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1. INTRODUCTION 

Techniques of software construction are largely craft-based. 
As we come to understand the techniques better, we can 
explain them in terms of principles that can be explained as 
part of engineering knowledge. This description will 
therefore describe the underlying engineering principles in 
some detail and treat the specific craft-based techniques 
more briefly, usually just by naming them. 

1.1. Annotated table of contents 

This chapter is laid out as follows: 
1. Introduction - This provides the road map to explain 

the overall structure of the chapter. 
2. Definition - This defines Software Construction and 

provides links to other Knowledge Areas. 
3. Principles of Organization - This explains the first 

and most important method chosen to break the 
subject matter into smaller sections, using four 
principles of software construction. The subject matter 
proper appears in section 5. 

4. Styles of Construction - This explains a second and 
less important method chosen to break down the 
subject matter in each of section 5 into even smaller 
subsections, using three styles/methods of software 
construction. 

5. Synthesis – This section contains 4 sub-sections, one 
for each of the four principles (the major dissection); 
each section contains 3 sub-sub-sections, one for each 
of the three styles of construction (the minor 
dissection). 

6. Selected References 
7. Additional References 
8. Standards 
9. References to Justify this Knowledge Area 
10. Matrix of Reference Material versus Topics 

2. DEFINITION OF THE SOFTWARE CONSTRUCTION 
KNOWLEDGE AREA 

The Guide to the Swebok places the chapter on 
Construction after the one on Design and before the one on 
Testing. This does not imply either that the design stage 
must be complete before construction starts or that the 
construction stage must be complete before testing starts. In 
some development styles – such as the classic waterfall - 
design, construction, and testing are meant to proceed in 
that order. In others – such as the spiral method - 
development proceeds in successive steps, where each step 
consists of a predefined quantity of design, construction, 
and testing. 
An important part of software engineering is to make a 
rational choice of development style for a given software 
project. 
Software construction is linked to all other KAs, perhaps 
most strongly to Design, and Testing. This is because the 
construction process consumes the output of the Design 
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process (KA3) and itself provides one of the inputs to the 
Testing process (KA5). 
Software construction is a fundamental act of software 
engineering: the construction of working, meaningful 
software through a combination of coding, validation, and 
testing (unit testing) by a programmer. Far from being a 
simple mechanistic “translation” of good design into 
working software, software construction burrows deeply 
into difficult issues of software engineering. It requires the 
establishment of a meaningful dialog1 between a person 
and a computer – a “communication of intent” that must 
reach from the slow and fallible human to a fast and 
unforgivingly literal computer. Such a dialog requires that 
the computer perform activities for which it is poorly 
suited, such as understanding implicit meanings and 
recognizing the presence of nonsensical or incomplete 
statements. On the human side, software construction 
requires that developers be logical, precise, and thorough so 
that their intentions can be accurately captured and 
understood by the computer. The relationship works only 
because each side possesses certain capabilities that the 
other lacks. In the symbiosis that is software construction, 
the computer provides astonishing reliability, retention, and 
(once the need has been explained) speed of performance. 
Meanwhile, the human being provides creativity and 
insight into how to solve new, difficult problems, plus the 
ability to express those solutions with sufficient precision 
to be meaningful to the computer. 

2.1. Software Construction and Software Design 

Software construction is closely related to software design 
(see Knowledge Area Description for Software Design). 
Software design analyzes software requirements in order to 
produce a description of the internal structure and 
organization of a system that will serve as a basis for its 
construction. Software design methods are used to express 
a global solution as a set of smaller solutions and can be 
applied repeatedly until the resulting parts of the solution 
are small enough to be handled with confidence by a single 
developer. It is at this point – that is, when the design 
process has broken the larger problem up into easier-to-
handle chunks – that software construction is generally 
understood to begin. This definition also recognizes the 
distinction that while software construction necessarily 
produces executable software, software design does not 
necessarily produce any executable products at all. 
In practice, however, the boundary between design and 
construction is seldom so clearly defined. Firstly, software 
construction is influenced by the scale or size of the 

                                                           
1  Some reviewers have commented that it is improper even to suggest 

that computers “understand programs” or “speak languages”. 
However we prefer to retain the language of metaphor to illuminate 
the material; the reader will understand that such language is 
metaphorical as opposed to literal. 

 

software product being constructed. Very small projects in 
which the design problems are already “construction size” 
may neither require nor need an explicit design phase, and 
very large projects may require a much more interactive 
relationship between design and construction as different 
prototyping alternatives are proposed, tested, and discarded 
or used. Secondly, many of the techniques of software 
design also apply to software construction, since dividing 
problems into smaller parts is just as much a part of 
construction as it is design. Thirdly, effective design 
techniques always contain some degree of guessing or 
approximation in how they define their sub-problems. A 
few of the resulting approximations will turn out to be 
wrong, and will require corrective actions during software 
construction. (While another seemingly obvious solution 
would be to remove guessing and approximation altogether 
from design methods, that would contradict the premise 
that the original problem was too large and complex to be 
solved in one step. Effective design techniques instead 
acknowledge risk, work to reduce it, and help make sure 
that effective alternatives will be available when some 
choices eventually prove wrong.) 
Design and construction both require sophisticated problem 
solving skills, although the two activities have somewhat 
different emphases. In design the emphasis is on how to 
partition a complex problem effectively, while in 
construction the emphasis is on finding a complete and 
executable solution to a problem. When software 
construction techniques do become so well-defined that 
they can be applied mechanistically, the proper route for 
the software engineer is to automate those techniques and 
move on to new problems, ones whose answers are not so 
well defined. This trend toward automation of well-defined 
tasks began with the first assemblers and compilers, and it 
has continued unabated as new generations of tools and 
computers have made increasingly powerful levels of 
construction automation possible. Projects that do contain 
highly repetitive, mechanistic software construction steps 
should examine their designs, processes, and tools sets 
more closely for ways to automate such needlessly 
repetitive steps out of existence. 

2.2. The Role of Tools in Construction 

In software engineering, a tool is a hardware or software 
device that is used to support performing a process. An 
effective tool is one that provides significant improvements 
in productivity and/or quality. This is a very inclusive 
definition, however, since it encompasses general-purpose 
hardware devices such as computers and peripherals that 
are part of an overall software-engineering environment. 
Software construction tools are a more specific category of 
tools that are both software-based and used primarily 
within the construction process. Common examples of 
software construction tools include compilers, version 
control systems, debuggers, code generators, specialized 



© IEEE – Trial Version 1.00 – May 2001 4–3 

editors, tools for path and coverage analysis, test 
scaffolding and documentation tools. 
The best software construction tools bridge the gap 
between methodical computer efficiency and forgetful 
human creativity. Such tools allow creative minds to 
express their thoughts easily, but also enforce an 
appropriate level of rigor. Good tools also improve 
software quality by allowing people to avoid repetitive or 
precise work for which a computer is better suited. 

2.3. The Role of Integrated Evaluation in Construction 

Another important theme of software engineering is the 
evaluation of software products. This includes such diverse 
activities as peer review of code and test plan, testing, 
software quality assurance, and measures2 (see Knowledge 
Area Description for Testing and Knowledge Area 
Description for Software Quality Analysis). Integrated 
evaluation means that a process (in this case a development 
process) includes explicit continuous or periodic internal 
checks to ensure that it is still working correctly. These 
checks usually consist of evaluations of intermediate work 
products such as documents, designs, source code, or 
compiled modules, but they may also look at characteristics 
of the development process itself. Examples of product 
evaluations include design reviews, module compilations, 
and unit tests. An example of process-level evaluation 
would be periodic re-assessment of a code library to ensure 
its accuracy, completeness, and self-consistency. 
Integrated evaluation in software engineering has yet to 
reach the stage achieved in hardware engineering where the 
evaluation is built into the components themselves, e.g. 
integrated self-test logic and built-in error recovery in 
complex integrated circuits. Such features were first added 
to integrated circuits when it was realized the circuits had 
become so complex that the assumption of perfect start-to-
finish reliability was no longer tenable. As with integrated 
circuits, the purpose of integrated checking in software 
processes is to ensure that they can operate for long periods 
without generating nonsensical or hazardously misleading 
answers. 
Historically, software construction has tended to be one of 
the software engineering steps in which developers were 
particularly prone to omitting checks on the process. While 
nearly all developers practice some degree of informal 
evaluation when constructing software, it is all too common 
for them to skip needed evaluation steps because they are 
too confident about the reliability and quality of their own 
software constructions. Nonetheless, a wide range of 
automated, semi-automated, and manual evaluation 
methods have been developed for use in the software 
construction phase. 

                                                           
2  The word metrics is commonly used by software developers to denote 

the activity that practitioners in other branches of engineering refer to 
as measurement.  

The simplest and best-known form of software construction 
evaluation is the use of unit testing after completion of each 
well-defined software unit. Automated techniques such as 
compile-time checks and run-time checks help verify the 
basic integrity of software units, and manual techniques 
such as code reviews can be used to search for more 
abstract classes of errors. Tools for extracting 
measurements of code quality and structure can also be 
used during construction, although such measurement tools 
are more commonly applied during integration of large 
suites of software units. When collecting measurements, it 
is important that the measurements collected be relevant to 
the goals of the development process. 

2.4. The Role of Standards in Construction 

All forms of successful communication require a common 
language. Standards are in many ways best understood as 
agreements by which both concepts and technologies can 
become part of the shared “language” of a broader 
community of users. In many cases, standards are selected 
by a customer or by an organization. Project managers 
should consider the use of additional standards selected to 
be suitable to the specific characteristics of the project. 
Software construction is particularly sensitive to the 
selection of standards, which directly affects such 
construction-critical issues as programming languages, 
databases, communication methods, platforms, and tools. 
Although such choices are often made before construction 
begins, it is important that the overall software 
development process take the needs of construction into 
account when standards are selected. 

2.5. Manual and Automated Construction/The 
Spectrum of Construction Techniques 

Manual Construction 

Manual construction means solving complex problems in a 
language that a computer can execute. Practitioners of 
manual construction need a rich mix of skills that includes 
the ability to break complex problems down into smaller 
parts, a disciplined formal-proof-like approach to problem 
analysis, and the ability to “forecast” how constructions 
will change over time. Expert manual constructors 
sometimes use the skills of advanced logicians; they always 
need to apply the skills they have within a complex, 
changing environment such as a computer or network. 
It would be easy to directly equate manual construction to 
coding in a programming language, but it would also be an 
incomplete definition. An effective manual construction 
process should result in code that fully and correctly 
processes data for its entire problem space, anticipates and 
handles all plausible (and some implausible) classes of 
errors, runs efficiently, and is structured to be resilient and 
easy-to-change over time. An inadequate manual 
construction process will in contrast result in code like an 
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amateurish painting, with critical details missing and the 
entire construction stitched together poorly. 

Automated Construction 

While no form of software construction can be fully 
automated, much or all of the overall coordination of the 
software construction process can be moved from people to 
the computer – that is, overall control of the construction 
process can be largely automated. Automated construction 
thus refers to software construction in which an automated 
tool or environment is primarily responsible for overall 
coordination of the software construction process. This 
removal of overall process control can have a large impact 
on the complexity of the software construction process, 
since it allows human contributions to be divided up into 
much smaller, less complex “chunks” that require different 
problem solving skills to solve. Automated construction is 
also reuse-intensive construction, since by limiting human 
options it allows the controlling software to make more 
effective use of its existing store of effective software 
problem solutions. Of course, automated construction is not 
necessarily low cost; sometimes the cost of setting up the 
machinery is higher than the cost saved in its use. 
In its most extreme form, automated construction consists 
of two related but distinct activities: (1) configuring a 
baseline system, which means configuring a predefined set 
of options that provide a workable solution in a typical 
business context and (2) implementing exceptions in the 
context of the product’s usage. This may include resetting 
parameters, constructing additional software chunks, 
building interfaces, and moving data from existing legacy 
systems and other data sources to the new system. For 
example, an accounting application for small businesses 
might lead users through a series of questions that will 
result in a customized installation of the application. When 
compared to using manual construction for the same type of 
problem, this form of automated construction “swallows” 
huge chunks of the overall software engineering process 
and replaces them with automated selections that are 
controlled by the computer. Toolkits provide a less extreme 
example in which developers still have a great deal of 
control over the construction process, but that process has 
been greatly constrained and simplified by the use of 
predefined components with well-defined relationships to 
each other. 
Automated construction is necessarily tool-intensive 
construction, since the objective is to move as much of the 
overall software development process as possible away 
from the human developer and into automated processes. 
Automated construction tools tend to take the form of 
program generators and fully integrated environments that 
can more easily provide automated control of the 
construction process. To be effective in coordinating 
activities, automated construction tools also need to have 
easy, intuitive interfaces. 

Moving Towards Automation 

An important goal of software engineering is to move 
construction continually towards higher levels of 
automation. That is, when selection from a simple set of 
options is all that is really required to make software work 
for a business or system, then the goal of software 
engineers should continually be to make their systems 
come as close to that level of simplicity as possible. This 
not only makes software more accessible, but also makes it 
safer and more reliable by removing opportunities for error. 
The concept of moving towards higher levels of 
construction automation permeates nearly every aspect of 
software construction. When simple selections from a list 
of options will not suffice, software engineers often can 
still develop application specific tool kits (that is, sets of 
reusable parts designed to work with each other easily) to 
provide a somewhat lesser level of control. Even fully 
manual construction reflects the theme of automation, since 
many coding techniques and good programming practices 
are intended to make code modification easier and more 
automated. For example, even a concept as simple as 
defining a constant at the beginning of a software module 
reflects the automation theme, since such constants 
“automate” the appropriate insertion of new values for the 
constant in the event that changes to the program are 
necessary. Similarly, the concept of class inheritance in 
object-oriented programming helps automate and enforce 
the conveyance of appropriate sets of methods into new, 
closely related or derived classes of objects. 

2.6. Construction Languages 

Construction languages include all forms of 
communication by which a human can specify an 
executable problem solution to a computer. The simplest 
type of construction language is a configuration language, 
in which developers choose from a limited set of predefined 
options to create new or custom installations of software. 
The text-based configuration files used in both Windows 
and Unix operating systems are examples, and the menu-
style selection lists of some program generators are another. 
Toolkit languages are used to build applications out of 
toolkits (integrated sets of application-specific reusable 
parts), and are more complex than configuration languages. 
Toolkit languages may be explicitly defined as application 
programming languages (e.g., scripts), or may simply be 
implied by the collected set of interfaces of a toolkit. As 
described below, programming languages are the most 
flexible type of construction languages, but they also 
contain the least information about both application areas 
and development processes, and so require the most 
training and skill to use effectively. 

2.7. Programming Languages 

Since the fundamental task of software construction is to 
communicate intent unambiguously between two very 
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different types of entities (people and computers), the 
interface between the two is most commonly expressed as 
languages. Programming languages are more literal than 
natural languages, since no computer yet built has sufficient 
context and understanding of the natural world to recognize 
invalid language statements and constructions that would 
be caught immediately in a natural language. As will be 
discussed below, programming languages can also borrow 
from other non-linguistic human skills such as spatial 
visualization. The particular requirements of an application 
domain can give rise to the development or use of a 
specialized, domain-specific language such as lex, yacc, 
PHP, TCL, or TK. 
Programming languages are often created in response to the 
needs of particular application fields, but the quest for more 
universal or encompassing programming language is 
ongoing. As in many relatively young disciplines, such 
quests for universality are as likely to lead to short-lived 
fads as they are to genuine insights into the fundamentals of 
software construction. For this very reason, it is important 
that software construction not be tied too greatly on any 
programming language or programming methodology. 
Adherence to suitable programming language standards, 
and avoiding proprietary feature sets helps avoid language 
obsolescence. 

3. BREAKDOWN OF TOPICS FOR SOFTWARE 
CONSTRUCTION3 

3.1. Principles of Organization 

The first and most important method of breaking the 
subject of software construction into smaller units is to 
recognize the four principles that most strongly affect the 
way in which software is constructed, namely 
� Reduction of Complexity 
� Anticipation of Diversity 
� Structuring for Validation 
� Use of External Standards 
These are discussed below. 

3.1.1. Reduction of Complexity 

This principle of organization reflects the relatively limited 
ability of people to work with complex systems that have 
many parts or interactions. A major factor in how people 
convey intent to computers is the severely limited ability of 
people to “hold” complex structures and information in 
their working memory, especially over long periods of 
time. This need for simplicity in the human-to-computer 
interface leads to one of the strongest drivers in software 
construction: reduction of complexity. The need to reduce 

                                                           
3 An alternate, more traditional, breakdown is presented in Appendix B. 

complexity applies to essentially every aspect of the 
software construction, and is particularly critical to the 
process of self-verification and testing of software 
constructions. 
There are three main techniques for reducing complexity 
during software construction: 

3.1.1.1 Removal of Complexity 

Although trivial in concept, one obvious way to reduce 
complexity during software construction is to remove 
features or capabilities that are not absolutely required. This 
may or may not be the right way to handle a given 
situation, but certainly the general principle of parsimony – 
that is, of not adding capabilities that clearly will never be 
needed when constructing software – is valid. 

3.1.1.2 Automation of Complexity 

A much more powerful technique for removal of 
complexity is to automate the handling of it. That is, a new 
construction language is created in which features that were 
previously time-consuming or error-prone for a human to 
perform are migrated over to the computer in the form of 
new software capabilities. The history of software is replete 
with examples of powerful software tools that raised the 
overall level of development capability of people by 
allowing them to address a new set of problems. Operating 
systems are one example of this principle, since they 
provide a rich construction language by which efficient use 
of underlying hardware resources can be greatly simplified. 
Visual construction languages similarly provide automation 
of the construction of software that otherwise could be very 
laborious to build. 

3.1.1.3 Localization of Complexity 

If complexity can neither be removed nor automated, the 
only remaining option is to localize complexity into small 
“units” or “modules” that are small enough for a person to 
understand in their entirety, and (perhaps more importantly) 
sufficiently isolated that meaningful assertions can be made 
about them. This might even lead to components that can 
be re-used. However, one must be careful, as arbitrarily 
dividing a very long sequence of code into small “modules” 
does not help, because the relationships between the 
modules become extremely complex and difficult to 
predict. Localization of complexity has a powerful impact 
on the design of programming languages, as demonstrated 
by the growth in popularity of object-oriented methods that 
seek to strictly limit the number of ways to interface to a 
software module, even though that might end up making 
components more dependent. Localization is also a key 
aspect of good design of the broader category of 
construction languages, since new feature that are too hard 
to find and use are unlikely to be effective as tools for 
construction. Classical design admonitions such as the goal 
of having “cohesion” within modules and to minimize 
“coupling” are also fundamentally localization of 
complexity techniques, since they strive to make the 
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number and interaction of parts within a module easy for a 
person to understand. 

3.1.2. Anticipation of Diversity 

This principle has more to do with how people use software 
than with differences between computers and people. Its 
motive is simple: There is no such thing as an unchanging 
software construction. Any useful software construction 
will change in various ways over time, and the anticipation 
of change drives nearly every aspect of software 
construction. Useful software constructions are 
unavoidably part of a changing external environment in 
which they perform useful tasks, and changes in that 
outside environment trickle in to impact the software 
constructions in diverse (and often unexpected) ways. In 
contrast, formal mathematical constructions and formulas 
can in some sense be stable or unchanging over time, since 
they represent abstract quantities and relationships that do 
not require direct “attachment” to a working, physical 
computational machine. For example, even the software 
implementations of “universal” mathematical functions 
must change over time due to external factors such as the 
need to port them to new machines, and the unavoidable 
issue of physical limitations on the accuracy of the software 
on a given machine. 
Anticipation of the diversity of ways in which software will 
change over time is one of the more subtle principles of 
software construction, yet it is important for the creation of 
software that can endure over time and add value to future 
endeavors. Since it includes the ability to anticipate 
changes due to design errors in software, it also helps to 
make software robust and error-free. Indeed, one handy 
definition of “aging” software is that it is software that no 
longer has the flexibility to accommodate bug fixes without 
breaking. 
There are three main techniques for anticipating change 
during software construction: 

3.1.2.1 Generalization 

It is very common for software construction to focus first 
on highly specific problems with limited, rather specific 
solutions. This is common because the more general cases 
often simply are not obvious in the early stages of analysis. 
Generalization is the process of recognizing how a few 
specific problem cases fit together as part of some broader 
framework of problems, and thus can be solved by a single 
overarching software construction in place of several 
isolated ones. Generalization of functionality is a distinctly 
mathematical concept, and not too surprisingly the best 
generalizations that are developed are often expressed in 
the language of mathematics. Good design is equally an 
aspect of generalization, however. For example, software 
constructions that use stacks to store data are almost always 
more generalized than similar solutions using arrays 
behaving as stacks, since fixed sizes immediately place 
artificial (and usually unnecessary) constraints on the range 
of problem sizes that the construction can solve. 

Generalization anticipates diversity because it creates 
solutions to entire classes of problems that may not have 
even been recognized as existing before. Thus just as 
Newton’s general theory of gravity made a small number of 
formulas applicable to a much broader range of physics 
problems, a good generalization to a number of discrete 
software problems often can lead to the easy solution of 
many other development problems. For example, 
developing an easily customizable graphics user interface 
could solve a very broad range of development problems 
that otherwise would have required individual, labor-
intensive development of independent solutions. 
Anticipating diversity by using generalization is effective 
only when the developer finds generalizations that actually 
correspond to the eventual uses of the software. Developers 
may have no particular interest (or time) to develop the 
necessary generalizations under the schedule pressures of 
typical commercial projects. Even when the time needed is 
available, it is easy to develop the wrong set of 
generalizations – that is, to create generalizations that make 
the software easier to change, but only in ways that prove 
not to correspond to what is really needed. 
For these reasons, generalization is both safer and easier if 
it can be combined with the next technique of 
experimentation. Change experimentation makes 
generalization safer by capturing realistic data on which 
generalizations will be needed, and makes generalization 
easier by providing schedule-conscious projects with 
specific data on how generalizations can improve their 
products. 

3.1.2.2 Experimentation 

Experimentation means using early (sometimes very early) 
software constructions in as many different user contexts as 
possible, and as early in the development process as 
possible, for the explicit purpose of collecting data on how 
to generalize the construction. To experiment is to 
recognize how difficult it is to anticipate all the ways in 
which software constructions can change. 
Obviously, experimentation is a process-level technique 
rather than a code-level technique, since its goal is to 
collect data to help guide code-level processes such as 
generalization. This means that it is constrained by whether 
the overall development process allows it to be used at the 
construction level. Construction-level experimentation is 
most likely to be found in projects that have incorporated 
experimentation into their overall development process. 
The Internet-based open source development process that 
Linus Torvalds used to create the Linux operating system is 
an example of a process that both allowed and encouraged 
construction-level use of experimentation. In Torvalds’ 
approach, individual code constructions were very quickly 
incorporated into an overall product and then redistributed 
via the Internet, sometimes on the same day. This 
encouraged further use, experimentation, and updates to the 
individual constructions. Development environments and 
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languages that support the rapid prototyping style of 
development also encourage construction-level 
experimentation. 

3.1.2.3 Localization 

Localization means keeping anticipated changes as 
localized in a software construction as possible. It is 
actually a special case of the earlier principle of 
localization of complexity, since change is a particularly 
difficult class of complexity. A software construction that 
can be changed in a common way by making only one 
change at one location within the construction thus 
demonstrates good locality for that particular class of 
modifications. 
Localization is very common in software construction, and 
often is used intuitively as the “right way” to construct 
software. Objects are one example of a localization 
technique, since good object designs localize 
implementation changes to within the object. An even 
simpler example is using compile-time constants to reduce 
the number of locations in a program that must be changed 
manually should the constant change. Layered architectures 
such as those used in communication protocols are yet 
another example of localization, since good layer designs 
keep changes from crossing layers. 

3.1.3. Structuring for Validation 

No matter how carefully a person designs and implements 
software, the creative nature of non-trivial software 
construction (that is, of software that is not simply a re-
implementation of previously solved problems) means that 
mistakes and omissions will occur. Structuring for 
validation means building software in such a fashion that 
such errors and omissions can be ferreted out more easily 
during unit testing and subsequent testing activities. One 
important implication of structuring for validation is that 
software must generally be modular in at least one of its 
major representation spaces, such as in the overall layout of 
the displayed or printed text of a program. This modularity 
allows both improved analysis and thorough unit-level 
testing of such components before they are integrated into 
higher levels in which their errors may be more difficult to 
identify. As a principle of construction, structuring for 
validation generally goes hand-in-hand with anticipation of 
diversity, since any errors found as a result of validation 
represent an important type of “diversity” that will require 
software changes (bug fixes). It is not particularly difficult 
to write software that cannot really be validated no matter 
how much it is tested. This is because even moderately 
large “useful” software components frequently cover such a 
large range of outputs that exhaustive testing of all possible 
outputs would take eons with even the fastest computers. 
Structuring for validation thus becomes one important 
constraint for producing software that can be shown to be 
acceptably reliable within a reasonable time frame. The 
concept of unit testing parallels structuring for validation, 
and is used in parallel with the construction process to help 

ensure that validation occurs before the overall structure 
gets “out of hand” and can no longer be readily validated. 

3.1.4. Use of External Standards 

A natural language that is spoken by one person would be 
of little value in communicating with the rest of the world. 
Similarly, a construction language that has meaning only 
within the software for which it was constructed can be a 
serious roadblock in the long-term use of that software. 
Such construction languages therefore should either 
conform to external standards such as those used for 
programming languages, or provide a sufficiently detailed 
internal “grammar” (e.g., documentation) by which the 
construction language can later be understood by others. 
The interplay between reusing external standards and 
creating new ones is a complex one, as it depends not only 
on the availability of such standards, but also on realistic 
assessments of the long-term viability of such external 
standards. With the advent of the Internet as a major force 
in software development and interaction, the importance of 
selecting and using appropriate external standards for how 
to construct software is more apparent than ever before. 
Software that must share data and even working modules 
with other software anywhere in the world obviously must 
“share” many of the same languages and methods as that 
other software. The result is that selection and use of 
external standards – that is, of standards such as language 
specifications and data formats that were not originated 
within a software effort – is becoming more important. This 
is a complex issue, however, because the selection of an 
external standard may need to take account of such 
difficult-to-predict issues as the long-term economic 
viability of a particular software company or organization 
that promotes that standard. Stability of the standard is 
especially important. Also, selecting one level of 
standardization often opens up an entire new set of 
standardization issues. An example of this is the data 
description language XML (eXtensible Markup Language). 
Selecting XML as an external standard answers many 
questions about how to describe data in an application, but 
it also raises the issue of whether one of the several 
customizations of XML to specific problem domains 
should also be used. 
Other examples of external standards include API standards 
such as mathematics libraries, POSIX and SQL. In addition 
there are standards such as ISO/IEC 9126 , IEEE Std 1061, 
and IEEE Std 982, which are used in both Design and 
Construction. 

3.2. Styles of Construction 

Section 3.1 explained four principles of organization. A 
second and less important method of breaking the subject 
of software construction into smaller units is to recognize 
three styles/methods of software construction, namely 
� Linguistic 
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� Formal 
� Visual 
The traditional hierarchical taxonomy places the items in a 
tree; each item appears in one place only. Such an approach 
is not suitable for the items used in software construction 
because some of the items naturally belong in more than 
one place. In the classification that follows, an individual 
construction method may appear in many different places, 
rather than in just one. The number of repetitions indicates 
its breadth of application, and hence its importance in 
software construction as a whole. Modularity is one 
example of a construction method that has such broad 
impacts. 
A good construction language moves detailed, repetitive, or 
memory-intensive construction tasks away from people and 
into the computer, where such tasks can be performed 
faster and more reliably. To accomplish this, construction 
languages must present and receive information in ways 
that are readily understandable to human senses and 
capabilities. This need to rely on human capabilities leads 
to three major styles of software construction interfaces 
discussed in the subsections below. 
Of course, construction languages seldom rely solely on a 
single style of construction. Linguistic and formal style in 
particular are both heavily used in most traditional 
computer languages, and visual styles and models are a 
major part of how to make software constructions 
manageable and understandable in programming languages. 
Relatively new “visual” construction languages such as 
Visual Basic and Visual Java provide examples that 
combine all three styles, with complex visual interfaces 
often constructed entirely through non-textual interactions 
with the software constructor. Data processing functionality 
behind the interfaces can then be constructed using more 
traditional linguistic and formal styles within the same 
construction language. 

3.2.1. Linguistic 

Linguistic construction languages make statements of intent 
in the form of sentences that resemble natural languages 
such as English or French. In terms of human senses, 
linguistic constructions are generally conveyed visually as 
text, although they can (and are) also sometimes conveyed 
by sound. A major advantage of linguistic construction 
interfaces is that they are nearly universal among people. A 
disadvantage is the imprecision of ordinary languages such 
a English, which makes it hard for people to express needs 
clearly with sufficient precision when using linguistic 
interfaces to computers. An example of this problem is the 
difficulty that most early students of computer science have 
learning the syntax of even fairly readable languages such 
as Pascal or Ada. 
Linguistic construction methods are distinguished in 
particular by the use of word-like strings of text to 
represent complex software constructions, and the 
combination of such word-like strings into patterns that 

have a sentence-like syntax. Properly used, each such string 
should have a strong semantic connotation that provides an 
immediate intuitive understanding of what will happen 
when the underlying software construction is executed. For 
example, the term “search” has an immediate, readily 
understandable semantic meaning in English, yet the 
underlying software implementation of such a term in 
software can be very complex indeed. The most powerful 
linguistic construction methods allow users to focus almost 
entirely on the language-like meanings of such term, as 
opposed (for example) to frittering away mental efforts on 
examining minor variations of what “search” means in a 
particular context. 
Linguistic construction methods are further characterized 
by similar use of other “natural” language skills such as 
using patterns of words to build sentences, paragraphs, or 
even entire chapters to express software design “thoughts.” 
For example, a pattern such as “search table for out-of-
range values” uses word-like text strings to imitate natural 
language verbs, nouns, prepositions, and adjectives. Just as 
having an underlying software structure that allows a more 
natural use of words reduces the number of issues that a 
user must address to create new software, an underlying 
software structure that also allows use of familiar higher-
level patterns such as sentence further simplifies the 
expression process. 
Finally, it should be noted that as the complexity of a 
software expression increases, linguistic construction 
methods begin to overlap unavoidably with visual methods 
that make it easier to locate and understand large sequences 
of statements. Thus just as most written versions of natural 
languages use visual clues such as spaces between words, 
paragraphs, and section headings to make text easier to 
“parse” visually, linguistic construction methods rely on 
methods such as precise indentation to convey structural 
information visually. 
The use of linguistic construction methods is also limited 
by our inability to program computers to understand the 
levels of ambiguity typically found in natural languages, 
where many subtle issues of context and background can 
drastically influence interpretation. As a result, the 
linguistic model of construction usually begins to weaken 
at the more complex levels of construction that correspond 
to entire paragraphs and chapters of text. 

3.2.2. Formal 

The precision and rigor of formal and logical reasoning 
make this style of human thought especially appropriate for 
conveying human intent accurately into computers, as well 
as for verifying the completeness and accuracy of a 
construction. Unfortunately, formal reasoning is not nearly 
as universal a skill as natural language, since it requires 
both innate skills that are not as universal as language 
skills, and also many years of training and practice to use 
efficiently and accurately. It can also be argued that certain 
aspects of good formal reasoning, such as the ability to 
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realize all the implications of a new assertion on all parts of 
a system, cannot be learned by some people no matter how 
much training they receive. On the other hand, formal 
reasoning styles are often notorious for focusing on a 
problem so intently that all “complications” are discarded 
and only a very small, very pristine subset of the overall 
problem is actually addressed. This kind of excessively 
narrow focus at the expense of any complicating issues can 
be disastrous in software construction, since it can lead to 
software that is incapable of dealing with the unavoidable 
complexities of nearly any usable system. 
Formal construction methods rely less on intuitive, 
everyday meanings of words and text strings, and more on 
definitions that are backed up by precise, unambiguous, and 
fully formal (or mathematical) definitions. Formal 
construction methods are at the heart of most forms of 
system programming, where precision, speed, and 
verifiability are more important than ease of mapping into 
ordinary language. Formal constructions also use precisely 
defined ways of combining symbols that avoid the 
ambiguity of many natural language constructions. 
Functions are an obvious example of formal constructions, 
with their direct parallel to mathematical functions in both 
form and meaning. 
Formal construction techniques also include the wide range 
of precisely defined methods for representing and 
implementing “unique” computer problems such as 
concurrent and multi-threaded programming, which are in 
effect classes of mathematical problems that have special 
meaning and utility within computers. 
The importance of the formal style of programming cannot 
be overstated. Just as the precision of mathematics is 
fundamental to disciplines such as physics and the hard 
science, the formal style of programming is fundamental to 
building up a reliable framework of software “results” that 
will endure over time. While the linguistic and visual styles 
work well for interfacing with people, these less precise 
styles can be unsuitable for building the interior of a 
software system for the same reason that stained glass 
should not be used to build the supporting arches of a 
cathedral. Formal construction provides a foundation that 
can eliminate entire classes of errors or omissions from 
ever occurring, whereas linguistic and visual construction 
methods are much more likely to focus on isolated 
instances of errors or omissions. Indeed, one very real 
danger in software quality assurance is to focus too much 
on capturing isolated errors occurring in the linguistic or 
visual modes of construction, while overlooking the much 
more grievous (but harder to identify and understand) 
errors that occur in the formal style of construction. 

3.2.3. Visual 

Another very powerful and much more universal 
construction interface style is visual, in the sense of the 
ability to use the same very sophisticated and necessarily 
natural ability to “navigate” a complex three-dimensional 

world of images, as perceived primarily through the eye 
(but also through tactile senses). The visual interface is 
powerful not only as a way of organizing information for 
presentation to a human, but also as a way of conceiving 
and navigating the overall design of a complex software 
system. Visual methods are particularly important for 
systems that require many people to work on them – that is, 
for organizing a software design process – since they allow 
a natural way for people to “understand” how and where 
they must communicate with each other. Visual methods 
are also important for single-person software construction 
methods, since they provide ways both to present options to 
people and to make key details of a large body of 
information “pop out” to the visual system. 
Visual construction methods rely much less on the text-
oriented constructions of both linguistic and formal 
construction, and instead rely on direct visual interpretation 
and placement of visual entities (e.g., “widgets”) that 
represent the underlying software. Visual construction 
tends to be somewhat limited by the difficulty of making 
“complex” statements using only movement of visual 
entities on a display. However, it can also be a very 
powerful tool in cases where the primary programming task 
is simply to build and “adjust” a visual interface to a 
program whose detailed behavior was defined earlier. 
Some argue that object-oriented languages belong in this 
section because the style of reasoning that they encourage 
is highly visual. For example, experienced object-oriented 
programmers tend to view their designs literally as objects 
interacting in spaces of two or more dimensions, and a 
plethora of object-oriented design tools and techniques 
(e.g., Unified Modeling Language, or UML) actively 
encourage this highly visual style of reasoning. Others 
argue that object-oriented languages are no more inherently 
visual than procedural ones. They remark that SA/SD is a 
popular visual notation for procedural systems. 
However, object-oriented methods can also suffer from the 
lack of precision that is part of the more intuitive visual 
approach. For example, it is common for new – and 
sometimes not-so-new – programmers in object-oriented 
languages to define object classes that lack the formal 
precision that will allow them to work reliably over user-
time (that is, long-term system support) and user-space 
(e.g., relocation to new environments). The visual intuitions 
that object-oriented languages provide in such cases can be 
somewhat misleading, because they can make the real 
problem of how to define a class to be efficient and stable 
over user-time and user-space seem to be simpler than it 
really is. A complete object-oriented construction model 
therefore must explicitly identify the need for formal 
construction methods throughout the object design process. 
The alternative can be an object-based system design that, 
like a complex stained glass window, looks impressive but 
is too fragile to be used in any but the most carefully 
designed circumstances. 
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More explicitly visual programming methods such as those 
found in Visual C++ and Visual Basic reduce the problem 
of how to make precise visual statements by 
“instrumenting” screen objects with complex (and formally 
precise) objects that lie behind the screen representations. 
However, this is done at a substantial loss of generality 
when compared to using C++ with explicit training in both 
visual and formal construction, since the screen objects are 
much more tightly constrained in properties. 

3.3. Synthesis 

The figure that follows combines the four principles of 
organization with the three styles of construction. Read the 

diagram by columns to see the principles, by rows to see 
the styles. 

3.3.1. Reduction in Complexity 

3.3.1.1 Linguistic Construction Methods 

The main technique for reducing complexity in linguistic 
construction is to make short, semantically “intuitive” text 
strings and patterns of text stand in for the much more 
complex underlying software that “implement” the intuitive 
meanings. Techniques that reduce complexity in linguistic 
construction include: 
� Design patterns 
� Software templates 
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� Functions, procedures, and code blocks 
� Objects and data structures 
� Encapsulation and abstract data types 
� Objects 
� Component libraries and frameworks 
� Higher-level and domain-specific languages 
� Physical organization of source code 
� Files and libraries 
� Formal inspections 

3.3.1.2 Formal Construction Methods 

As is the case with linguistic construction methods, formal 
construction methods reduce complexity by representing 
complex software constructions as simple text strings. The 
main difference is that in this case the text strings follow 
the more precisely defined rules and syntax of formal 
notations, rather than the “fuzzier” rules of natural 
language. The reading, writing, and construction of such 

expressions requires generally more training, but once 
mastered, the use of formal constructions tends to keep the 
ambiguity of what is being specified to an absolute 
minimum. However, as with linguistic construction, the 
quality of a formal construction is only as good as its 
underlying implementation. The advantage is that the 
precision of the formal definitions usually translates into a 
more precise specification for the software beneath it. 
� Traditional functions and procedures 
� Functional programming 
� Logic programming 
� Concurrent and real-time programming techniques 
� Spreadsheets 
� Program generators 
� Mathematical libraries of functions 
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3.3.1.3 Visual Construction Methods 

Especially when compared to the steps needed to build a 
graphical interface to a program using text-oriented 
linguistic or formal construction, visual construction can 
provide drastic reductions in the total effort required. It can 
also reduce complexity by providing a simple way to select 
between the elements of a small set of choices. 
� Object-oriented programming 
� Visual creation and customization of user interfaces 
� Visual programming (e.g., visual C++) 
� “Style” (visual formatting) aspects of structured 

programming 
� Integrated development environments supporting 

source browsing 

3.3.2. Anticipation of Diversity 

3.3.2.1 Linguistic Construction Methods 

Linguistic construction anticipates diversity both by 
permitting extensible definitions of “words,” and also by 
supporting flexible “sentence structures” that allow many 
different types of intuitively understandable statements to 
be made with the available vocabulary. An excellent 
example of using linguistic construction to anticipate 
diversity is the use of human-readable configuration files to 
specify software or system settings. Techniques and 
methods that help anticipate diversity include: 
� Information hiding 
� Embedded documentation (commenting) 
� “Complete and sufficient” method sets 
� Object-oriented methods 
� Creation of “glue languages” for linking legacy 

components 
� Table-driven software 
� Configuration files, internationalization 
� Naming and coding styles 
� Reuse and repositories 
� Self-describing software and hardware (e.g., plug and 

play) 

3.3.2.2 Formal Construction Methods 

Diversity in formal construction is handled in terms of 
precisely defined sets that can vary greatly in size. While 
mathematical formalizations are capable of very flexible 
representations of diversity, they require explicit 
anticipation and preparation for the full range of values that 
may be needed. A common problem in software 
construction is to use a formal technique – e.g., a fixed-
length vector or array – when what is really needed to 
accommodate future diversity is a more generic solution 
that anticipates future growth – e.g., an indefinite variable-
length vector. Since more generic solutions are often harder 

to implement and harder to make efficient, it is important 
when using formal construction techniques to try to 
anticipate the full range of future versions. 
� Functional parameterization 
� Macro parameterization 
� Generics 
� Objects 
� Error handling 
� Extensible mathematical frameworks 

3.3.2.3 Visual Construction Methods 

Provided that the total sets of choices are not overly large, 
visual construction methods can provide a good way to 
configure or select options for software or a system. Visual 
construction methods are analogous to linguistic 
configuration files in this usage, since both provide easy 
ways to specify and interpret configuration information. 
� Object classes 
� Visual configuration specification 
� Separation of GUI design and functionality 

implementation (part of design) 

3.3.3. Structuring for Validation 

3.3.3.1 Linguistic Construction Methods 

Because natural language in general is too ambiguous to 
allow safe interpretation of completely free-form 
statements, structuring for validation shows up primarily as 
rules that at least partially constrain the free use of natural 
expressions in software. The objective is to make such 
constructions as “natural” sounding as possible, while not 
losing the structure and precision needed to ensure 
consistent interpretations of the source code by both human 
users and computers. 
� Modular design 
� Structured programming 
� Style guides 
� Stepwise refinement 

3.3.3.2 Formal Construction Methods 

Since mathematics in general is oriented towards proof of 
hypothesis from a set of axioms, formal construction 
techniques provide a broad range of techniques to help 
validate the acceptability of a software unit. Such methods 
can also be used to “instrument” programs to look for 
failures based on sets of preconditions. 
� Assertion-based programming (static and dynamic) 
� State machine logic 
� Redundant systems, self-diagnosis, and fail-safe 

methods 
� Hot-spot analysis and performance tuning 
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� Numerical analysis 

3.3.3.3 Visual Construction Methods 

Visual construction can provide immediate, active 
validation of requests and attempted configurations when 
the visual constructs are “instrumented” to look for invalid 
feature combinations and warn users immediately of what 
the problem is. 
� “Complete and sufficient” design of object-oriented 

class methods 
� Dynamic validation of visual requests in visual 

languages 

3.3.4. External Standards 

3.3.4.1 Linguistic Construction Methods 

Traditionally, standardization of programming languages 
was one of the first areas in which external standards 
appeared. The goal was (and is) to provide standard 
meanings and ways of using “words” in each standardized 
programming language, which makes it possible both for 
users to understand each other’s software, and for the 
software to be interpreted consistently in diverse 
environments. 
� Standardized programming languages (e.g., Ada 95, 

C++, etc.) 
� Standardized data description languages (e.g., XML, 

SQL) 
� Standardized alphabet representations (e.g., Unicode) 

� Standardized documentation (e.g., JavaDoc) 
� Inter-process communication standards (e.g., COM, 

CORBA) 
� Component-based software 
� Foundation classes (e.g., MFC, JFC) 

3.3.4.2 Formal Construction Methods 

For formal construction techniques, external standards 
generally address ways to define precise interfaces and 
communication methods between software systems and the 
machines they reside on. 
� POSIX standards 
� Data communication standards 
� Hardware interface standards 
� Standardized mathematical representation languages 

(e.g., MathML) 
� Mathematical libraries of functions 

3.3.4.3 Visual Construction Methods 

Standards for visual interfaces greatly ease the total burden 
on users by providing familiar, easily understood “look and 
feel” interfaces for those users. 
� Object-oriented language standards 
� Standardized screen widgets 
� Visual Markup Languages 
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APPENDIX B – A PROPOSED ALTERNATE BREAKDOWN 
FOR A SOFTWARE CONSTRUCTION KNOWLEDGE AREA 

1. Construction Planning 
2. Code Design 
3. Data Design and Management 
4. Error Processing 
5. Source Code Organization 
6. Code Documentation 
7. Construction Quality Assurance 
8. System Integration and Deployment 
9. Code Tuning 
10. Construction Tools 
 
Source: Adapted from Mc Connell, Steve, “Code 
Complete: A Practical Handbook of Software 
Construction,” Microsoft Press, 1993. 


