
© IEEE – Trial Version 1.00 – May 2001

CHAPTER 1

INTRODUCTION TO THE GUIDE

In spite of the millions of software professionals worldwide
and the ubiquitous presence of software in our society,
software engineering has not yet reached the status of a
legitimate engineering discipline and a recognized
profession.
Originally formed in 1993 by the IEEE Computer Society
and the Association for Computing Machinery, the
Software Engineering Coordinating Committee (SWECC)
has been actively promoting software engineering as a
profession and an engineering discipline.
Achieving consensus by the profession on a core body of
knowledge is a key milestone in all disciplines and has
been identified by the SWECC as crucial for the evolution
of software engineering toward a professional status. This
Guide, written under the auspices of this committee, is the
part of a multi-year project designed to reach this
consensus.

What is Software Engineering?

The IEEE Computer Society defines software engineering
as
“(1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.
(2) The study of approaches as in (1).”1

What is a Recognized Profession?

For software engineering to be known as a legitimate
engineering discipline and a recognized profession,
consensus on a core body of knowledge is imperative. This
fact is well illustrated by Starr when he defines what can be
considered a legitimate discipline and a recognized
profession. In his Pulitzer-prize-winning book on the
history of the medical profession in the USA, he states that:
“the legitimization of professional authority involves three
distinctive claims: first, that the knowledge and competence
of the professional have been validated by a community of
his or her peers; second, that this consensually validated
knowledge rests on rational, scientific grounds; and third,
that the professional’s judgment and advice are oriented
toward a set of substantive values, such as health. These

1 “IEEE Standard Glossary of Software Engineering Terminology,”

IEEE, Piscataway, NJ std 610.12-1990, 1990.

aspects of legitimacy correspond to the kinds of attributes
— collegial, cognitive and moral — usually cited in the
term “profession.”2

What are the Characteristics of a Profession ?

But what are the characteristics of a profession? Gary Ford
and Norman Gibbs studied several recognized professions
including medicine, law, engineering and accounting3.
They concluded that an engineering profession is
characterized by several components:
� An initial professional education in a curriculum

validated by society through accreditation;
� Registration of fitness to practice via voluntary

certification or mandatory licensing;
� Specialized skill development and continuing

professional education;
� Communal support via a professional society;
� A commitment to norms of conduct often prescribed

in a code of ethics.
This Guide contributes to the first three of these
components. Articulating a Body of Knowledge is an
essential step toward developing a profession because it
represents a broad consensus regarding what a software
engineering professional should know. Without such a
consensus, no licensing examination can be validated, no
curriculum can prepare an individual for an examination,
and no criteria can be formulated for accrediting a
curriculum. The development of the consensus is also
prerequisite to the adoption of coherent skill development
and continuing professional education programs in
organizations.

What are the Objectives of the SWEBOK Project?

The Guide should not be confused with the Body of
Knowledge itself. The Body of Knowledge already exists in
the published literature. The purpose of the Guide is to
describe what portion of the Body of Knowledge is

2 P. Starr, The Social Transformation of American Medicine: Basic

Books, 1982. p. 15.
3 G. Ford and N. E. Gibbs, “A Mature Profession of Software

Engineering,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Technical CMU/SEI-96-TR-
004, January 1996.

1–2 © IEEE – Trial Version 1.00 – May 2001

generally accepted, to organize that portion, and to provide
a topical access to it.
The Guide to the Software Engineering Body of
Knowledge (SWEBOK) was established with the
following five objectives:
1. Promote a consistent view of software engineering

worldwide.
2. Clarify the place—and set the boundary—of software

engineering with respect to other disciplines such as
computer science, project management, computer
engineering, and mathematics.

3. Characterize the contents of the software engineering
discipline.

4. Provide a topical access to the Software Engineering
Body of Knowledge.

5. Provide a foundation for curriculum development and
individual certification and licensing material.

The first of these objectives, the consistent worldwide view
of software engineering was supported by a development
process that has engaged approximately 500 reviewers from
42 countries. (More information regarding the development
process can be found in the Preface and on the Web site.
Professional and learned societies and public agencies
involved in software engineering were officially contacted,
made aware of this project and invited to participate in the
review process. Knowledge Area Specialists or chapter
authors were recruited from North America, the Pacific
Rim and Europe. Presentations on the project were made to
various international venues and more are scheduled for the
upcoming year.
The second of the objectives, the desire to set a boundary,
motivates the fundamental organization of the Guide. The
material that is recognized as being within software
engineering is organized into the ten Knowledge Areas
listed in Table 1. Each of the ten KAs is treated as a chapter
in this Guide. Table 1. The SWEBOK knowledge areas
(KA).
Software requirements
Software design
Software construction
Software testing
Software maintenance
Software configuration management
Software engineering management
Software engineering process
Software engineering tools and methods
Software quality
In establishing a boundary, it is also important to identify
what disciplines share a boundary and often a common
intersection with software engineering. To this end, the
guide also recognizes seven related disciplines, listed in

Table 2 (See also Appendix B). Software engineers should
of course know material from these fields (and the KA
descriptions may make references to the fields). It is not
however an objective of the SWEBOK Guide to
characterize the knowledge of the related disciplines but
rather what is viewed as specific to software engineering.

Table 2 Related disciplines.
Cognitive sciences and human factors
Computer engineering
Computer science
Management and management science
Mathematics
Project management
Systems engineering

Hierarchical Organization

The organization of the Knowledge Area Descriptions or
chapters, shown in Figure 1, supports the third of the
project’s objectives—a characterization of the contents of
software engineering. The detailed specifications provided
by the project’s editorial team to the Knowledge Area
Specialists regarding the contents of the Knowledge Area
Descriptions can be found in Appendix A.

Figure 1 The organization of a KA description

The Guide uses a hierarchical organization to decompose
each KA into a set of topics with recognizable labels. A
two- or three-level breakdown provides a reasonable way to
find topics of interest. The Guide treats the selected topics
in a manner compatible with major schools of thought and
with breakdowns generally found in industry and in
software engineering literature and standards. The
breakdowns of topics do not presume particular application
domains, business uses, management philosophies,
development methods, and so forth. The extent of each
topic’s description is only that needed to understand the

Breakdown
of Topics

Matrix of Topics
and Reference

Materials

Reference
Materials

Topic
Descriptions Classification

by Bloom’s
Taxonomy

References to
Related

Disciplines

© IEEE – Trial Version 1.00 – May 2001

generally accepted nature of the topics and for the reader to
successfully find reference material. After all, the Body of
Knowledge is found in the reference materials, not in the
Guide itself.

Reference Materials and a Matrix

To provide a topical access to the Knowledge—the fourth
of the project’s objectives—the Guide identifies reference
materials for each KA including book chapters, refereed
papers, or other well-recognized sources of authoritative
information4. Each KA description also includes a matrix
that relates the reference materials to the listed topics. The
total volume of cited literature is intended to be suitable for
mastery through the completion of an undergraduate
education plus four years of experience.
It should be noted that the Guide does not attempt to be
comprehensive in its citations. Much material that is both
suitable and excellent is not referenced. Materials were
selected, in part, because— taken as a collection—they
provide coverage of the described topics.

Depth of Treatment

From the outset, the question arose as to the depth of
treatment the Guide should provide. We adopted an
approach that supports the fifth of the project’s
objectives—providing a foundation for curriculum
development, certification and licensing. We applied a
criterion of generally accepted knowledge, which we had to
distinguish from advanced and research knowledge (on the
grounds of maturity) and from specialized knowledge (on
the grounds of generality of application). A second
definition of generally accepted comes from the Project
Management Institute: “The generally accepted knowledge
applies to most projects most of the time, and widespread
consensus validates its value and effectiveness”.5
However, generally accepted knowledge does not imply
that one should apply the designated knowledge uniformly
to all software engineering endeavors—each project’s
needs determine that—but it does imply that competent,
capable software engineers should be equipped with this
knowledge for potential application. More precisely,
generally accepted knowledge should be included in the
study material for a software engineering licensing
examination that graduates would take after gaining four
years of work experience. Although this criterion is specific
to the U.S. style of education and does not necessarily
apply to other countries, we deem it useful. However, both

4 Web pages in the Recommended References sections were verified on

April 9, 2001.
5 Project Management Institute, A Guide to the Project Management

Body of Knowledge, Upper Darby, PA, 1996,
http://www.pmi.org/publictn/pmboktoc.htm/. “Project” in the quote
refers to projects in general.

definitions of generally accepted knowledge should be seen
as complementary.
Additionally, the KA descriptions are somewhat forward-
looking—we’re considering not only what is generally
accepted today but also what could be generally accepted in
three to five years.

Ratings

As an aid notably to curriculum developers and in support
of the project’s fifth objective, the Guide rates each topic
with one of a set of pedagogical categories commonly
attributed to Benjamin Bloom6. The concept is that
educational objectives can be classified into six categories
representing increasing depth: knowledge, comprehension,
application, analysis, synthesis, and evaluation Results of
this exercise for all KAs can be found in Appendix C. This
Appendix must however not be viewed as a definitive
classification but much more as a starting point for
curriculum developers.

KAs from Related Disciplines

A list of disciplines (Related Disciplines) that share a
common boundary with software engineering can be found
in Appendix B. Appendix B also identifies from an
authoritative source a list of KAs of these Related
Disciplines.

A proposed Breakdown for an Additional KA

One of the knowledge areas that was not included in this
Trial version because there was no consensus on the
generally accepted set of reference material is Component
integration. Since such a consensus may appear in the near
future, we include in Appendix D a proposal for a
breakdown of topics on that subject. This is intended to
serve as a jumpstart for future work on the topic.
We recognize also that Human-Computer Interface is
important and we will in future versions indicate a point
beyond which the software engineer should seek the help of
a specialist. There was also no consensus on a set of
reference material on the subject.

THE KNOWLEDGE AREAS

Figure 2 maps out the 10 KAs and the important topics
incorporated within them. The first five KAs are presented
in traditional waterfall lifecycle sequence. The subsequent
Kas are presented in alphabetical order. This is identical to
the sequence in which they are presented in the Guide.
Brief summaries of the KA descriptions appear next.

6 See chiron.valdosta.edu/whuitt/col/cogsys/bloom.html for a short

description of Bloom’s taxonomy. The original source is Bloom, B.S.
(Ed.) (1956) Taxonomy of educational objectives: The classification
of educational goals: Handbook I, cognitive domain. New York ;
Toronto: Longmans, Green.

1–4 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE REQUIREMENTS (see Figure 2, column a)

A requirement is defined as a property that must be
exhibited in order to solve some problem of the real world.
The first knowledge sub-area is the requirement
engineering process, which introduces the requirements
engineering process, orienting the remaining five topics and
showing how requirements engineering dovetails with the
overall software engineering process. It describes process
models, process actors, process support and management
and process quality improvement.
The second sub-area is requirements elicitation, which is
concerned with where requirements come from and how
they can be collected by the requirements engineer. It
includes requirement sources and techniques for elicitation.
The third sub-area, requirements analysis, is concerned
with the process of analyzing requirements to:
� detect and resolve conflicts between requirements;
� discover the bounds of the system and how it must

interact with its environment;
� elaborate system requirements to software

requirements.
Requirements analysis includes requirements classification,
conceptual modeling, architectural design and requirements
allocation and requirements negotiation.
The fourth sub-area is software requirements specification.
It describes the structure, quality and verifiability of the
requirements document. This may take the form of two
documents, or two parts of the same document with
different readership and purposes. The first document is the
system requirements definition document, and the second is
the software requirements specification. The sub-area also
describes the document structure and standards and
document quality.
The fifth sub-area is requirements validation whose aim is
to pick up any problems before resources are committed to
addressing the requirements. Requirements validation is
concerned with the process of examining the requirements
document to ensure that it defines the right system (i.e. the
system that the user expects). It is subdivided into
descriptions of the conduct of requirements reviews,
prototyping, model validation and acceptance tests.
The last sub-area is requirements management, which is an
activity that spans the whole software life-cycle. It is
fundamentally about change management and the
maintenance of the requirements in a state that accurately
mirrors the software to be, or that has been, built. It
includes change management, requirements attributes and
requirements tracing.

SOFTWARE DESIGN (see Figure 2, column b)

According to the IEEE, software design is an activity that
spans the whole software life-cycle. It is fundamentally
about change management and the maintenance of the
requirements in a state that accurately mirrors the software
to be, or that has been, built. The knowledge area is divided
into six sub-areas.
The first one presents the basic concepts and notions which
form an underlying basis to the understanding of the role
and scope of software design. These are general concepts,
the context of software design, the design process and the
enabling techniques for software design.
The second sub-area regroups the key issues of software
design. They include concurrency, control and handling of
events, distribution, error and exception handling,
interactive systems and persistence.
The third sub-area is structure and architecture, in
particular architectural structures and viewpoints,
architectural styles, design patterns, and finally families of
programs and frameworks.
The fourth sub-area describes software design quality
analysis and evaluation. While a whole knowledge area is
devoted to software quality, this sub-area presents the
topics more specifically related to software design. These
aspects are quality attributes, quality analysis and
evaluation tools and measures.
The fifth one is software design notations, which are
divided into structural and behavioral descriptions.
The last sub-area covers software design strategies and
methods. First, general strategies are described, followed by
function-oriented methods, then object-oriented methods,
data-structure centered design and a group of other
methods, like formal and transformational methods.

SOFTWARE CONSTRUCTION (see Figure 2, column c)

Software Construction is a fundamental act of software
engineering: the construction of working meaningful
software through a combination of coding, validation, and
testing (unit testing).
The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed. These principles are
the reduction of complexity, the anticipation of diversity,
the structuring for validation and the use of external
standards.
A second and less important method of breaking the subject
of software construction into smaller units is to recognize
three styles/methods of software construction, namely :
Linguistic, Formal and Visual.
A synthesis of these two views is presented.

© IEEE – Trial Version 1.00 – May 2001

SOFTWARE TESTING (see Figure 2, column d)

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the specified expected behavior. It includes five
sub-areas.
It begins with a description of basic concepts. First, the
testing terminology is presented, then the theoretical
foundations of testing are described, with the relationship
of testing to other activities.
The second sub-area is the test levels. They are divided
between the targets and the objectives of the tests.
The third sub-area are the test techniques themselves. A
first category is grouped on the criterion of the base on
which tests are generated, and a second group based on the
ignorance of knowledge of implementation. A discussion of
how to select and combine the appropriate techniques is
presented.
The fourth sub-area covers test-related measures. The
measures are grouped into those related to the evaluation of
the program under test and the evaluation of the tests
performed.
The last sub-area describes the management specific to the
test process. It included management concerns and the test
activities.

SOFTWARE MAINTENANCE (see Figure 2, column e)

Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.
The maintenance phase of the lifecycle commences upon
delivery but maintenance activities occur much earlier. The
Software maintenance knowledge area is dived into six
sub-areas.
The first on presents the domain’s basic concepts,
definitions, the main activities and problems of software
maintenance.
The second sub-area describes the maintenance process,
based on the standards IEEE 1219 and ISO/IEC 14764.
The third sub-area regroups key issues related to software
maintenance. The topics covered are technical,
management, cost and estimation and measurement issues.
Techniques for maintenance constitute the fourth sub-area.
Those techniques include program comprehension, re-
engineering, reverse engineering and impact analysis.

 SOFTWARE CONFIGURATION MANAGEMENT (see Figure
2, column f)

Software Configuration Management (SCM) is the
discipline of identifying the configuration of a system at
distinct points in time for the purpose of systematically
controlling changes to the software configuration and
maintaining the integrity and traceability of the

configuration throughout the system lifecycle. This
Knowledge Area includes six sub-areas.
The first sub-area is the management of the SCM process. It
covers the topics of the organizational context for SCM,
constraints and guidance for SCM, planning for SCM, the
SCM plan itself and surveillance of SCM.
The second sub-area is Software configuration
identification, which identifies items to be controlled,
establishes identification schemes for the items and their
versions, and establishes the tools and techniques to be
used in acquiring and managing controlled items. The
topics in this sub-area are first the identification of the
items to be controlled and the software library.
The third sub-area is the software configuration control,
which is the management of changes during the software
life-cycle. The topics are, first, requesting, evaluating and
approving software changes, and, second, implementing
software changes, and third deviations and waivers.
The fourth sub-area is software configuration status
accounting. Its topics are software configuration status
information and status reporting.
The fifth sub-area is software configuration auditing.
Consisting of software functional configuration auditing,
software physical configuration auditing and in-process
audits of a software baseline.
The last sub-area is software release management and
delivery, covering software building and software release
management.

SOFTWARE ENGINEERING MANAGEMENT (see Figure 2,
column g)

Whilst it is true to say that in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects particular
to software products and the software engineering process
that complicate effective management. There are three sub-
areas for software engineering management.
The first is organizational management, comprising policy
management, personnel management, communication
management, portfolio management and procurement
management.
The second sub-area is process/project management,
including initiation and scope definition, planning,
enactment, review and evaluation and closure.
The third and last sub-area is software engineering
measurement, where general principles about software
measurement are covered. The first topics presented are the
goals of a measurement program, followed by measurement
selection, measuring software and its development,
collection of data and, finally, software metric models.

1–6 © IEEE – Trial Version 1.00 – May 2001

SOFTWARE ENGINEERING PROCESS (see Figure 2,
column h)

The Software Engineering Process Knowledge Area is
concerned with the definition, implementation,
measurement, management, change and improvement of
the software engineering process itself. It is divided into six
sub-areas.
The first one presents the basic concepts: themes and
terminology.
The second sub-area is process infrastructure, where the
Software Engineering Process group concept is described,
as well as the Experience Factory.
The third sub-area deals with measurements specific to
software engineering process. It presents the methodology
and measurement paradigms in the field.
The fourth sub-area describes knowledge related to process
definition: the various types of process definitions, the life-
cycle framework models, the software life-cycle models,
the notations used to represent these definitions, process
definitions methods and automation relative to the various
definitions.
The fifth sub-area presents qualitative process analysis,
especially the process definition review and root cause
analysis.
Finally, the sixth sub-area concludes with process
implementation and change. It describes the paradigms and
guidelines for process implementation and change, and the
evaluation of the outcome of implementation and change.

SOFTWARE ENGINEERING TOOLS AND METHODS (see
Figure 2, column i)

The Software Engineering Tools and Methods knowledge
area includes both the software development environments
and the development methods knowledge areas identified in
the Straw Man version of the guide.
Software development environments are the computer-
based tools that are intended to assist the software
development process. Development methods impose
structure on the software development activity with the
goal of making the activity systematic and ultimately more
likely to be successful.
The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) and the next four subsections correspond to
the remaining Knowledge Areas (Process, Quality,
Configuration Management and Management). Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool

integration techniques, that are potentially applicable to all
classes of tools.
The software development methods section is divided into
four subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneous method issues.

SOFTWARE QUALITY (see Figure 2, column j)

This chapter deals with software quality considerations that
transcend the lifecycle processes. Since software quality is
a ubiquitous concern in software engineering, it is
considered in many of the other KAs and the reader will
notice pointers those KAs through this KA. The Knowledge
Area description covers four sub-areas.
The first sub-area describes the software quality concepts
such as measuring the value of quality, the ISO9126 quality
description, dependability and other special types of system
and quality needs.
The second sub-area covers the purpose and planning of
software quality assurance (SQA) and V&V (Verification
and Validation). It includes common planning activities,
and both the SQA and V&S plans.
The third sub-area describes the activities and techniques
for SQA and V&V. It includes static and dynamic
techniques as well as other SQA and V&S testing.
The fourth sub-area describes measurement applied to SQA
and V&V. It includes the fundamentals of measurement,
measures, measurement analysis techniques, defect
characterization, and additional uses of SQA and V&V
data.

© IEEE – Trial Version 1.00 – May 2001 1–7

Process
Measurement

Software Design Tools

Guide to the Software Engineering Body of Knowledge
(Version 0.95)

Software
Configuration
Management

Software
Construction

Software
Engineering Tools

and Methods

Software
Engineering

Process

Software
Maintenance Software QualitySoftware Testing

 Management of
the SCM Process

Software
Configuration
Identification

Software
Configuration

Control

Software
Configuration

Status Accounting

Software
Configuration

Auditing

Software Release
Management and

Delivery

Reduction in
Complexity

Anticipation of
Diversity

Software Methods

Software Tools
Software

Engineering
Process Concepts

Process Definition

Process
Implementation

and Change

Basic Concepts

Maintenance
Process

Key Issues in
Software

Maintenance

Techniques for
Maintenance

Software Quality
Concepts

Definition &
Planning for Quality

Testing Basic
Concepts and

Definitions

Test Levels

Test Techniques

Test-Related
Measures

Managing the Test
Process

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Heuristic Methods

Formal Methods

Prototyping Methods

Software Requirements
Tools

Software Testing Tools

Software Maintenance
Tools

Software Engineering
Process Tools

Process
Infrastructure

Qualitative Process
Analysis

Techniques
Requiring Two or

More People

Support to Other
Techniques

Testing Special to
SQA or V&V

Software Construction
Tools

(a) (b) (c) (d)(e) (f) (g) (h) (i) (j)

Software Quality Tools

Software Configuration
Management Tools

Software Engineering
Management Tools

Infrastructure Support
Tools

Miscellaneous Tool
Issues

Miscellaneous Method
Issues

Software Design

Software Design
Basic Concepts

Key Issues in
Software Design

Software Structure
and Architecture

Software Design
Quality Analysis
and Evaluation

Software Design
Notations

Software
Requirements

Requirement
Engineering

Process

Requirements
Elicitation

Requirement
Analysis

Requirements
Validation

Requirements
Management

Requirements
Specification

Software
Engineering
Management

Organizational
Management

Process/Project
Management

Software
Engineering

Measurement

(d)

Software Design
Strategies and

Methods

Defect Finding
Techniques

Measurement in
Software Quality

Analysis

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Structuring for
Validation

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

Use of External
Standards

Linguistic Construction
Methods

Formal Construction
Methods

Visual Construction
Methods

