensing Requirements

[Defines any licensing enforcement requirements or other usage restriction requirements that are to be exhibited by the software.]

Legal, Copyright, and Other Notices

[This section describes any necessary legal disclaimers, warranties, copyright notices, patent notice, wordmark, trademark, or logo compliance issues for the software.]

Applicable Standards

[This section describes by reference any applicable standard and the specific sections of any such standards which apply to the system being described. For example, this could include legal, quality and regulatory standards, industry standards for usability, interoperability, internationalization, operating system compliance, etc.]

Supporting Information

[The supporting information makes the SRS easier to use. It includes:

•
Table of contents

•
 Index

•
Appendices

These may include use-case storyboards or user-interface prototypes. When appendices are included, the SRS should explicitly state whether or not the appendices are to be considered part of the requirements.]

PAGE
21

