
© IEEE – Trial Version 1.00 – May 2001 6-1

CHAPTER 6

SOFTWARE MAINTENANCE

Thomas M. Pigoski
Technical Software Services (TECHSOFT), Inc.

31 West Garden Street, Suite 100
Pensacola, Florida 32501 USA

+1 850 469 0086
tmpigoski@techsoft.com

Table of Contents

1. Introduction... 1
2. Definition of the Software Maintenance Knowledge

Area .. 1
3. Breakdown of Topics for the Software Maintenance

Knowledge Area... 2
4. Breakdown Rationale.. 9
5. Matrix of Topics vs. Reference Material 10
6. Recommended References for Software

Maintenance ... 11
Appendix A – List of Further Readings 13
Appendix B – References Used to Write and Justify the

Software Maintenance Description......................... 15
Appendix C – Detailed Breakdown Rationale 16

Acronyms

CASE Computer Aided Software Engineering

CM Configuration Management

CMM Capability Maturity Model

ICSM International Conference on Software Maintenance

PSM Practical Software and Systems Measurement

SCM Software Configuration Management

SW-CMM Capability Maturity Model for Software

SQA Software Quality Assurance

V&V Verification and Validation

WCRE Working Conference on Reverse Engineering

1. INTRODUCTION

Software engineering is the application of engineering to
software. The life cycle paradigm for software includes:
requirements, design, construction, testing, and
maintenance. This chapter addresses the maintenance
portion of software engineering and the software life cycle.
Software maintenance is an integral part of a software life
cycle. However, it has not historically received the same
degree of attention as the other phases. Historically,
development has had a much higher profile than
maintenance in most organizations. This is now changing as
organizations strive to obtain the most out of their
development investment by keeping software operating as
long as possible. Concerns about the Year 2000 (Y2K)
rollover did bring significant attention to this important
phase. Further, the Open Source paradigm has brought
attention to the issue of maintaining code developed by
others. Maintenance is also expensive. For these reasons,
there is an opportunity to pursue further research to enhance
productivity of maintenance activities.
This chapter presents an overview of the Knowledge Area
of software maintenance. Brief descriptions of the topics are
provided so that the reader can select the appropriate
reference material according to his/her needs.

2. DEFINITION OF THE SOFTWARE MAINTENANCE
KNOWLEDGE AREA

This section provides a definition of the Software
Maintenance Knowledge Area.
Software development efforts result in delivery of a
software product that satisfies user requirements.
Accordingly, the software product must change or evolve.
Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.

6-2 © IEEE – Trial Version 1.00 – May 2001

The maintenance phase of the life cycle commences upon
delivery but maintenance activities occur much earlier.
Software maintenance sustains the software product
throughout its life cycle. Modification requests are logged
and tracked, the impact of proposed changes is determined,
code is modified, testing is conducted, and a new version of
the software product is released. Training is provided to
users.

3. BREAKDOWN OF TOPICS FOR THE SOFTWARE
MAINTENANCE KNOWLEDGE AREA

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature and are not tied to
any particular domain, model, or business needs. The
presented topics can be used by small and medium sized
organizations, as well as by larger ones. Organizations
should use those topics that are appropriate for their unique
situations. The topics are consistent with what is found in
current software engineering literature and standards. The
common themes of quality, measurement, and standards are
included in the breakdown of topics.

The breakdown of topics, along with a brief description of
each, is provided in this section. Key references are
provided.

3.1. Basic Concepts

3.1.1 Definitions and Terminology [IEEE1219:s3.1.12;
ISO12207:s3.1,s5.5; ISO14764:s6.1]

Software maintenance is defined in the IEEE Standard for
Software Maintenance, IEEE 1219 [IEEE 1219], as the
modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to
adapt the product to a modified environment. The standard
also addresses maintenance activities prior to delivery of
the software product but only in an information annex of the
standard.
The ISO/IEC 12207 Standard for Life Cycle Processes
[ISO/IEC 12207], essentially depicts maintenance as one of
the primary life cycle processes and describes maintenance
as the process of a software product undergoing
“modification to code and associated documentation due to
a problem or the need for improvement. The objective is to
modify existing software product while preserving its
integrity.” [ISO/IEC 12207] Of note is that ISO/IEC 12207
describes an activity called “Process Implementation.” That
activity establishes the maintenance plan and procedures
that are later used during the maintenance process.
ISO/IEC 14764 [ISO14764], the International Standard for
Software Maintenance, defines software maintenance in the
same terms as ISO/IEC 12207 and places emphasis on the

predelivery aspects of maintenance, e.g., planning.
The SWEBOK definition, generally accepted by software
researchers and practitioners, is as follows:
SOFTWARE MAINTENANCE: The totality of activities
required to provide cost-effective support to a software
system. Activities are performed during the predelivery
stage as well as the postdelivery stage. Predelivery activities
include planning for postdelivery operations, supportability,
and logistics determination. Postdelivery activities include
software modification, training, and operating a help desk.
A maintainer is defined by ISO/IEC 12207 as an
organization that performs maintenance activities
[ISO12207].
ISO/IEC 12207 identifies the primary activities of software
maintenance as: process implementation; problem and
modification analysis; modification implementation;
maintenance review/acceptance; migration; and retirement.
These activities are discussed in a later section. They are
further defined by the tasks in ISO/IEC 12207.

3.1.2 Majority of Maintenance Costs [AH93:pp63-90;
Pre97:c27s27.1.2; Pig97:c3]

A common perception of maintenance is that it is merely
fixing bugs. However, studies and surveys over the years
have indicated that the majority, over 80%, of the
maintenance effort is used for non-corrective actions [AH
93] [Pre97] [Pig97]. This perception is perpetuated by users
submitting problem reports that in reality are major
enhancements to the system. This inclusion of enhancement
requests with problem reports contributes to some of the
misconceptions regarding maintenance. Software evolves
over its life cycle, as evidenced by the fact that over 80% of
the effort after initial delivery goes to implement non-
corrective actions. Thus, maintenance is similar to software
development, although some unique processes are
employed.
The focus of software development is to solve problems or
to obtain business advantage through producing code. The
generated code implements stated requirements and should
operate correctly. Maintainers look back at development
products and also the present by working with users and
operators. Maintainers also look forward to anticipate
problems and to consider functional changes.

3.1.3 The Nature of Maintenance [Pfl98:c10s10.2]

Pfleeger [Pfl98] states that maintenance has a broader scope
than development, with more changes to track and control.
Thus, configuration management is an important aspect of
software evolution and maintenance.

© IEEE – Trial Version 1.00 – May 2001 6-3

Software Maintenance

Basic Concepts Maintenance
Process

Key Issues in
Software

Maintenance

Definitions and
Terminology

Majority of
Maintenance Costs

The Nature of
Maintenance

Evolution of
Software

Need for
Maintenance

Categories of
Maintenance

 Process Models

Maintenance
Activities

Technical

Management

Cost and Estimation

Software
Maintenance
Measurement

Techniques for
Maintenance

Program
Comprehension

Re-engineering

Reverse
Engineering

Impact Analysis

Figure 1 Summary of the Software Maintenance Breakdown

Maintenance, however, can learn from the development
effort. Contact with the developers and early involvement
by the maintainer helps the maintenance effort. However, it
is difficult sometimes when the developers are no longer
around. Maintenance must take the products of the
development, e.g., code, documentation, and
evolve/maintain them over the life cycle. Chapter 10 of the
Guide to the SWEBOK discusses how tools can aid
maintenance.

3.1.4 Evolution of Software [Leh97:pp108-124; Pfl98:
c10s10.1;Art88:c1s1.0,s1.1,s1.2,c11,s1.1,s1.2]

The area of software maintenance and evolution of systems
was first addressed by Lehman in 1969. His research led to
an investigation of the evolution of OS/360 [LB85] and
continues today on the Feedback, Evolution, and Software
Technology (FEAST) research at Imperial College,
England.
Over a period of twenty years, that research led to the
formulation of eight Laws of Evolution [Leh97]. Simply
put, Lehman stated that maintenance is really evolutionary
developments and that maintenance decisions are aided by
understanding what happens to systems (and software) over

time. Others state that maintenance is really continued
development, except that there is an extra input (or
constraint) – the existing software system.
Key points from Lehman include that large systems are
never complete and continue to evolve. As they evolve,
they grow more complex unless some action is taken to
reduce the complexity. As systems demonstrate regular
behavior and trends, these can be measured and predicted.
Pfleeger [Pfl98] and Arthur [Art88] have excellent
discussions regarding software evolution.

3.1.5 Need for Maintenance [Pfl98:c10.s10.2; Pig97:
c2s2.3; TG97:c1]

Maintenance is needed to ensure that the system continues
to satisfy user requirements. Maintenance is applicable to
systems developed using any software development model
(e.g., spiral). The system changes due to corrective and
non-corrective software actions. Maintenance must be
performed in order to:

Correct errors.
Correct requirements and design flaws.
Improve the design.

6-4 © IEEE – Trial Version 1.00 – May 2001

Make enhancements.
Interface with other systems.
Convert programs so that different hardware, software,
system features, and telecommunications facilities can
be used.
Migrate legacy systems.
Retire systems.

The four major aspects that maintenance focuses on are
[Pfl98]:

Maintaining control over the system’s day-to-day
functions.
Maintaining control over system modification.
Perfecting existing acceptable functions.
Preventing system performance from degrading to
unacceptable levels.

Accordingly, software must evolve and be maintained.

3.1.6 Categories of Maintenance [Art88:c1s1.2;
DT97:c8s5; IEEE1219:s3.1.1,s3.1.2,s3.1.7,A.1.7;
ISO14764:s4.1,s4.3, s4.10,s4.11,s6.2; Pfl98:
c10s10.2; Pig97:c2s2.3]

Lehman developed the concept of software evolution. E. B.
Swanson of UCLA was one of the first to examine what
really happens in evolution and maintenance, using
empirical data from industry maintainers. Swanson believed
that, by studying the maintenance phase of the life cycle, a
better understanding of the maintenance phase would result.
Swanson was able to create three different categories of
maintenance: corrective, adaptive, and perfective. [Art88]
[DT97]. There have been updated and a new category has
been defined by the International Organization of Standards
(IS0) in the Standard for Software Maintenance standard
ISO/IEC 14764, [ISO14764] and by the IEEE Computer
Society [IEEE 1219]. The categories of maintenance
defined by ISO/IEC are as follows:

Corrective maintenance. Reactive modification of a
software product performed after delivery to correct
discovered problems.
Adaptive maintenance. Modification of a software
product performed after delivery to keep a software
product usable in a changed or changing environment.
Perfective maintenance. Modification of a software
product after delivery to improve performance or
maintainability.
Preventive maintenance. Modification of a software
product after delivery to detect and correct latent
faults in the software product before they become
effective faults.

The ISO Standard on Software Maintenance [ISO14764]
classifies Adaptive and Perfective maintenance as

enhancements. It also classifies Corrective and Preventive
maintenance as corrections. Preventive maintenance, the
newest category, is defined as maintenance performed for
the purpose of preventing problems before they occur.
Preventive maintenance is most often performed on
software products where safety is critical.

3.2. Maintenance Process

The need for software processes is well documented. The
Capability Maturity Model for Software (SW-CMM)
provides a means to measure levels of maturity. Of
importance, is that there is a direct correlation between
levels of maturity and cost savings. The higher the level of
maturity, the greater the cost savings. The SW-CMM
applies equally to maintenance and maintainers should have
a documented maintenance process
3.2.1 Maintenance Process Models [IEEE1219:s4;

ISO14764:s8; ISO12207:s5.5; Pig97:c5; TG97:c2;
Par86:c7s1]

Process models provide needed operations and detailed
inputs/outputs to those operations. Maintenance process
models are provided in the software maintenance standards,
IEEE 1219 [IEEE 1219] and ISO/IEC 14764 [ISO14764].
The maintenance process model described in IEEE 1219
[IEEE 1219], the Standard for Software Maintenance, starts
the software maintenance effort during the post-delivery
stage and discusses items such as planning for maintenance
and measures outside the process model. That process
model with the IEEE maintenance phases is depicted in
Figure 2.

Figure 2 The IEEE Maintenance Process Activities
ISO/IEC 14764 [ISO14764] is an elaboration of the
maintenance process of ISO/IEC 12207 [ISO12207]. The
activities of the ISO/IEC maintenance process are similar to
those of IEEE although they are aggregated a little
differently. The maintenance process activities developed

© IEEE – Trial Version 1.00 – May 2001 6-5

by ISO/IEC are shown in Figure 3.

Migration
Retirement

Mai ntenance
Review/

Acceptance

Problem and
Modification

Analysis

Modification
Implementation

Process
Implementation

Figure 3 ISO/IEC Maintenance Process Activities

Each of the ISO/IEC 14764 primary software maintenance
activities is further broken down into tasks as follows.
Process Implementation tasks are:

Develop maintenance plans and procedures.
Establish procedures for Modification Requests.
Implement the CM process.

Problem and Modification tasks are:
Perform initial analysis.
Verify the problem.
Develop options for implementing the modification.
Document the results.
Obtain approval for modification option.

Modification Implementation tasks are:
Perform detailed analysis.
Develop, code, and test the modification.

Maintenance Review/Acceptance tasks are:
Conduct reviews.
Obtain approval for modification.

Migration tasks are:
Ensure that migration is in accordance with ISO/IEC
12207.
Develop a migration plan.
Notify users of migration plans.

Conduct parallel operations.
Notify user that migration has started.
Conduct a post-operation review.
Ensure that old data is accessible.

Software Retirement tasks are:
Develop a retirement plan.
Notify users of retirement plans.
Conduct parallel operations.
Notify user that retirement has started.
Ensure that old data is accessible.

Takang and Grubb [TG97] provide a history of
maintenance process models leading up to the development
of the IEEE and ISO/IEC process models. A good overview
of a generic maintenance process is given by Parikh [Par86]

3.2.2 Maintenance Activities

Maintenance activities are similar to those of software
development. Maintainers perform analysis, design, coding,
testing, and documenting. Maintainers must track
requirements just as they do in development. Maintainers
must update documentation as baselines change. However,
for software maintenance, the activities involve processes
unique to maintenance. Chapter 10 discusses how tools can
be used to help in the maintenance effort.

3.2.2.1 Unique Activities [Pfl98:c10s10.2; Art88:c3;
DT97: c8s9.1; IEEE1219:s4.1,s4.2; ISO14764:
s8.2.2.1, s,8.3.2.1]

Maintainers must possess an intimate knowledge of the
code’s structure and content [Pfl98]. That knowledge is
used by maintainers to perform impact analysis. Impact
analysis identifies all systems and system products affected
by a change request and develops an estimate of the
resources needed to accomplish the change [Art88].
Additionally, the risk of making the change is determined.
The change request, sometimes called a modification
request and often called a problem report, must first be
analyzed and translated into software terms [DT97]. The
maintainer then identifies the affected components. Several
potential solutions are provided and then a recommendation
is made as to the best course of action.
Problem solving skills are very important for maintenance.
Maintainers must also be concerned about the “ripple
effect” of any proposed changes.

3.2.2.2 Supporting Activities [IEEE1219:A.7,A.11; Pig97:
c10s10.2,c18; ISO12207:c6,c7]

Maintainers may also perform supporting activities such as
configuration management (CM), verification and
validation, quality assurance, reviews, audits, and
conducting user training. Often these supporting activities
are performed by separate entities. The IEEE Standard for

6-6 © IEEE – Trial Version 1.00 – May 2001

Software Maintenance, IEEE 1219 [IEEE 1219], describes
CM as a critical element of the maintenance process. CM
procedures should provide for the verification, validation,
and certification of each step required to identify, authorize,
implement, and release the software product. Training of
maintainers, a supporting process, is also a needed activity
[Pig97] [ISO12207].

3.2.2.2.1 Configuration management [ISO12207:s6.2;
IEEE1219: A.11; Art88:c2,c10; Pfl98:c10s10.5;
TG97:c7]

It is not sufficient to simply track modification requests or
problem reports. The software product and any changes
made to it must be controlled. This control is established by
implementing and enforcing an approved software
configuration management (SCM) process. SCM provides
support and makes the job of the maintainer easier. Chapter
7 of the Guide to the SWEBOK provides details of SCM
and discusses the process by which change requests are
submitted, evaluated, and approved. SCM for maintenance
is different than for development in that a change request
initiates the maintenance process. The SCM process is
implemented by developing and following a CM Plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine when
enhancements should stop and perhaps migration is
necessary. Problem severity is often used to decide how and
when a problem will be fixed.

3.2.2.2.2 Quality [ISO12207:s6.3; IEEE1219:A.7; Art98:
c7s4]

It is not sufficient to simply hope that increased quality will
result from the maintenance of software. It must be planned
and processes implemented to support the maintenance
process. The activities and techniques for Software Quality
Assurance (SQA) and V&V must be selected in concert
with all other processes to achieve the level of quality
desired. This is implemented by developing and following
SQA and V&V plans and procedures. Details of software
quality are covered in chapter 11 of the Guide to the
SWEBOK.

3.2.2.2.3 Maintenance Planning Activity [IEEE1219:A.3;
ISO14764:s7; Pig97:c7,c8]

An important activity for software maintenance is planning.
Whereas developments typically can last for 1-2 years, the
operation and maintenance phase typically lasts for many
years. Developing accurate estimates of resources is a key
element of maintenance planning. Those resources, which
include costs, should be included in project planning
budgets. Maintenance planning should begin with the
decision to develop a new system and should consider
quality objectives. A concept and then a maintenance plan
should be developed. The concept for maintenance should
address:

The scope of software maintenance.

The tailoring of the postdelivery process.

The designation of who will provide maintenance.

An estimate of life cycle costs.
Once the maintenance concept is determined, the next step
is to develop the maintenance plan. The maintenance plan
should be prepared during software development and
should specify how users will request modifications or
report problems. Maintenance planning [Pig97] is
addressed in IEEE 1219 [IEEE 1219]and ISO/IEC 14764.
[ISO14764] ISO/IEC14764 [ISO14764] provides
guidelines for a maintenance plan.

3.3. Key Issues in Software Maintenance

It is important to understand that software maintenance
provides unique technical and management problems for
software engineers. Trying to find a defect in a 500K line of
code system that the maintainer did not develop is a
challenge for the maintainer. Similarly, competing with
software developers for resources is a constant battle.
Planning for a future release, while coding the next release,
and sending out emergency patches for the current release,
is also a challenge. The following discusses some of the
technical and management problems relating to software
evolution and maintenance.

3.3.1 Technical Problems

3.3.1.1 Limited understanding [Pfl98:c10s10.3; TG97:c3;
DT97: c8s11.4]

Practitioners and researchers indicate that some 40% to
60% of the maintenance effort is devoted to understanding
the software to be modified. Thus, the topic of program
comprehension is one of interest to maintainers.
Comprehension is more difficult for text-based
representation. It is often difficult to trace the evolution of
the software through its versions, changes are not
documented, and the developers are usually not around to
explain the code. Thus, maintainers have a limited
understanding of the software and must learn the software
on their own.

3.3.1.2 Testing [Pfl98:c10s10.3; Art88:c9]

The cost of repeating full testing on a major piece of
software can be significant in terms of time and money.
Regression testing, the selective retesting of a system or
component to verify the modifications have not caused
unintended effects, is important to maintenance. Research
efforts into areas such as “slicing” look at this topic.
Finding time to test is often difficult [Plf98]. Chapter 5 of
the Guide to the SWEBOK provides details of testing.

© IEEE – Trial Version 1.00 – May 2001 6-7

3.3.1.3 Impact analysis [DT97:c8s10.1-3; Pfl98:
c10s10.5; Art88:c3]

The software and the organization must both undergo
impact analysis. Critical skills, documentation, and
processes are needed for this area. Impact analysis is
necessary for risk abatement. Software designed for
maintainability facilitates impact analysis.

3.3.1.4 Maintainability [ISO14764:s6.8s6.8.1;Pfl98:
c8s8.4;Pig97:c16]

The IEEE Computer Society [IEEE610.12] defines
maintainability as the ease with which software can be
maintained, enhanced, adapted, or corrected to satisfy
specified requirements. ISO/IEC defines maintainability as
one of the quality characteristics. Maintainability features
must be incorporated into the software development effort
to reduce life cycle costs. If this is done, the quality of
evolution and maintenance of the code can improve.
Maintainability is often a problem in maintenance because
maintainability is not incorporated into the software
development process, documentation is lacking, and
program comprehension is difficult. Maintainability can be
achieved by including it in requirements, design, and
construction. Chapters 2, 3, and 4 provide details of these
topics. Maintainability can be enhanced by defining coding
standards, documentation standards, and standard test tools
in the software development phase of the life cycle.

3.3.2 Management

3.3.2.1 Alignment with organizational issues [DT97:
c8s6; Pfl98:c10s10.3]

Dorfman and Thayer [DT97] relate that return on
investment is not clear with maintenance. Thus, there is a
constant struggle to obtain resources.

3.3.2.2 Staffing [Pfl98:c10s10.3; Dek92:pp10-17; Par86:
c4s8-s11; DT97:c8s6]

Maintenance personnel often are viewed as second class
citizens [Pfl98] and morale suffers [DT97]. Maintenance is
not viewed as glamorous work. Deklava provides a list of
staffing related problems based on survey data [Dek92].

3.3.2.3 Process issues [DT97:c8s3]

Maintenance requires several activities that are not found in
software development, (e.g., help desk support). These
present challenges to management [DT97].

3.3.2.4 Organizational Aspects of Maintenance

The team that develops the software is not always used to
maintain the system once it is operational. A maintainer
must be identified and there are several options as discussed
below.
3.3.2.4.1 The Maintainer [Pfl98:c10s10.2; Pig97:c2s2.5;

Par86: c4s7; TG97:c8]

Often, a separate team (or maintainer) is employed to
ensure that the system runs properly and evolves to satisfy
changing needs of the users. There are many pros and cons
to having the original developer or a separate team maintain
the software [Pfl98] [Pig97] [Par86]. That decision should
be made on a case-by-case basis.

3.3.2.4.2 Outsourcing [DT97:c8s7;Pig97: c9s9.1,s9.2]

Outsourcing of maintenance is becoming a major industry.
Large corporations are outsourcing entire operations,
including software maintenance. More often outsourcing is
done for peripheral software, as companies are unwilling to
release the software used in its core business. One of the
major challenges is for the outsource maintenance company
to determine the scope of the effort. Outsourcing companies
typically spend a number of months assessing the software
before it will accept a contract [DT97]. Another challenge
is the transition of the software to the outsourced company
[Pig97].

3.3.2.4.3 Organizational Structure [Pig97:c12s12.1-s12.3]

Based on the fact there are almost as many organizational
structures as there are software maintenance organizations,
an organizational structure for maintenance is best
developed on a case-by-case basis. What is important is the
delegation or designation of maintenance responsibility to a
group [Pig97], regardless of the organizational structure. As
with other efforts, maintenance will only be successful with
full management support.

3.3.3 Maintenance Cost and Maintenance Cost Estimation

Software engineers must understand the different categories
of maintenance, previously discussed, in order to address
the cost of maintenance. For planning purposes, estimating
costs is an important aspect of software maintenance.

3.3.3.1 Cost [Pfl98:c10s10.3; Art88:c3; Pig97:c3s3.1-3;
Pre97: c27s27.2.2]

Maintenance consumes a major share of life cycle costs.
Understanding the categories of maintenance helps to
understand why maintenance is so costly. Also
understanding the factors that influence the maintainability
of a system can help to contain costs. Pfleeger [Pfl98]
addresses some of the technical and non-technical factors
affecting maintenance.
Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [Art88]. It is
performed after a change request enters the CM process. It
is used in concert with the cost estimation techniques
discussed below.

3.3.3.2 Cost estimation [Boe81:c30; Jon98:c27;
Pig97:c8; Pfl98:c10s10.3]

Maintenance cost estimates are affected by many technical
and non-technical factors. Primary approaches to cost

6-8 © IEEE – Trial Version 1.00 – May 2001

estimating include use of parametric models and
experience. Most often a combination of these is used to
estimate costs.

3.3.3.3 Parametric models [Boe81:c30; Jon98:c27;
Pfl98:c10s10.3]

One of the works in the area of parametric models for
estimating was performed by Boehm [Boe81]. COCOMO
(derived from COnstructive COst Model), puts the software
life cycle and the quantitative life cycle relationships into a
hierarchy of software cost-estimation models [Pfl98]. Of
significance is that data from past projects is needed in
order to use the models. Jones [Jon98] discusses all aspects
of estimating costs including function points, and provides a
detailed chapter on maintenance estimating. Chapter 8 of
the Guide to the SWEBOK provides additional details
regarding models.

3.3.3.4 Experience [Pig97:c8; ISO14764:s7,s7.2,s7.2.1,
c7s7.2.4]

Experience should be used to augment data from parametric
models. Sound judgment, reason, a work breakdown
structure, educated guesses, and use of empirical/historical
data are several approaches. Clearly the best approach to
maintenance estimation is to use empirical data and
experience. That data should be provided as a result of a
measurement program. In practice, cost estimation relies
much more on experience than parametric models. The
Software Engineering Institute has conducted research into
performing cost estimation based on historical data.

3.3.4 Software Maintenance Measurement [GC87:c2;
TG97: c6s6.1-3; AI98:A.2]

Software life cycle costs are growing and a strategy for
maintenance is needed. Software measurement need to be a
part of that strategy. Grady and Caswell [GC87] discuss
establishing a corporate-wide software measures program.
The Practical Software and Systems Measurement (PSM)
project describes an issue-driven measurement process
[http://www.psmsc.com] that is used by many organizations
and is quite practical. Software measures are vital for
software process improvement but the process must be
measurable. Additional discussion of measurement is
contained in chapters 8 and 11 of the Guide to the
SWEBOK.

3.3.4.1 Specific Measures [CG90:s2-3; SKV94:pp239-
249; IEEE1219:Table3; Pig97:c14s14.6; TG97:
c6s6.4]

There are software measures that are common to all efforts
and the Software Engineering Institute (SEI) identified
these as: size; effort; schedule; and quality [Pig97]. Those
are a good starting point for a maintainer.
Takang and Grubb [TG97] group software measures into
areas of: size; complexity; quality; understandability;
maintainability; and cost estimation.

Documentation regarding specific software measures to use
in maintenance is not often published. Typically generic
software engineering measures are used and the maintainer
determines which ones are appropriate for their
organization. IEEE 1219 [IEEE 1219] provides suggested
measures for software programs. Stark, et al [SKV94]
provide a suggested list of software maintenance measures
used at NASA’s Mission Operations Directorate. That list
includes:

Software size
Software staffing
Maintenance request number/status
Software enhancement numbers/status
Computer resource utilization
Fault density
Software volatility
Discrepancy report open duration
Break/fix ratio
Software reliability
Design complexity
Fault type distribution

3.4. Techniques for Maintenance

Effective software maintenance is performed using
techniques specific to maintenance. The following provides
some of the best practice techniques used by maintainers.

3.4.1 Program Comprehension [Arn92:c14; DT97:
c8s11.4; TG97:c3]

Programmers spend considerable time in reading and
comprehending programs in order to implement changes.
Code browsers are a key tool in program comprehension.
Clear and concise documentation can aid in program
comprehension. Based on the importance of this subtopic,
an annual IEEE Computer Society workshop is now held to
address program comprehension. The website
http://www.seg.iit.nrc.ca/projects/easse provides a number
of papers on comprehension and tools for assisting
comprehension processes. Takang and Grubb [TG97]
provide a detailed chapter on comprehension.

3.4.2 Re-engineering [Arn92:c1,c3-6, c8s11.4; IEEE1219:
B.2; DT97:c8s11.4]

Re-engineering is defined as the examination and alteration
of the subject system to reconstitute it in a new form, and
the subsequent implementation of the new form. Dorfman
and Thayer [DT97] state that re-engineering is the most
radical (and expensive) form of alteration. Others believe
that re-engineering can be used for minor changes. Re-
engineering is often not undertaken to improve
maintainability but is used to replace aging legacy systems.

© IEEE – Trial Version 1.00 – May 2001 6-9

Arnold [Arn92] provides a comprehensive compendium of
topics, e.g., concepts, tools and techniques, case studies,
and risks and benefits associated with re-engineering.
Refactoring, a program transformation that reorganizes a
program without changing its behavior, is now being used
in reverse engineering to improve the structure of object-
oriented programs.

3.4.3 Reverse engineering [Arn92:c12; DT97:c8s11.3;
IEEE1219:B.3; TG97:c4]

Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their inter-
relationships and to create representations of the system in
another form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the system, or
result in a new one. A simple reverse engineering effort
may merely produce call graphs and control flow graphs
from source code. One type of reverse engineering is
redocumentation. Another type is design recovery [DT97].
Date Reverse Engineering has gained great importance over
the last few years. Reverse engineering topics are discussed
at the annual Working Conference on Reverse Engineering
(WCRE).

3.4.4 Impact Analysis [Plf98:c10s10.5; Art88:c3]

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [Art88]. It is
performed after a change request enters the configuration
management process. Arthur [Art88] states that the
objectives of impact analysis are:

Determine the scope of a change in order to plan and
implement work.

Develop accurate estimates of resources needed to
perform the work.

Analyze the cost/benefits of the requested change.

Communicate to others the complexity of a given
change.

Resources
Beside the references listed in this chapter, there are other
resources available to learn more about software
maintenance. The IEEE Computer Society sponsors the
annual International Conference on Software Maintenance
(ICSM). That conference, started in 1983, provides a
Proceedings, which incorporates numerous research and
practical industry papers concerning evolution and
maintenance topics. Other venues, which address these
topics, include:

4. BREAKDOWN RATIONALE

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature. There is agreement
in the literature and in the standards on the topics.

A detailed discussion of the rationale for the proposed
breakdown, keyed to the Guide to the SWEBOK
development criteria, is given in Appendix B. The
following is a narrative description of the rationale for the
breakdown.

The Basic Concepts sub-area was selected as the initial
topic in order to introduce Software Maintenance. The
subtopics are needed to provide definitions and to
emphasize why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
maintenance.
Maintenance Process is needed to provide the current
references and standards needed to implement the
maintenance process.
The Maintenance Activities sub-topic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities.
The sub-area on the Key Issues of Software Maintenance
was chosen to ensure that the software engineers fully
comprehended these problems.
Every organization is concerned with who will perform
maintenance. The Management topic provides some options
regarding who can perform maintenance. Every software
maintenance reference discusses the fact that maintenance
consumes a large portion of the life cycle costs. The topic
on Cost and Cost Estimation was provided to ensure that
the readers select references to help with this difficult task.
The Software Maintenance Measurement topic is one that is
not addressed very well in the literature. Most maintenance
books barely touch on the topic. Measurement information
is most often found in generalized measurement books. This
topic was chosen to highlight the need for unique
maintenance measures and to provide specific maintenance
measurement references.
The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.

6-10 © IEEE – Trial Version 1.00 – May 2001

5. MATRIX OF TOPICS VS. REFERENCE MATERIAL

Topics AH
93

IEEE
610.12

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEEE
1219

ISO
1220

7

ISO
1476

4

Jon
98

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

SKV
94

TG
97

1. Basic Concepts

1.1 Definitions and
Terminology

 s3.1.
12

s3.1,
s5.5

s6.1

1.2 Majority of
Maintenance Costs

pp
63-
90

 c3 c27
s27.
1.2

1.3 Nature of
Maintenance

 c10
s10.

2

1.4 Evolution of
Software

 c1
s1.0
s1.1
s1.2
c11
s1.1
s1.2

 pp
108-
124

 c10
s10.

1

1.5 Need for
Maintenance

 c10
s10.

2

c2
s2.3

 c1

1.6 Categories of
Maintenance

 c1
s1.2

 c8
s5

 c3
s3.1,

s3.1.1
,

s3.1.2
,

s3.1.7
,

A.1.7

 s4.1
s4.3
s4.10
s4.11
s6.2

 c10
s10.

2

c2
s2.3

2. Maintenance
Process

2.1 Maintenance
Process Models

 s4 s5.5 s8 c7,s1 c5 c2

2.2 Maintenance
Activities

Unique Activities c3 c8
s9.1

 s4.1,
s4.2

 s8.2.
2.1,
s8.3.
2.1

 c10
s10.

2

Supporting
Activities

 A.7,
A.11

c6,c7 c10
s10.
2,

c18

Configuration
Management

 c2
c10

 A.11 s6.2 c10,
s10.

5

 c7

Quality c7
s4

 A.7 s6.3

Maintenance
Planning
Activity

 A.33 c7 c7,c
8

3. Key Issues in
Software
Maintenance

3.1 Technical

Limited
Understanding

 c8
s11.

4

 c10
s10.

3

 c3

Testing c9 c1
s10.

3

Impact Analysis c3 c8
s10.

1
s10.

2
s10.

3

 c10
s10.

5

Maintainability s3 s6.8,
s6.8.

1

 c8
s8.4

c16

3.2 Management

Alignment with
organizational
issues

 c8
s6

 c10
s10.

3

Staffing pp
10-
17

c8
s6

 c4,
s8-
11

c10,
s10.

3

 c1,
s1.8

Process issues c8,
s3

Organizational

The Maintainer c4
s7

c10
s10.

2

c2
s2.5

 c8

Outsourcing c8
s7

 c9
s9.1,
s9.2

Organizational
Structure

 c12
s12.

1
s12.

2
s12.

3

© IEEE – Trial Version 1.00 – May 2001 6-11

Topics AH
93

IEEE
610.12

AI
98

Arn
92

Art
88

Boe
81

CG
90

Dek
92

DT
97

GC
87

IEEE
1219

ISO
1220

7

ISO
1476

4

Jon
98

Leh
97

Par
86

Pfl
98

Pig
97

Pre
97

SKV
94

TG
97

3.3 Maintenance Cost
and Maintenance Cost
Estimation

Cost c3 c10
s10.

3

c3
s3.1-

3

c27
s27.
2.2

Cost estimation c30 c27 c10
s10.

3

c8

Parametric models c30 c27 c10
s10.

3

Experience s7
s7.2,
s7.2.

1,
s7.2.

4

 c8

3.4 Software
Maintenance
Measurement

 s2-3 Table
3

 c14
s14.

6

 pp
239-
249

c6
s6.4

4. Techniques for
Maintenance

4.1 Program
Comprehension

 c14 c8
s11.

4

 c3

4.2 Re-engineering c1,3-
6

 c8
s11.

4

 B.2

4.3 Reverse
Engineering

 c12 c8
s11.

3

 B.3 c4

4.4 Impact Analysis c3 c10
s10.

5

6. RECOMMENDED REFERENCES FOR SOFTWARE
MAINTENANCE

The following set of references provides a strong
foundation to acquire knowledge on specific topics
identified in the breakdown. They were chosen to provide
coverage of all aspects of software maintenance. Priority
was given to standards, maintenance specific publications,
and then general software engineering publications.

References

[AH93] A. Abran and H. Nguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5, no 2, 1993 [pp63-90].
[AI98] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE Computer
Society Press, 1998. [s4, A.1, A.2]
[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1993. [c1,c3-6,c12,c14]
[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.
[c1s1.0,s1.1,s1.2; c2, c3, c7s4, c9, c10,c11s1.1,s1.2]
[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981. [c30]
[CG90] D.N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990. [s1.1,1.3,c2-3]
[Dek92] S. Dekleva. Delphi Study of Software Maintenance
Problems. Proceedings of the International Conference on
Software Maintenance, 1992. [pp10-17]

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997. [c8s3,
c8s5, c8s6, c8s7, c8s9.1, c8s10.1-3, c8s11.3-4]
[GC87] R.B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987. [c2, c3]
[IEEE610.12] IEEE STD 610.12: IEEE Standard Glossary
of Software Engineering Terminology, 1990. [s3]
[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998. [s3.1.1,s3.1.2,s3.1.7,s4,s4.1,s4.2,
A.1.7,A.3,A.7,A.11, Table3, B.2-3]
[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995. [s3.1, s5.5, c6,
s6.2,s6.3, c7]
[ISO14764] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000. [s4.1,s4.3,s4.10,s4.11,s6.1,
s6.2,s6.8,s6.8.1,s7,s7.2,s7.2.1,s7.2.4,s8,s8.2.2.1,s8.3.2.1]
[Jon98] T. C. Jones. Estimating Software Costs. McGraw-
Hill, 1998. [c27]
[Leh97] M.M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997. [pp108-124]
[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986. [c4s7-11, c7s1]
[Pfl98] S.L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998. [c8s8.4,c10s10.1,s10.2,
s10.3,s10.5]
[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.

6-12 © IEEE – Trial Version 1.00 – May 2001

Wiley, 1997. [c2s2.3,s2.5, c3, c3s3.1-3, c5, c7, c8, c9s9.1-
2, c10s10.2, c12s12.1-3, c14s4-5, c14 s14.6, c16, c18]
[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition,
1997. [c27s27.2.1-2]
[SKV94] G.E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software, Vol. 24,
no. 3, March 1994. [pp239-249]
[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1996. [c1, c1s1.8, c2, c3, c4, c6s6.1-4, c7, c8]

© IEEE – Trial Version 1.00 – May 2001 6-13

APPENDIX A – LIST OF FURTHER READINGS

Beside the recommended references listed in this chapter,
there are other resources available to learn more about
software maintenance. The IEEE Computer Society
sponsors the annual International Conference on Software
Maintenance (ICSM). That conference, started in 1983,
provides a Proceedings, which incorporates numerous
research and practical industry papers concerning evolution
and maintenance topics. Other venues, which address these
topics, include:

The Workshop on Software Change and Evolution
(SCE). [HTTP://www.dur.ac.uk/~dcs0elb/
csm/sce99/]
Manny Lehman’s work on the FEAST project at the
Imperial College in England continues to provide
valuable research into software evolution.
[HTTP://www-dse.doc.ic.uk/~mml/]
The International Workshop on Empirical Studies of
Software Maintenance (WESS).
[HTTP://computer.org/conferences/calendar/htm]
The Research Institute for Software Evolution (RISE)
at the University of Durham, England, concentrates its
research on software maintenance and evolution.
[HTTP://www.dur.ac.uk/csm]
The Seventh Working Conference on Reverse
Engineering (WCRE-2000). [HTTP://computer.org/
conferences/calendar/htm]
The Conference on Software Maintenance and
Reengineering (CSMR). [HTTP://www.uni-
koblenz.de/ ~ist/SCSMR2000/]

The Journal of Software Maintenance, published by John
Wiley & Sons, also is an excellent resource for
maintenance.
A list of additional readings is also provided to identify
additional reference material for the Knowledge Area of
Software Maintenance. These references also contain
generally accepted knowledge.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5, no 2, 1993.
[AI98] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE Computer
Society Press, 1998.
[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.
[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.

[Bas85] V.R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.
[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.
[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The AMES
Approach to Application Understanding: A Case Study,”
Proceedings of the International Conference on Software
Maintenance-1995, IEEE Computer Society Press, Los
Alamitos, CA, 1995.
[CM94] M.A. Capretz and M. Munro, “Software
Configuration Management Issues in the Maintenance of
Existing Systems,” Journal of Software Maintenance, Vol.
6, no.2, 1994.
[CG90] D.N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.
[Car92] J. Cardow, “You Can’t Teach Software
Maintenance!,” Proceedings of the Sixth Annual Meeting
and Conference of the Software Management Association,
1992.
[Dek92] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.
[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.
[GC87] R.B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987.
[Gra92] R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.
[IEEE610.12] IEEE STD 610.2: IEEE Standard Glossary
of Software Engineering Terminology, 1990.
[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998.
[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.
[ISO14764] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.
[ISO15271] ISO/IEC TR 15271, Information Technology -
Guide for ISO/IEC 12207, (Software Life Cycle Process)
[Jon98] T.C. Jones. Estimating Software Costs. McGraw-
Hill, 1998.
[LB85] M.M. Lehman and L.A. Belady, Program
Evolution – Processes of Software Change, Academic Press
Inc. (London) Ltd., 1985.
[Leh97] M.M. Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997.

6-14 © IEEE – Trial Version 1.00 – May 2001

[KSV95] T.M. Khoshgoftaar, R.M. Szabo, and J.M. Voas,
“Detecting Program Module with Low Testability,”
Proceedings of the International Conference on Software
Maintenance-1995, IEEE Computer Society Press, Los
Alamitos, CA, 1995.
[OHA91] P.W. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software Maintainability,
University of Idaho, Software Engineering Test Lab,
Technical Report, 91-08 TR, November 1991.
[OH92] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,” Proceedings
of the International Conference on Software Maintenance-
1992, IEEE Computer Society Press, Los Alamitos, CA,
1992.
[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.
[Pfl98] S. L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.
[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.
[Pig94] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John Wiley & Sons,
New York, NY, 1994.
[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997.
[PM97] L.H. Putman and W. Myers. Industrial Strength
Software – Effective Management Using Measurement,
IEEE Computer Society Press, Los Alamitos, CA, 1997.
[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition,
1997.
[Scha99] S.R. Schach, Classical and Object-Oriented
Software Engineering With UML and C++, McGraw-Hill,
1999
[Sch87] N.F. Schneidewind. The State of Software
Maintenance. Proceedings of the IEEE, 1987.
[Schn97] S.L. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.
[Som01] I. Sommerville. Software Engineering. Addison-
Wesley, sixth edition, 2001.
[SKV94] G.E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software, 1994.
[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.
[VCBKB] J.D. Vallett, S.E. Condon, L. Briand, Y.M. Kim
and V.R. Basili, “Building on Experience Factory for

Maintenance,” Proceedings of the Software Engineering
Workshop, Software Engineering Laboratory, 1994.

© IEEE – Trial Version 1.00 – May 2001 6-15

APPENDIX B – REFERENCES USED TO WRITE AND
JUSTIFY THE SOFTWARE MAINTENANCE DESCRIPTION

The following set of references was chosen to provide
coverage of all aspects of software evolution and
maintenance. Priority was given to standards, maintenance
specific publications, and then general software engineering
publications.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol. 5, no 2, 1993.
[AI98] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE Computer
Society Press, 1998.
[Arn92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.
[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.
[Bas85] V. R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.
[Boe81] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.
[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R.
Mortimer, M. Munro, and E. Younger, “The AMES
Approach to Application Understanding: A Case Study,”
Proceedings of the International Conference on Software
Maintenance-1995, IEEE Computer Society Press, Los
Alamitos, CA, 1995.
[CG90] D.N. Card and R.L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.
[Dek92] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.
[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.
[GC87] R. B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice-Hall,
1987.
[IEEE610.12] IEEE STD 610.2: IEEE Standard Glossary
of Software Engineering Terminology, 1990.
[IEEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998.
[ISO12207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995.
[ISO14764] ISO/IEC 14764: Software Engineering-
Software Maintenance, 2000.

[Jon98] T.C. Jones. Estimating Software Costs. McGraw-
Hill, 1998.
[Leh97] M.M. Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997.
[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.
[Pfl98] S.L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.
[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.
[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997.
[Pre97] R.S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition,
1997.
[SKV94] G.E. Stark, L.C. Kern, and C.V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software, 1994.
[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.

6-16 © IEEE – Trial Version 1.00 – May 2001

APPENDIX C – DETAILED BREAKDOWN RATIONALE

Criterion (a): Number of topic breakdowns
One breakdown is provided.
Criterion (b): Reasonableness
The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although there is
less discussion regarding the pre-maintenance activities,
e.g., planning. Other topics such as measures are also often
not addressed although they are getting more attention now.
Criterion (c): Generally Accepted
The breakdowns are generally accepted in that they cover
the areas typically discussed in texts and standards.
Criterion (d): No specific Application Domains
No specific application domains are assumed.
Criterion (e): Compatibility with Various Schools of
Thought
Software maintenance concepts are stable and mature.
Criterion (f): Compatible with Industry, Literature, and
Standards
The breakdown was derived from the literature and key
standards reflecting consensus opinion. The extent to which
industry implements the software maintenance concepts in
the literature and in standards varies by company and
project.
Criterion (g): As Inclusive as Possible
The primary topics are addressed within the page
constraints of the chapter.
Criterion (h): Themes of Quality, Measurement, and
Standards
Quality, Measurement and standards are discussed.
Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level
The proposed breakdown satisfies this criterion.
Criterion (j): Topic Names Meaningful Outside the
Guide
Wording is meaningful. Version 0.7/0.8 reviews indicated
that the wording is meaningful.
Criterion (k) Vincenti Categorization
Topics were applied to the Vincenti Categorization.
Criterion (l): Topics only sufficiently described to allow
reader to select appropriate material
A tutorial on maintenance was not provided. Generally
accepted concepts were introduced with appropriate
references for additional reading were provided.
Criterion (m): Text on the Rationale Underlying the
Proposed Breakdowns
The Software Maintenance Theory and Practice was

selected as the initial topic in order to introduce the topic.
The subtopics are needed to provide definitions and to
emphasis why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
maintenance. All pertinent texts use a similar introduction.
The Maintenance Activities subtopic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities. The
subtopic on the Problems of Software Maintenance was
chosen to ensure that the software engineers fully
comprehended these problems.
Maintenance Process is needed to provide the current
references and standards needed to implement the
maintenance process.
Every organization is concerned with who will perform
maintenance. The Organizational Aspect of Maintenance
provides some options. There is always a discussion that
maintenance is hard. Every software maintenance reference
discusses the fact that maintenance consumes a large
portion of the life cycle costs. The topic on Cost and Cost
Estimation was provided to ensure that the readers select
references to help with this difficult task.
The Software Maintenance Measurements topic is one that
is not addressed very well in the literature. Most
maintenance books barely touch on the topic. Measurement
information is most often found in generalized measurement
books. This topic was chosen to highlight the need for
unique maintenance measures and to provide specify
maintenance measurement references.
The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.
Finally, there are other resources besides textbooks and
periodicals that are useful to software engineers who wish
to learn more about software maintenance. This topic is
provided to list these additional resources.

