
© IEEE – Trial Version 1.00 – May 2001 8–1 

CHAPTER 8 

SOFTWARE ENGINEERING MANAGEMENT 

Stephen G. MacDonell and Andrew R. Gray 
University of Otago,  

Dunedin, New Zealand 
+64 3 479 8135 (phone) +64 3 479 8311 (fax) 

stevemac@infoscience.otago.ac.nz 

Table of Contents 

1 Introduction................................................................. 1 
2 Definition of the Software Engineering Management 

Knowledge Area......................................................... 1 
3 Breakdown of Topics for Software Engineering 

Management ............................................................... 3 
4 Breakdown Rationale.................................................. 9 
5 Matrix of Topics vs. Reference Material .................. 10 
6 Recommended References for Software Engineering 

Management ............................................................. 11 
Appendix A – List of Further Readings............................ 12 
Appendix B – References Used to Write and Justify the 

Description ............................................................... 14 
Appendix C – Table of Correspondence with PMBOK.... 15 

1 INTRODUCTION 

This is the current draft (version 0.9) of the knowledge area 
description for Software Engineering Management. The 
primary goals of this document are to: 

1) define the Software Engineering Management 
knowledge area, 

2) present a breakdown of the knowledge area in an 
hierarchical topic framework, 

3) provide a list of references that addresses the topics in 
the breakdown, 

4) provide a topic-reference matrix, 

5) provide a list of further readings and supplementary 
references that also address topics in this knowledge 
area. 

2 DEFINITION OF THE SOFTWARE ENGINEERING 
MANAGEMENT KNOWLEDGE AREA 

Before defining the Software Engineering Management 
knowledge area it is first necessary to set out the scope or 
context in which it is placed. As an organizational process, 
it is also important that its relationship to other related 
standards and to other knowledge areas is clear. 

2.1 Scope and definition 

The scope of this knowledge area follows the general focus 
of the Guide; that is, “emphasis… is placed upon the 
construction of useful software artifacts” (page i, Preface to 
the Guide to the SWEBOK). As a result we are principally 
concerned with issues related to software development – the 
acquisition of software solutions receives less attention 
here.  
Software engineering is characterized in this Guide 
according to the IEEE definition: “(1) The application of a 
systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that 
is, the application of engineering to software.” Management 
generally incorporates the following activities: planning, 
coordinating, measuring, monitoring, controlling and 
reporting. Combining these two definitions leads us to an 
understanding of Software Engineering Management: the 
application of management activities – planning, 
coordinating, measuring, monitoring, controlling and 
reporting – to ensure that the development of software is 
systematic, disciplined and measured. 
The Software Engineering Management knowledge area 
therefore addresses the management of software 
development and the measurement and modeling of 
software development. Whilst measurement is an important 
aspect of all Guide to the SWEBOK knowledge areas, it is 
here that the topic is most focused, particularly with regard 
to issues involved in goal-driven measurement selection, 
model development and testing for the purposes of software 
engineering management. 

2.2 The management of software engineering 

Whilst it is true to say that in one sense it should be 
possible to manage software engineering in the same way 
as any other (complex) process, there are aspects particular 



8–2 © IEEE – Trial Version 1.00 – May 2001 

to software products and the software engineering process 
that complicate effective management – just a few of them 
are as follows: 
� the perception of clients is such that there is a lack of 

appreciation for the complexity inherent in software 
engineering, particularly in relation to the impact of 
changing requirements 

� related to the point just made, it is almost inevitable 
that the software engineering process itself will 
generate the need for new or changed client 
requirements 

� as a result, software is often built in an iterative 
process rather than a concrete sequence of closed tasks 

� software engineering necessarily incorporates aspects 
of creativity and discipline – maintaining an 
appropriate balance between the two is often difficult 

� unlike many other disciplines, we are largely lacking 
an underlying theory (e.g. engineering is founded on 
the principles of physics and mathematics) 

� software engineers create intangible products that 
cannot easily be tested in the same sense that a 
physical product can 

� the degree of novelty and complexity of the software 
we are asked to build is extremely high, in that most (if 
not all) of the common and simple products have 
already been built 

� we are faced with an extremely rapid rate of change in 
the underlying technology. 

2.3 Relationship to general management and project 
management 

With respect to software engineering, management 
activities occur at two levels. Aspects of general 
organizational management are relevant in terms of their 
impact on software engineering. For instance, planning at 
the strategic, tactical and operational level, organizational 
culture and behavior, and functional enterprise management 
in terms of procurement, supply chain management, 
marketing, sales, and distribution all have an influence, 
albeit indirectly, on an organization’s software engineering 
process. Perhaps more pertinent to this knowledge area is 
the notion of project management, as “the construction of 
useful software artifacts” is normally managed in the form 
of (perhaps programs of) individual projects. In this regard 
we find extensive support in the Guide to the Project 
Management Body of Knowledge (PMBOK) [PMI, 1996], 
which itself includes the following project management 
knowledge areas: integration, scope, time, cost, quality, 
human resource, communications, risk, and procurement. 
Clearly all of these topics have direct relevance to this 
knowledge area. Rather than attempt to duplicate the 
content of the Guide to the PMBOK here, which would be 
both impossible and inappropriate, we instead provide a 

cross-reference table at the end of this document so that the 
relationship between the two is evident. 

2.4 Relationship to other Guide to the SWEBOK 
knowledge areas and standards 

Not unexpectedly this knowledge area is closely related to 
others in the Guide to the SWEBOK, and reading the 
following knowledge area documents in conjunction with 
this one would be particularly useful. Material that is 
covered in these separate documents is not duplicated here. 

Software Configuration Management, as this deals 
with the administration, monitoring and control of 
collections of [software] components.  
Software Engineering Process, where these process 
activities must be managed. 
Software Quality, as quality is constantly a goal of 
management and is an aim of many activities that 
must be managed.  

In order to provide a broader context in which these 
knowledge areas can be considered it is useful to map them 
to the IEEE/EIA Standard for Information Technology 
(ISO/IEC 12207) – Software life cycle processes. This sees 
the four management-oriented knowledge areas principally 
aligned to ‘6. Supporting Life Cycle Processes’ and to ‘7. 
Organizational Life Cycle Processes’ as follows: 
 

Guide to the SWEBOK ISO/IEC 12207 
Chapter 7 Software 
Configuration 
Management 

6.2 Configuration 
Management 

Chapter 8 Software 
Engineering Management 

7.1 Management 

Chapter 9 Software 
Engineering Process 

7.3 Improvement 

Chapter 11 Software 
Quality 

6.3 Quality Assurance  
6.6 Joint Review 
6.4 Verification  
6.7 Audit 
6.5 Validation 

Chapters 2 through 6 of the Guide to the SWEBOK 
represent the phases of the software development process 
(and map to sections 5.3 Development and 5.5 Maintenance 
of ISO/IEC 12207). Clearly each process must be managed 
– issues of particular relevance to each process are dealt 
with in the associated knowledge area. Our focus is on the 
relevant aspects of enterprise, process and project 
management as they apply to software engineering rather 
than to individual development processes. 

2.5 Management and measurement 

As alluded to above, the Software Engineering 
Management knowledge area consists of both the 
management process and measurement sub-areas. Whilst 
these two topics are often regarded as being separate, and 



© IEEE – Trial Version 1.00 – May 2001 8–3 

indeed they do possess many mutually unique aspects, their 
close relationship has led to their combined treatment here 
as part of the Guide to the SWEBOK. Unfortunately the 
public perception of the software industry is that it delivers 
products late, over budget, with poor quality and uncertain 
functionality. Measurement-informed management – an 
assumed principle of any true engineering discipline – can 
help to turn this perception around. In essence, 
management without measurement, qualitative and 
quantitative, suggests a lack of rigor, and measurement 
without management suggests a lack of purpose or context. 
In the same way, however, management and measurement 
without expert knowledge is equally ineffectual so we must 
be careful to avoid over-emphasizing the quantitative 
aspects of Software Engineering Management. Effective 
management requires a combination of both numbers and 
stories. 
The following working definitions are adopted here: 

Management process refers to the activities that are 
undertaken in order to ensure that the software 
development process is performed in a manner 
consistent with the organization’s policies, goals, and 
standards. 
Measurement (a.k.a. Metrics) refers to the assignment 
of values and labels to aspects of software 
development (products, processes, and resources as 
defined by [Fenton and Pfleeger, 1997]) and the 
models that are derived from them whether these 
models are developed using statistical, expert 
knowledge, or other techniques. 

The management process sub-area makes extensive use of 
the measurement sub-area. This exchange between the two 
sub-areas occurs continuously throughout the software 
development processes. 

3 BREAKDOWN OF TOPICS FOR SOFTWARE 
ENGINEERING MANAGEMENT  

As the Software Engineering Management knowledge area 
is viewed here as an organizational process that 
incorporates the notion of process and project management, 
we have created a breakdown that is both topic-based and 
life cycle-based. There are three major topic areas: 
organizational management, which deals with high-level 
management activities that have a relevant but somewhat 
indirect impact on software engineering; process/project 
management, which deals with generally accepted software 
engineering management activities; and software 
engineering measurement, which deals with the effective 
development and implementation of measurement 
programs in software engineering organizations. Within 
each main topic area relevant sub-topics are listed, and 
described where necessary. In particular, further 
explanation is provided in the process/project management 
and software engineering measurement topic areas where 

distinct issues relating to software engineering management 
warrant more detailed attention. 

A. Organizational management 
1. Policy management – organizational policies and 

standards provide the framework in which software 
engineering is undertaken. As such, they 
operationalize overall organizational strategies and 
have an indirect influence on the software engineering 
process and its management. It is important that those 
charged with the management of software engineering 
both understand and influence the development, 
dissemination, deployment and enforcement of 
policies and standards. [Pfle: c2; Reif: c2; Somm: c30; 
Thay: c2,c4] 
1. Means of policy development 
2. Policy dissemination and enforcement 
3. Development and deployment of standards 

2. Personnel management – policies and procedures used 
at the organizational level to recruit, select, motivate 
and reward personnel also affect the management of 
software engineering teams and individuals. It is 
acknowledged that in order to recruit and retain high-
quality personnel in the software engineering industry 
it is vital that training, motivation, career development 
and the like are given adequate attention. [F&P: c11; 
Pfle: c3; Press: c3; Reif: c7,c8; Somm: c28; Thay: 
c7,c8] 
1. Hiring and retention  
2. Training and motivation  
3. Mentoring for career development 

3. Communication management – even if project-based 
communication is effective, an organization is 
unlikely to survive long-term without clear policies 
and procedures that are applicable in the wider 
context. An awareness of communication channels 
(formal and informal), conventions in terms of 
terminology, form and style, mechanisms for feedback 
and the impact of organizational structures on 
communication, has an indirect but important 
influence on communication within the software 
engineering process. [Press: c3; Somm: c28; Thay: 
c1,c3] 
1. Communication channels and media 
2. Meeting procedures  



8–4 © IEEE – Trial Version 1.00 – May 2001 

Software Engineering Management

Organizational
Management

Process/Project
Management

Software
Engineering

Measurement

Policy Management

Personnel
Management

Communication
Management

Portfolio
Management

Procurement
Management

Initiation and scope
definition

Planning

Enactment

Review and
Evaluation

Closure

Goals

Measurement
Selection

Measuring Software
and its

Development

Collection of data

Software
Measurement

Models  
 

3. Written presentations   
4. Oral presentations  
5. Negotiation 

4. Portfolio management – organizations that deal with 
multiple clients and/or multiple projects are often 
faced with the need to prioritize their effort in terms of 
the projects they undertake. It is important that those 
involved in software engineering management both 
contribute to and are guided by the organizational 
management of project portfolios, where portfolios 
are constructed in light of the advantages and 
disadvantages of undertaking individual projects using 
a variety of cost/benefit and similar analysis methods. 
[Press: c10] 
1. Strategy development and coordination  
2. General investment management techniques  
3. Project selection  
4. Portfolio construction (risk minimization and 

value maximization)  
5. Procurement management – in cases where an 

organization outsources (part of) their operation to an 
external agency this process must be managed 
effectively in order to ensure a successful outcome. 
As it is not uncommon for organizations to purchase 
some or all of their software engineering activity in 
such a way, organizational policies and procedures 

should exist to facilitate effective provider-consumer 
relationships. [Press: c5; Reif: c15; Somm: c2] 
1. Procurement planning and selection  
2. Supplier contract management 

B. Process/project management (largely following 
7.1 ISO/IEC 12207 Management Process) 

1. Initiation and scope definition – the focus of this set of 
activities is on the effective determination of process 
and/or project requirements via various elicitation 
methods and the assessment of the process/project’s 
feasibility from a variety of standpoints. Once 
feasibility has been established, the remaining task 
within this process is the specification of requirements 
review and modification procedures (see also Chapter 
2 of the Guide to the SWEBOK). 
1. Determination and negotiation of requirements – 

methods of requirements engineering, elicitation 
(e.g. observation), analysis (e.g. data modelling, 
use case modelling), specification, and validation 
(e.g. prototyping) must be selected and applied 
in cognizance of various stakeholder 
perspectives. This leads to the determination of 
process/project scope, objectives and constraints. 
This is always an important activity, as it sets the 
visible boundaries for the set of tasks being 
undertaken, and is particularly so where the 
novelty of the undertaking is high. [D&T: c4; 
Pfle: c4; Press: c5,c11,c12; Somm: c4-11] 



© IEEE – Trial Version 1.00 – May 2001 8–5 

2. Feasibility analysis (technical, operational, 
financial, social/political) – the software 
engineering manager must be assured that 
adequate capability and resources are available 
in the form of people, expertise, facilities, 
infrastructure, and support (either internally or 
externally) to ensure that the process/project can 
be successfully completed in a timely and cost-
effective manner (using, for example, a 
requirement-capability matrix). This often 
requires some ‘ball-park’ estimation of effort 
and cost based on appropriate methods (e.g. 
expert-informed analogy techniques). [Press: 
c10] 

3. Process for the review and revision of 
requirements – given the inevitability of change, 
it is vital that agreement among stakeholders is 
reached at this early point as to the means by 
which scope and requirements are to be reviewed 
and revised (e.g. via agreed change management 
procedures). This clearly implies that scope and 
requirements will not be ‘set in stone’ but can 
and should be revisited at pre-determined points 
as the process occurs (e.g. at design reviews, 
acceptance tests). If changes are accepted then 
some form of traceability analysis and risk 
analysis (see below) should be used to ascertain 
the impact of those changes. A managed change 
approach should also be useful when it comes 
time to review the outcome of the 
process/project, as the scope and requirements 
should form the basis for evaluation of success. 
[Somm: c4] 

2. Planning – the iterative planning process is informed 
by the scope and requirements and the establishment 
of feasibility. At this point, software processes are 
evaluated and the most appropriate (given the nature 
of the process/project, its degree of novelty, its 
functional and technical complexity, its quality 
requirements, and so on) is selected. Where relevant, 
the project itself is then planned in the form of an 
hierarchical decomposition of tasks, the associated 
deliverables of each task are specified and 
characterized in terms of quality and other attributes 
in line with stated requirements, and detailed effort, 
schedule and cost estimation is undertaken. Resources 
are then allocated to tasks so as to optimize personnel 
productivity (at individual, team, and organizational 
levels), equipment and materials utilization and 
adherence to schedule. Detailed risk management is 
undertaken and the ‘risk profile’ of the process/project 
is discussed among and accepted by all relevant 
stakeholders. Comprehensive quality management 
processes are determined as part of the planning 
process in the form of procedures and responsibilities 
for quality assurance, verification and validation (see 
also Chapter 11 of the Guide to the SWEBOK). As an 

iterative process, it is vital that the processes and 
responsibilities for ongoing plan management, review 
and revision are also clearly stated and agreed. 
1. Process planning – selection of the appropriate 

software process (e.g. spiral, cleanroom) and the 
specification and deployment of appropriate 
process standards are undertaken in the light of 
the particular scope and requirements of the 
process/project. Relevant methods and tools are 
also selected. [D&T: c5,c11; Pfle: c2; Press: c2; 
Reif: c1,c2,c4; Somm: c1; Thay: c3] 

2. Project planning – appropriate methods and tools 
are used to decompose the project into tasks, 
with associated inputs, outputs and completion 
conditions (e.g. work breakdown structure). 
[D&T: c10; Pfle: c3; Press: c3,c5; Reif: c3,c4; 
Somm: c3; Thay: c4,c6] 

3. Determine deliverables – the product(s) of each 
task (e.g. high level architectural design, 
inspection report) are specified and 
characterized. [Pfle: c3; Press: c3,c7; Somm: c3; 
Thay: c4] 

4. Effort, schedule and cost estimation – based on 
the breakdown of tasks, inputs and outputs, the 
expected effort range required for each is 
determined using a calibrated estimation model 
based on historical size-effort data where 
available and relevant (e.g. analogy-based 
estimation, function point analysis); task 
dependencies are established and potential 
bottlenecks are identified using suitable methods 
(e.g. critical path analysis); bottlenecks are 
resolved where possible and the expected 
schedule of tasks with projected start times, 
durations and end times is produced (e.g. PERT 
chart); resource requirements (people, tools) are 
translated into cost estimates. [D&T: c10; F&P: 
c12; Pfle: c3; Press: c5,c7; Reif: c4,c5; Somm: 
c3,c29; Thay: c5] 

5. Resource allocation – equipment, facilities and 
people are associated with the scheduled tasks, 
including the allocation of responsibilities for 
completion (using, for example, a Gantt chart). 
This activity is informed and constrained by the 
availability of resources and their optimal use 
under these circumstances, as well as by issues 
relating to personnel e.g. productivity of 
individuals/teams, team dynamics, 
organizational and team structures. [Pfle: c3; 
Press: c5; Reif: c7,c8; Somm: c3; Thay: c6,c7] 

6. Risk management – risk identification and 
analysis (what can go wrong, how and why, and 
what are the likely consequences), critical risk 
assessment (which are the most significant risks 
in terms of exposure, which can we do 



8–6 © IEEE – Trial Version 1.00 – May 2001 

something about in terms of leverage), risk 
mitigation and contingency planning 
(formulating a strategy to deal with risks and to 
manage the risk profile) are all undertaken. Risk 
assessment methods (e.g. decision trees and 
process simulations) should be used in order to 
highlight and evaluate risks. Project 
abandonment policies should also be determined 
at this point in discussion with all other 
stakeholders. [D&T: c10; Pfle: c3; Press: c6; 
Reif: c11; Thay: c4] 

7. Quality management – quality is defined in 
terms of pertinent attributes of the specific 
process/project and any associated product(s), 
perhaps in both quantitative and qualitative 
terms. (These quality attributes will have been 
determined in the specification of detailed 
requirements.) Thresholds for adherence to 
quality are set for each attribute as appropriate to 
stakeholder expectations for the software at 
hand. Procedures relating to ongoing software 
quality assurance (SQA) throughout the process 
and for product (deliverable) verification and 
validation are also specified at this stage (e.g. 
reviews and inspections) (see also Chapter 11 of 
the Guide to the SWEBOK). [D&T: c7,c9; Press: 
c8; Reif: c10; Somm: c30,c31; Thay: c9,c10] 

8. Plan management – in an environment where 
change is an expectation rather than a shock, it is 
vital that plans are themselves managed. This 
requires that adherence to plans is systematically 
directed, monitored, reviewed, reported, and, 
where appropriate, revised. Plans associated with 
other management-oriented support processes 
(e.g. documentation, configuration management 
and problem resolution) also need to be managed 
in the same manner. [Somm: c3; Thay: c4] 

3. Enactment – the plans are then implemented and the 
processes embodied in the plans are enacted. 
Throughout, there is a focus on adherence to the 
plans, with an over-riding expectation that such 
adherence will lead to the successful satisfaction of 
stakeholder requirements and achievement of the 
process/project objectives. Fundamental to enactment 
are the ongoing management activities of measuring, 
monitoring, controlling and reporting. 
1. Implementation of plans – the process is initiated 

and the process/project activities are undertaken 
according to the schedule. In the process, 
resources are utilized (e.g. personnel effort, 
funding) and deliverables are produced (e.g. 
architectural design documents, test cases). [Pfle: 
c3; Somm: c3] 

2. Implementation of measurement process – the 
measurement process is enacted alongside the 
software development process/project, ensuring 

that relevant and useful data is collected (see also 
section C of this knowledge area breakdown). 
[F&P: c13,c14; Press: c4; Reif: c9,c10,c12; 
Thay: c3,c10] 

3. Monitor process – adherence to the various plans 
is systematically assessed continually and at pre-
determined intervals. Outputs and completion 
conditions for each task are analyzed, 
deliverables are evaluated in terms of their 
required characteristics (e.g. via joint reviews, 
test audits), effort expenditure, schedule 
adherence and costs to date are investigated, 
resource usage is examined, the process/project 
risk profile is revisited, and adherence to quality 
requirements is evaluated. Measurement data is 
modeled and analyzed. Variance analysis based 
on the deviation of actual from expected 
outcomes and values is undertaken. This may be 
in the form of cost overruns, schedule slippage 
and the like. Outlier identification and analysis 
of quality and other measurement data is 
performed (e.g. defect density analysis). Risk 
exposure and leverage are recalculated and 
decisions trees, simulations and so on are re-run 
in the light of new data. These activities enable 
problem detection and exception identification 
based on exceeded thresholds. Outcomes are 
reported as needed and certainly where 
acceptable thresholds are surpassed. [D&T: 
c7,c9,c10; Press: c7; Reif: c9,c10; Somm: c31; 
Thay: c3;c9] 

4. Control process – the outcomes of the process 
monitoring activities provide the basis on which 
action decisions are taken. Where appropriate, 
and where the impact and associated risks are 
modeled and managed, changes can be made to 
the process/project. This may take the form of 
corrective action (e.g. re-testing certain 
components), it may involve the incorporation of 
contingencies so that similar occurrences are 
avoided (e.g. the decision to use prototyping to 
assist in requirements validation), and/or it may 
entail the revision of the various plans and other 
project documents (e.g. requirements 
specification) to accommodate the unexpected 
outcomes and their flow-on implications. In 
some instances it may lead to abandonment of 
the process/project. In all cases, change control 
and configuration management procedures are 
adhered to (see Chapter 7 of the Guide to the 
SWEBOK), decisions are documented and 
communicated to all relevant parties, plans are 
revisited and revised where necessary, and 
relevant data is recorded in the central database 
(see also section C of this knowledge area 
breakdown). [D&T: c10; Press: c9; Reif: c9,c10; 
Thay: c3,c9] 



© IEEE – Trial Version 1.00 – May 2001 8–7 

5. Reporting – at specified and agreed periods, 
adherence to the plans is reported, both within 
the organization (e.g. to the project portfolio 
steering committee) and to external stakeholders 
(e.g. clients, users). Reports of this nature should 
focus on overall adherence as opposed to the 
detailed reporting required frequently within the 
process/project team. [Reif: c9,c10; Thay: 
c3,c10] 

4. Review and evaluation – at critical points in the 
process/project overall progress towards achievement 
of the stated objectives and satisfaction of stakeholder 
requirements is evaluated. Similarly, assessments of 
the effectiveness of the overall process to date, the 
personnel involved, and the tools and methods 
employed are also undertaken at particular milestones. 
1. Determining satisfaction of requirements – since 

attaining stakeholder (user and customer) 
satisfaction is one of our principal aims, it is 
important that progress towards this aim is 
formally and periodically assessed. This occurs 
at the achievement of major process/project 
milestones (e.g. confirmation of software design 
architecture, software integration joint review). 
Variances from expectations are identified and 
appropriate action is taken. As in the Control 
process activity above, in all cases change 
control and configuration management 
procedures are adhered to (see Chapter 7 of the 
Guide to the SWEBOK), decisions are 
documented and communicated to all relevant 
parties, plans are revisited and revised where 
necessary, and relevant data is recorded in the 
central database (see also section C of this 
knowledge area breakdown). [Reif: c9,c10; 
Thay: c3,c10] 

2. Reviewing and evaluating performance – 
periodic performance reviews for process/project 
personnel provide insights as to the likelihood of 
adherence to plans as well as possible areas of 
difficulty (e.g. team member conflicts). The 
various methods, tools and techniques employed 
are evaluated for their effectiveness and 
appropriateness, and the process itself is 
systematically and periodically assessed for its 
relevance, utility and efficacy in the 
process/project context (see also the other 
SWEBOK chapters). Where appropriate, 
changes are made and managed. [D&T: c7; Pfle: 
c7,c8; Press: c8; Reif: c9,c10; Thay: c3,c10] 

5. Closure – the process/project reaches closure when all 
of the plans and embodied processes have been 
enacted and completed. At this stage the criteria for 
process/project success are revisited. Once closure is 
established, archival, post mortem and process 
improvement activities are performed. 

1. Determining closure – the tasks as specified in 
the plans are complete and satisfactory 
achievement of completion criteria is confirmed. 
All planned products have been delivered with 
acceptable characteristics. Requirements are 
checked off and confirmed as satisfied and the 
objectives of the process/project have been 
achieved. These processes generally involve all 
stakeholders and result in the documentation of 
client acceptance and any remaining known 
problem reports. [D&T: c7; Reif: c9,c10; Thay: 
c3,c10] 

2. Closure activities – after closure has been 
confirmed, archival of process/project materials 
takes place in line with stakeholder-agreed 
methods, location and duration. The 
organization’s measurement database is updated 
with final process/project data and post-project 
analyses are undertaken. A process/project post 
mortem is undertaken so that issues, problems 
and opportunities encountered during the process 
(particularly via Review and Evaluation) are 
analyzed, lessons are drawn from the process, 
and are fed into organizational learning and 
improvement endeavors (see also Chapter 9 of 
the Guide to the SWEBOK). [Pfle: c11; Somm: 
c31] 
(Software then moves into operation, 
maintenance and, perhaps eventually, retirement. 
Whilst these tasks also need to be managed they 
are not explicitly addressed here – software 
maintenance as a set of activities is addressed in 
Chapter 6 of the Guide to the SWEBOK, and the 
other topics (software operation and retirement) 
are outside the scope of the Guide.) 

C. Software engineering measurement 
1. Determining the goals of a measurement program – 

the ad hoc approach to software engineering 
measurement that characterized early efforts – that is, 
measuring everything possible – often failed to 
provide genuine insights in terms of organizational 
improvement, or worse, it led to spurious outcomes 
that did not generalize to other cases. Each 
measurement endeavor should be guided by 
organizational objectives and driven by an over-riding 
goal that has organizational improvement at its 
foundation. In this way, measurement effort 
expenditure should ultimately result in some sort of 
cost-effective gain to the organization, based on 
justified prioritization of efforts. An emerging 
international standard, ISO/IEC FCD 15939, describes 
a generic process that defines the activities and tasks 
necessary to implement a software measurement 
process and includes as well a measurement 
information model.   [ISO/IEC, 2000] 



8–8 © IEEE – Trial Version 1.00 – May 2001 

1. Organizational objectives – organizational 
strategies inform software engineering 
management in terms of identifying the broad 
issues and objectives that hold principal 
relevance at the organizational level (e.g. being 
first-to-market with new products). [F&P: 
c3,c13; Press: c4] 

2. Software process improvement goals – 
organizational objectives are translated into 
specific software-related goals that, if achieved, 
can assist the organization in attaining its 
objectives (e.g. optimizing software 
development with a view to shortening the 
product life-cycle whilst maintaining process and 
product quality). [F&P: c3,c13; Pfle: c12; Press: 
c4; Reif: c2; Somm: c31] 

2. Measurement selection – development of an effective 
measurement process is informed by the 
organizational objectives and software process 
improvement goals as specified. This provides the 
necessary context for more specific and detailed 
measurement selection. Some understanding of the 
validity, accuracy and reliability of the selected 
measures is also crucial in terms of assessing the 
value of the measurement program and the confidence 
that can be placed in the results generated from it. 
1. Goal-driven measurement selection – once 

software process improvement goals are set, we 
are then in a position to utilize a decomposition 
process in order to ask questions of direct 
relevance and interest, leading finally to the 
selection of useful and relevant measures (e.g. 
the Goal/Question/Metric approach incorporates 
just such a decomposition process). In relation to 
shortening the product life-cycle we may adopt a 
measurement goal of maximizing software 
development productivity. In turn, we might ask 
questions such as: how much effort is expended 
on rework? what is the range of developer 
productivity rates? is developer productivity in 
line with changes in developer experience? All 
require quite different measures in order to 
provide the answers needed to achieve the over-
riding goals. [F&P: c1,c3,c13,c14; Reif: c12; 
Thay: c10] 

2. Measurement validity – an awareness of issues 
relating to measurement validity and reliability is 
essential if the measurement program is to 
provide effective and bounded results. In 
particular, an appreciation of measurement scales 
and the implications of each scale type in 
relation to the subsequent selection of data 
analysis methods is especially important. [F&P: 
c2; Pfle: c11] 

3. Measuring software and its development – whilst the 
application of measurement to software engineering 

can be complex, particularly in terms of modeling and 
analysis methods (see below), there are several 
aspects of software engineering measurement that are 
fundamental and that underlie much of the more 
advanced measurement and analysis processes. 
Furthermore, achievement of process and product 
improvement efforts can only be assessed if a set of 
baseline measures has been established. Software 
engineering management therefore includes, as a 
minimum, the measurement of product size, product 
structure, resource utilization and product and process 
quality. 
1. Size measurement – software product size is 

most often assessed by measures of length (e.g. 
lines of source code in a module, pages in a 
requirements specification document) or 
functionality (e.g. function points in a 
specification or design, COCOMO evaluation of 
a system design). The standard for functional 
size measurement methods is [ISO/IEC 1998] 
and additional supporting standards are under 
development. A number of specific methods, 
suitable for different purposes, are available. 
[F&P: c7; Press: c4,c18,c23; Reif: c12; Somm: 
c30].  

2. Structure measurement – a diverse range of 
measures of software product structure may be 
applied to both high- and low-level design and 
code artifacts to reflect control-flow (e.g. the 
cyclomatic number, code knots), data-flow (e.g. 
measures of slicing), nesting (e.g. nesting 
polynomial measure, the BAND measure), 
control structures (e.g. the vector measure, the 
NPATH measure), and modular structure and 
interaction (e.g. information flow, tree-based 
measures, coupling and cohesion). [F&P: c8; 
Press: c18,c23] 

3. Resource measurement – whilst some effort can 
be made to assess the utilization of tools and 
hardware, the primary resource that needs to be 
managed in software engineering is personnel. 
As a result the main measures of interest are 
those related to productivity of individuals and 
of teams (e.g. using a measure of function points 
produced per unit of person-effort) and their 
associated levels of experience in software 
engineering in general and perhaps in particular 
technologies. [F&P: c3,c11; Somm: c29] 

4. Quality measurement – as a multi-dimensional 
attribute, quality measurement is less 
straightforward to define than those above. 
Furthermore, some of the dimensions of quality 
(e.g. usability, maintainability, and value to the 
client) are likely to require measurement in 
qualitative rather than quantitative form. A more 
detailed discussion of software quality 



© IEEE – Trial Version 1.00 – May 2001 8–9 

assessment is provided in Chapter 11 of the 
Guide to the SWEBOK. [F&P: c9,c10; Press: c4; 
Reif: c12; Somm: c30] 

4. Collection of data – when developing a measurement 
process it is important to ensure that the optimal set of 
measures is chosen. By optimal it is not just meant 
that the measures are those that necessarily provide 
the greatest (predictive) power for the desired 
purpose. It is also important that the cost of data 
collection is minimized or at least balanced against the 
benefits to be gained from the outputs of the program. 
The possibility of reusing measures collected for other 
purposes is also considered as part of the collection 
process. The data collected is also useful from the 
perspective of enabling appropriate models to be 
developed for analysis, classification and prediction.  
1. Survey techniques and form design – data 

collection forms and questionnaires are pilot 
tested before they are used on actual 
processes/projects. Forms are logically laid out, 
require minimum completion, and make use of 
default values where possible. Assistance for 
form and survey completion is made available. 
[F&P: c4,c5] 

2. Automated and manual data collection – all data 
collection has associated costs, both direct (in 
terms of people employed and software 
purchased) and indirect (in the costs of 
interruptions and delays as measurement data are 
analyzed). For this reason, the measurement 
process is treated as an investment in the 
development process, with justification for 
expenditure and quantification of the resulting 
benefits. Procedures relating to data collection 
detail the point at which the data is available, the 
way in which it is collected, the personnel 
responsible for collection, and the cost 
associated with collection. Where possible, 
unobtrusive automated data collection is 
preferred. This information is important in 
ensuring that that program is actually feasible. 
The potential exists for a measurement process 
to be created, only to find that some of the data 
cannot physically be collected, or not in 
sufficient quantities. [F&P: c5; Press: c4; Somm: 
c30] 

5. Software measurement models – as the data is 
collected and the measurement database is populated 
we become able to build models using both data and 
knowledge. These models exist for the purposes of 
analysis, classification and prediction. Such models 
need to be evaluated to ensure that their levels of 
accuracy are sufficient and that their limitations are 
known and understood. The refinement of models, 
which takes place both during and after projects are 
completed, is another important activity. The 

implementation of measurement models is more 
management-oriented since the use of such models 
has an influential effect on personnel behavior. 
1. Model building, calibration and evaluation – the 

goal-driven approach to measurement informs 
the model building process to the extent that 
models are constructed to answer relevant 
questions and achieve software improvement 
goals. This process is also influenced by the 
implied limitations of particular measurement 
scales in relation to the choice of analysis 
method. The models are calibrated (by using 
particularly relevant observations e.g. recent 
projects, projects using similar technology) and 
their effectiveness is evaluated (e.g. by testing 
their performance on holdout samples). [F&P: 
c4,c6,c13; Pfle: c3,c11,c12; Somm: c29] 

2. Implementation, interpretation and refinement of 
models – the calibrated models are applied to the 
process/project (see Process/project enactment), 
their outcomes are interpreted and evaluated in 
the context of the process/project, and the models 
are then refined where appropriate. [F&P: c6; 
Pfle: c3,c11,c12; Press: c4; Somm: c29] 

4 BREAKDOWN RATIONALE 

The following subsections each describe how the proposed 
draft of the knowledge area description meets the criteria 
given in the project guidelines. 

One or two breakdowns with identical topics 
A single breakdown of topics is shown. 
Soundness and reasonableness 
The primary references and secondary sources were 
examined quite thoroughly in order to list all main topics. 
The division of the management process into life-cycle 
based topics seems both plausible and useful in terms of 
educational presentation. 
Generally acceptable 
In our view the material in this knowledge area description 
meets the criterion of being generally acceptable in terms of 
being “applicable to most projects, most of the time” and 
having “widespread consensus about their value and 
usefulness” [PMI, 1996]. These topics are those that 
receive the greatest coverage in both the original texts and 
additional materials suggested here. 
Similarly, the Industrial Advisory Board definition of 
“study material of a software engineering licensing exam 
that a graduate would pass after completing four years of 
work experience” appears to be met. However, in this case 
the specific responsibilities of the graduate will obviously 
influence in what areas they have the opportunity to gain 
experience. Project management is often a more senior 
position and as such, graduates with four years of practice 



8–10 © IEEE – Trial Version 1.00 – May 2001 

may not have had significant experience in managing, at 
least large-scale, projects. 
The importance of measurement and its role in better 
management practices is widely acknowledged and so its 
importance can only increase in coming years. Effective 
measurement has become one of the cornerstones of 
organizational maturity. 
Compatible with various schools of thought within software 
engineering 
Excluding debate on measurement theoretic issues there is 
little intense debate in the measurement field. There is 
nothing that appears to be controversial in the management 
process sub-area. 
Compatible with breakdown in industry, literatures, and 
standards 
The breakdown is in line with others proposed, and is 
particularly aligned with the IEEE/EIA Standard for 
Information Technology (ISO/IEC 12207) – Software life 
cycle processes and the Guide to the Project Management 
Body of Knowledge. 
Depth and node density 
The suggested guidelines have been met here. 
Meaningful topic names 
Key terms on software measures and measurement methods 
have been defined in [ISO/IEC 2000] on the basis of the 

ISO international vocabulary of metrology [ISO93]. 
Nevertheless, readers will encounter terminology 
differences in the literature; for example, the term “metrics” 
is sometimes used in place of “measures”.  We recognize 
that this could  make less obvious the connection between 
this work and many papers and books (including [Fenton 
and Pfleeger, 1997]).  

Brevity of topic descriptions 
Although they have been expanded significantly between 
the last draft and this, the descriptions remain adequately 
brief and to the point. 
Specific reference material 
Additional reference material for more specialized topics 
not covered adequately in the primary reference material 
has been added. 
Proposed reference material (publicly available) 
All material is publicly available. 
Maximum number of core reference materials is 15 
We have adhered to this limit. 
Preference to IEEE or ACM copyrighted material 
This is evident in the selection of reference material, 
especially the collections of papers. 

5 MATRIX OF TOPICS VS. REFERENCE MATERIAL 

The level of granularity used in Table 1 is a mixture of second and third level topics, depending on the specificity of the topic 
in question. 
 

Topic D&T F&P Pfle Press Reif Somm Thay 
A. Organizational Management        

Policy management   Ch. 2  Ch. 2 Ch. 30 Ch. 2,4 

Personnel management  Ch. 11 Ch. 3 Ch. 3 Ch. 7,8 Ch. 28 Ch. 7,8 

Communication management    Ch. 3  Ch. 28 Ch. 1,3 

Portfolio management    Ch. 10    

Procurement management    Ch. 5 Ch. 15 Ch. 2  

B. Process/project Management        

Initiation and scope definition        
Determination and negotiation of requirements Ch. 4  Ch. 4 Ch. 5,11,12   Ch. 4-11  

Feasibility analysis    Ch. 10    

Review/revision of requirements      Ch. 4  

Planning        

Process planning Ch. 5,11  Ch. 2 Ch. 2 Ch. 1,2,4 Ch. 1 Ch. 3 

Project planning Ch. 10  Ch. 3 Ch. 3,5 Ch. 3,4 Ch. 3 Ch. 4,6 

Determine deliverables   Ch. 3 Ch. 3,7  Ch. 3 Ch. 4 

Effort, schedule and cost estimation Ch. 10 Ch. 12 Ch. 3 Ch. 5,7 Ch. 4,5 Ch. 3,29 Ch. 5 

Resource allocation   Ch. 3 Ch. 5 Ch. 7,8 Ch. 3 Ch. 6,7 

Risk management Ch. 10  Ch. 3 Ch. 6 Ch. 11  Ch. 4 

Quality management Ch. 7,9   Ch. 8 Ch. 10 Ch. 30,31 Ch. 9,10 

Plan management      Ch. 3 Ch. 4 



© IEEE – Trial Version 1.00 – May 2001 8–11 

Topic D&T F&P Pfle Press Reif Somm Thay 
Enactment        

Implementation of plans   Ch. 3   Ch. 3  

Implementation of measurement process  Ch. 13,14  Ch. 4 Ch. 9,10,12  Ch. 3,10 

Monitor process  Ch. 7,9,10   Ch. 7 Ch. 9,10 Ch. 31 Ch. 3,9 

Control process Ch. 10   Ch. 9 Ch. 9,10  Ch. 3,9 

Reporting     Ch. 9,10  Ch. 3,10 

Review and evaluation        

Determining satisfaction of requirements     Ch. 9,10  Ch. 3,10 

Reviewing and evaluating performance Ch. 7  Ch. 7,8 Ch. 8 Ch. 9,10  Ch. 3,10 

Closure        

Determining closure Ch. 7    Ch. 9,10  Ch. 3,10 

Closure activities   Ch. 11   Ch. 31  

C. Software Engineering Measurement        

Determining the goals of a measurement 
program 

       

Organizational objectives  Ch. 3,13  Ch. 4    

Software process improvement goals  Ch. 3,13 Ch. 12 Ch. 4 Ch. 2 Ch. 31  

Measurement selection        

Goal-driven measurement selection  Ch. 1,3,13, 
14 

  Ch. 12  Ch. 10 

Measurement validity  Ch. 2 Ch. 11     

Measuring software and its development        

Size measurement  Ch. 7  Ch. 4,18,23 Ch. 12 Ch. 30  

Structure measurement  Ch. 8  Ch. 18,23    

Resource measurement  Ch. 3,11    Ch. 29  

Quality measurement  Ch. 9,10  Ch. 4 Ch. 12 Ch. 30  

Collection of data        

Survey techniques and form design  Ch. 4,5      

Automated and manual data collection  Ch. 5  Ch. 4  Ch. 30  

Software measurement models        

Model building, calibration and evaluation  Ch. 4,6,13 Ch. 3,11,12   Ch. 29  

Implementation, interpretation and refinement 
of models 

 Ch. 6 Ch. 3,11,12 Ch. 4  Ch. 29  

Table 1: Topics and their references 
 

6 RECOMMENDED REFERENCES FOR SOFTWARE 
ENGINEERING MANAGEMENT 

The Topic-Reference matrix shown above requires the 
following references to be included in the Guide to the 
SWEBOK. 
1) [D&T: Dorfman and Thayer, 1997] Merlin Dorfman 

and Richard H. Thayer (eds.). 1997. Software 
engineering. IEEE Computer Society. [Chapters 4, 5, 7, 
9-11] 

2) [F&P: Fenton and Pfleeger, 1997] Norman E. Fenton 
and Shari Lawrence Pfleeger. 1997. Software metrics: a 
rigorous and practical approach. PWS Publishing 
Company. [Chapters 1-14] 

3) [Pfle: Pfleeger, 1998] Shari Lawrence Pfleeger. 1998. 
Software engineering: theory and practice. Prentice 
Hall. [Chapters 2-4, 7, 8, 11, 12] 

4) [Press: Pressman, 1997] Roger S. Pressman. 1997. 
Software engineering: a practitioner’s approach. 
(Fourth edition) McGraw-Hill. [Chapters 2-12, 18, 23] 

5) [Reif: Reifer, 1997] Donald J. Reifer (ed.). 1997. 
Software management, 5th edition. IEEE Computer 
Society. [Chapters 1-5, 7-12, 15] 

6) [Somm: Sommerville, 1996] Ian Sommerville. 1996. 
Software engineering. Addison-Wesley. [Chapters 1-11, 
28-31] 

7) [Thay: Thayer, 1997] Richard H. Thayer (ed.). 1997. 
Software engineering project management. IEEE 
Computer Society. [Chapters 1-10] 



8–12 © IEEE – Trial Version 1.00 – May 2001 

APPENDIX A – LIST OF FURTHER READINGS 

The following readings are useful sources of information 
for this knowledge area. 
Process/Project Management: 
Adler, T.R., Leonard, J.G. and Nordgren, R.K. Improving 
risk management: moving from risk elimination to risk 
avoidance. Information and Software Technology 41: 29-34 
(1999). 
Baines, R. Across disciplines: risk, design, method, 
process, and tools. IEEE Soft. (July/Aug): 61-64 (1998) 
Binder, R.V. Can a manufacturing quality model work for 
software? IEEE Soft. (September/October): 101-102,105 
(1997). 
Boehm, B.W. and DeMarco, T. Software risk management 
(Guest editors’ introduction). IEEE Soft. (May/June): 17-19 
(1997). 
Carr, M.J. Risk management may not be for everyone. 
IEEE Soft. (May/June): 21,24 (1997). 
Charette, R.N. Large-scale project management is risk 
management. IEEE Soft. (July): 110-117 (1996). 
Charette, R.N., Adams, K.M. and White, M.B. Managing 
risk in software maintenance. IEEE Soft. (May/June): 43-50 
(1997). 
Collier, B., DeMarco, T. and Fearey, P. A defined process 
for project postmortem review. IEEE Soft. (July): 65-72 
(1996). 
Conrow, E.H. and Shishido, P.S. Implementing risk 
management on software intensive projects. IEEE Soft. 
(May/June): 83-89 (1997). 
DeMarco, T. and Lister, T. Peopleware: productive 
projects and teams. Dorset House Publishing, 1987. 
DeMarco, T. and Miller, A. Managing large software 
projects. IEEE Soft. (July): 24-27 (1996). 
Favaro, J. and Pfleeger, S.L. Making software development 
investment decisions. ACM SIGSoft Software Engineering 
Notes 23(5): 69-74 (1998). 
Fayad, M.E and Cline, M. Managing object-oriented 
software development. Computer (Sept): 26-31 (1996) 
Fleming, R. A fresh perspective on old problems. IEEE 
Soft. (January/February): 106-113 (1999). 
Garvey, P.R., Phair, D.J. and Wilson, J.A. An information 
architecture for risk assessment and management. IEEE 
Soft. (May/June): 25-34 (1997). 
Gemmer, A. Risk management: moving beyond process. 
Computer (May): 33-43 (1997). 
Glass, R.L. The ups and downs of programmer stress. 
Communications of the ACM 40(4): 17-19 (1997). 
Glass, R.L. Short-term and long-term remedies for runaway 
projects. Comm. ACM 41(7): 13-15 (1998). 

Glass, R.L. How not to prepare for a consulting assignment, 
and other ugly consultancy truths. Communications of the 
ACM 41(12): 11-13 (1998). 
Henry, S.M. and Stevens, K.T. Using Belbin’s leadership 
role to improve team effectiveness: an empirical 
investigation. Journal of Systems and Software 44: 241-250 
(1999). 
Hohmann, L. Coaching the rookie manager. IEEE Soft. 
(January/February): 16-19 (1999). 
Hsia, P. Making software development visible. IEEE Soft. 
(March): 23-26 (1996). 
Humphrey, W.S. Managing Technical People: Innovation, 
Teamwork, and the Software Process. Addison-Wesley, 
1997. 
Jackman, M. Homeopathic remedies for team toxicity. 
IEEE Soft. (July/August): 43-45 (1998). 
Kansala, K. Integrating risk assessment with cost 
estimation. IEEE Soft. (May/June): 61-67 (1997). 
Karlsson, J. and Ryan, K. A cost-value aproach for 
prioritizing requirements. IEEE Soft. (September/October): 
87-74 (1997). 
Karolak, D.W. Software engineering risk management. 
IEEE Computer Society, 1996. 
Keil, M., Cule, P.E., Lyytinen, K. and Schmict, R.C. A 
framework for identifying software project risks. 
Communications of the ACM 41(11): 76-83 (1998). 
Kitchenham, B. and Linkman, S. Estimates, uncertainty, 
and risk. IEEE Soft. (May/June): 69-74 (1997). 
Leung, H.K.N. A risk index for software producers. 
Software Maintenance: Research and Practice 8: 281-294 
(1996). 
Lister, T. Risk management is project management for 
adults. IEEE Soft. (May/June): 20,22 (1997). 
Mackey, K. Why bad things happen to good projects. IEEE 
Soft. (May): 27-32 (1996). 
Mackey, K. Beyond Dilbert: creating cultures that work. 
IEEE Soft. (January-February): 48-49 (1998). 
Madachy, R.J. Heuristic risk assessment using cost factors. 
IEEE Soft. (May/June): 51-59 (1997). 
Martin, C. The need for software risk management tools. 
Application Development Trends. p.20,22. 
McConell, S.C. Rapid Development: Taming Wild Software 

Schedules. Microsoft Press, 1996. 
McConell, S.C. Software Project Survival Guide. Microsoft 
Press, 1997. 
Moynihan, T. How experienced project managers assess 
risk. IEEE Soft. (May/June): 35-41 (1997). 
Nesi, P. Managing OO projects better. IEEE Soft. 
(July/August): 50-60 (1998). 



© IEEE – Trial Version 1.00 – May 2001 8–13 

Nolan, A.J. Learning from success. IEEE Soft. 
(January/February): 97-105 (1999). 
Parris, K.V.C. Implementing accountability. IEEE Soft. 
(July): 83-93 (1996). 
Putnam, L.H. and Myers, W. Industrial Strength Software: 
Effective Management Using Measurement. Los Alamitos 
CA, IEEE Computer Society Press (1997) 309p. 
Rodrigues, A.G. and Williams, T.M. System dynamics in 
software project management: towards the development of 
a formal integrated framework. European Journal of 
Information Systems 6: 51-66 (1997). 
Ropponen, J. and Lyytinen, K. Can software risk 
management improve system development: an exploratory 
study. European Journal of Information Systems 6: 41-50 
(1997). 
Schmidt, C., Dart, P., Johnston, L., Sterling, L. and Thorne, 
P. Disincentives for communicating risk: a risk paradox. 
Information and Software Technology 41: 403-411 (1999). 
Slaughter, S.A., Harter, D.E. and Krishnan, M.S. 
Evaluating the cost of software quality. Communications of 
the ACM 41(8): 67-73 (1998). 
van Scoy, R.L. Software development risk: opportunity, not 
problem. CMU/SEI-92-TR-30, Software Engineering 
Institute, Carnegie Mellon University, 1992. 
van Solingen, R., Berghout, E. and van Latum, F. 
Interrupts: just a minute never is. IEEE Soft. 
(September/October): 97-103 (1998). 
Whitten, N. Managing Software Development Projects: 
Formulas for Success. Wiley, 1995. 
Williams, R.C., Walker, J.A. and Dorofee, A.J. Putting risk 
management into practice. IEEE Soft. (May/June): 75-82 
(1997). 
Software Engineering Measurement: 
Briand, L.C., Morasca, S. and Basili, V.R. Property-based 
software engineering measurement. IEEE Transactions on 
Software Engineering 22(1): 68-86 (1996). 
Briand, L., El Emam, K. and Morasca, S. On the 
application of measurement theory in software engineering. 
Empirical Software Engineering 1: 61-88 (1996). 
Briand, L.C., Morasca, S. and Basili, V.R. Response to: 
Comments on “Property-based software engineering 
measurement: refining the addivity properties”. IEEE 
Transactions on Software Engineering 23(3): 196-197 
(1997). 
Brooks, F.P., Jr. No silver bullet: essence and accidents of 
software engineering. Computer (Apr.): 10-19 (1987). 
Davis, A.M. Predictions and farewells. IEEE Soft. 
(July/August): 6-9 (1998). 
Fenton, N.E. and Pfleeger, S.L. Software Metrics: A 
Rigorous and Practical Approach. London, International 
Thomson Computer Press (1997) 638p. 

Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano, 
G. and Orazi, E. Applying GQM in an industrial software 
factory. ACM Transactions on Software Engineering and 
Methodology 7(4): 411-448 (1998). 
Glass, R.L. The realities of software technology payoffs. 
Communications of the ACM 42(2): 74-79 (1999). 
Grable, R., Jernigan, J., Pogue, C. and Divis, D. Metrics for 
small projects: experiences at the SED. IEEE Soft. 
(March/April): 21-29 (1999). 
Grady, R.B. and Caswell, D.L. Software Metrics: 
Establishing A Company-Wide Program. Englewood Cliffs 
NJ, USA, Prentice-Hall (1987). 
Hall, T. and Fenton, N. Implementing effective software 
metrics programs. IEEE Soft. (Mar/Apr): 55-64 (1997). 
Kautz, K. Making sense of measurement for small 
organizations. IEEE Soft. (March/April): 14-20 (1999). 
Kernighan, B. and Pike, R. Finding performance 
improvements. IEEE Soft. (March/April): 61-65 (1999). 
McConnell, S. Software engineering principles. IEEE Soft. 
(March/April): 6-8 (1999). 
Offen, R.J. and Jeffery, R. Establishing software 
measurement programs. IEEE Soft. (Mar/Apr): 45-53 
(1997). 
Pfleeger, S.L. Assessing measurement (Guest editor’s 
introduction). IEEE Soft. (Mar/Apr): 25-26 (1997). 
Pfleeger, S.L., Jeffery, R., Curtis, B. and Kitchenham, B. 
Status report on software measurement. IEEE Soft. 
(March/April): 33-43 (1997). 
Robillard, P.N. The role of knowledge in software 
development. Comm. of the ACM 42(1): 87-92 (1999). 
van Latum, F., van Solingen, R., Oivo, M., Hoisl, B., 
Rombach, D. and Ruhe, G. Adopting GQM-based 
measurement in an industrial environment. IEEE Soft. 
(January-February): 78-86 (1998). 
Zelkowitz, M.V. and Wallace, D.R. Experimental models 
for validating technology. Computer (May): 23-31 (1998). 



8–14 © IEEE – Trial Version 1.00 – May 2001 

APPENDIX B – REFERENCES USED TO WRITE AND 
JUSTIFY THE DESCRIPTION 

[IEEE/EIA, 1998] IEEE/EIA. 1998. Standard for 
Information Technology (ISO/IEC 12207) – Software life 
cycle processes. Institute of Electrical and Electronics 
Engineers/Electronic Industries Association Engineering 
Department. 
[ISO93] ISO 1993. International Vocabulary of Basic and 
General Terms in Metrology, International Organization for 
Standardization. 
[ISO/IEC, 1998] ISO/IEC 1998. 14143-1 Software 
engineering - Software measurement - Functional size 
measurement - Definition of concepts, International 
Organization for Standardization/International 
Electrotechnical Commission. 
[ISO/IEC, 1999] ISO/IEC. 1999. Draft Technical Report 
(DTR) 16326 – Software engineering – guide for the 
application of ISO/IEC 12207 to project management. 
International Organization for Standardization/International 
Electrotechnical Commission. 
[ISO/IEC, 2000] ISO/IEC Committee Draft (CD) 15939: 
Information technology - Software Measurement Process, 
International Organization for Standardization/International 
Electrotechnical Commission. 
[Moore, 1998] James W. Moore. 1998. Software 
engineering standards: a user’s road map. IEEE Computer 
Society. 
[PMI, 1996] Project Management Institute Standards 
Committee. 1996. A guide to the project management body 
of knowledge (PMBOK). Project Management Institute. 



© IEEE – Trial Version 1.00 – May 2001 8–15 

APPENDIX C – TABLE OF CORRESPONDENCE WITH PMBOK 

  7.1 ISO/IEC 12207 Management Process Activities 
PMBOK 

Knowledge 
Areas 

PMBOK Knowledge Area 
Processes 

7.1.1 Initiation 
and Scope 
Definition 

7.1.2 
Planning 

7.1.3 
Enactment 

7.1.4 
Review and 
Evaluation 

7.1.5 
Closure 

4.1 Project Plan Development X X    
4.2 Project Plan Execution   X X  

4. Project 
Integration 
Management 4.3 Overall Change Control   X X  

5.1 Initiation X  X   
5.2 Scope Planning X X    
5.3 Scope Definition X X    
5.4 Scope Verification X   X X 

5. Project Scope 
Management 

5.5 Scope Change Control X X X X  
6.1 Activity Definition X X    
6.2 Activity Sequencing  X    
6.3 Activity Duration Estimating  X X X  
6.4 Schedule Development  X    

6. Project Time 
Management 

6.5 Schedule Control   X X  
7.1 Resources Planning X X    
7.2 Cost Estimating X X X   
7.3 Cost Budgeting  X    

7. Project Cost 
Management 

7.4 Cost Control   X X  
8.1 Quality Planning X X    
8.2 Quality Assurance   X X  

8. Project Quality 
Management 

8.3 Quality Control   X X  
9.1 Organizational Planning X X  X  
9.2 Staff Acquisition X  X   

9. Project Human 
Resource 
Management 9.3 Team Development X  X   

10.1 Communications Planning X X    
10.2 Information Distribution   X   
10.3 Performance Reporting    X X  

10. Project 
Communications 
Management 

10.4 Administrative Closure   X  X 
11.1 Risk Identification X  X   
11.2 Risk Quantification X  X   
11.3 Risk Response Development  X X X  

11. Project Risk 
Management 

11.4 Risk Response Control X X X X  
12.1 Procurement Planning X X    
12.2 Solicitation Planning X X    
12.3 Solicitation X  X   
12.4 Source Selection X  X X  
12.5 Contract Administration   X X  

12. Project 
Procurement 
Management 

12.6 Contract Close-out  X   X 
Table 2: Correspondence between PMBOK knowledge areas and ISO/IEC 12207 management process activities (taken from 

ISO/IEC Draft Technical Report (DTR) 16326) 

 


