
© IEEE – Trial Version 1.00 – May 2001 9–1

CHAPTER 9

SOFTWARE ENGINEERING PROCESS

Khaled El Emam
Institute for Information Technology

National Research Council
Building M-50, Montreal Road

Ottawa, Ontario K1A 0R6, Canada
+1 (613) 998 4260

Khaled.el-emam@iit.nrc.ca

Table of Contents

1 Introduction... 1
2 Definition of the Software Engineering Process

Knowledge Area... 1
3 Breakdown of Topics for Software Engineering

Process and Breakdown Rationale 2
4 Key References vs. Topics Mapping 10
5 Recommended References for Software Process...... 12
Appendix A – List of Further Readings............................ 14

1 INTRODUCTION

The software engineering process Knowledge Area has
witnessed dramatic growth over the last decade. This was
partly due to a recognition by major acquirers of systems
where software is a major component that process issues
can have an important impact on the ability of their
suppliers to deliver. Therefore, they encouraged a focus on
the software engineering process as a way to remedy this.
Furthermore, the academic community has recently pursued
an active research agenda in developing new tools and
techniques to support software engineering processes, and
also empirically studying these processes and their
improvement. It should also be recognized that many
software engineering process issues are closely related to
other disciplines, namely those in the management
sciences, albeit they have used a different terminology. The
industrial adoption of software engineering process
technology has also been increasing, as demonstrated by a
number of published success stories. Therefore, there is in
fact an extensive body of knowledge on the software
engineering process.

Keywords

software process, software process improvement, software
process modeling, software process measurement,
organizational change, software process assessment.

Acronyms

CBA IPI CMM Based Appraisal for Internal Process
Improvement

CMM Capability Maturity Model
EF Experience Factory
FP Function Points
G/Q/M Goal/Question/Metric
HRM Human Resources Management
IDEAL Initiating-Diagnosing-Establishing-Acting-

Leaning (model)
MIS Management Information Systems
PDCA Plan-Do-Check-Act (cycle)
QIP Quality Improvement Paradigm
ROI Return on Investment
SCE Software Capability Evaluation
SEPG Software Engineering Process Group
SW-CMM Capability Maturity Model for Software

2 DEFINITION OF THE SOFTWARE ENGINEERING
PROCESS KNOWLEDGE AREA

The software engineering process Knowledge Area (KA)
can potentially be examined at two levels. The first level
encompasses the technical and managerial activities within
the software engineering process that are performed during
software acquisition, development, maintenance, and
retirement. The second is the meta-level, which is
concerned with the definition, implementation,

9–2 © IEEE – Trial Version 1.00 – May 2001

measurement, management, change and improvement of
the software engineering process itself. The latter we will
term software process engineering.
The first level is covered by the other KA’s of this Guide to
the Software Engineering Body of Knowledge. This
Knowledge Area is concerned with the second: software
process engineering.

2.1 Scope

This Knowledge Area does not explicitly address the
following topics:
� Human resources management (for example, as

embodied in the People CMM [30][31])
� Systems engineering processes
While important topics in themselves, they are outside the
direct scope of software process engineering. However,
where relevant, interfaces (or references to interfaces) to
HRM and systems engineering will be addressed.

2.2 Currency of Material

The software process engineering discipline is rapidly
changing, with new paradigms and new models. The
breakdown and references included here are pertinent at the
time of writing. An attempt has been made to focus on
concepts to shield the knowledge area description from
changes in the field, but of course this cannot be 100%
successful, and therefore the material here must be evolved
over time. A good example is the on-going CMM
Integration effort (see
http://www.sei.cmu.edu/cmmi/products/models.html for the
latest document suite) and the Team Software Process
effort [71], both of which are likely to have a considerable
influence on the software process community once widely
disseminated, and would therefore have to be
accommodated in the knowledge area description.
In addition, where Internet addresses are provided for
reference material, these addresses were verified at the time
of press. However, there are no guarantees that the
documents will still be available on-line at the same
location in the future.

2.3 Structure of the KA

To structure this KA in a way that is directly related to
practice, we have defined a generic process model for
software process engineering (see Figure 1). This model
identifies the activities that are performed in a process
engineering context. The topics are mapped to these
activities. The advantage of such a structure is that one can
see, in practice, where each of the topics is relevant, and
provides an overall rationale for the topics. This generic
model is based on the PDCA (plan-do-check-act) cycle
(also see [79]).

3 BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING PROCESS AND BREAKDOWN
RATIONALE

The following figure shows the breakdown of topics in this
knowledge area. Further explanation is provided in the
subsequent sections.

Software Engineering Process Concepts
 Themes
 Terminology
Process Infrastructure
 The Software Engineering Process Group
 The Experience Factory
Process Measurement
 Methodology in Process Measurement
 Process Measurement Paradigms
 Analytic Paradigm
 Benchmarking Paradigm
Process Definition
 Types of Process Definitions
 Life Cycle Framework Models
 Software Life Cycle Process Models
 Notations for Process Definitions
 Process Definition Methods
 Automation
Qualitative Process Analysis
 Process Definition Review
 Root Cause Analysis
Process Implementation and Change
 Paradigms for Process Implementation and

Change
 Guidelines for Process Implementation and

Change
 Evaluating the Outcome of Process

Implementation and Change

3.1 Software Engineering Process Concepts

3.1.1 Themes

Dowson [35] notes that “All process work is ultimately
directed at ‘software process assessment and
improvement’”. This means that the objective is to
implement new or better processes in actual practices, be
they individual, project or organizational practices.

© IEEE – Trial Version 1.00 – May 2001 9–3

Sofware Engineering Process

Software
Engineering

Process
Concepts

Process
Infrastructure

Process
Measurement

Process
Definition

Qualitative
Process Analysis

Process
Implementation

and Change

Themes

Terminology

Software
Engineering

Process Group

Experience
Factory

Methodology in
Process

Measurement

Process
Measurement

Paradigms

Types of Process
Definitions

Life Cycle
Framework

Models

Software Life
Cycle Process

Models

Notations for
Process

Definitions

Process
Definition
Methods

Automation

Process
Definition

Review

Root Cause
Analysis

Paradigms for
Process

Implementation
and Change

Guidelines for
Process

Implementation
and Change

Evaluating the
Outcome of

Process
Implementation

and Change

We describe the main topics in the software process
engineering (i.e., the meta-level that has been alluded to
earlier) area in terms of a cycle of process change, based on
the commonly known PDCA cycle. This cycle highlights
that individual process engineering topics are part of a
larger process to improve practice, and that process
evaluation and feedback is an important element of process
engineering.
Software process engineering consists of four activities as
illustrated in the model in Figure 1. The activities are
sequenced in an iterative cycle allowing for continuous
feedback and improvement of the software process.
The “Establish Process Infrastructure” activity consists of
establishing commitment to process implementation and
change (including obtaining management buy-in), and
putting in place an appropriate infrastructure (resources and
responsibilities) to make it happen.
The activities “Planning of Process Implementation and
Change” and “Process Implementation and Change” are the
core ones in process engineering, in that they are essential
for any long-lasting benefit from process engineering to
accrue. In the planning activity the objective is to
understand the current business objectives and process
needs of the organization1, identify its strengths and
weaknesses, and make a plan for process implementation
and change. In “Process Implementation and Change”, the

1 The term “organization” is meant in a loose sense here. It could be a

project, a team, or even an individual.

objective is to execute the plan, deploy new processes
(which may involve, for example, the deployment of tools
and training of staff), and/or change existing processes.
The fourth activity, “Process Evaluation” is concerned with
finding out how well the implementation and change went;
whether the expected benefits materialized. This is then
used as input for subsequent cycles.
At the centre of the cycle is the “Process Experience Base”.
This is intended to capture lessons from past iterations of
the cycle (e.g., previous evaluations, process definitions,
and plans). Evaluation lessons can be qualitative or
quantitative. No assumptions are made about the nature or
technology of this “Process Experience Base”, only that it
be a persistent storage. It is expected that during subsequent
iterations of the cycle, previous experiences will be adapted
and reused. It is also important to continuously re-assess
the utility of information in the experience base to ensure
that obsolete information does not accumulate.
With this cycle as a framework, it is possible to map the
topics in this knowledge area to the specific activities
where they would be most relevant. This mapping is also
shown in Figure 1. The bulleted boxes contain the
Knowledge Area topics.
It should be noted that this cycle is not intended to imply
that software process engineering is relevant to only large
organizations. To the contrary, process-related activities
can, and have been, performed successfully by small
organizations, teams, and individuals. The way the
activities defined in the cycle are performed would be

9–4 © IEEE – Trial Version 1.00 – May 2001

different depending on the context. Where it is relevant, we
will present examples of approaches for small
organizations.

Establish
Process

Infrastructure Planning of
Process

Implementation
and Change

Process
Implementation

and Change

Process
Evaluation

Process
Experience

Base

� Process
Infrastructure (9.3.2)

�
�
�

 Process Measurement (9.3.3)
 Process Definition (9.3.4)
 Qualitative Process Analysis
(9.3.5)

�
�
�

 Process Measurement (9.3.3)
 Qualitative Process Analysis
(9.3.5)
 Process Implementation and
Change (9.3.6)

� Process
Implementation and
Change (9.3.6)

Figure 1 A model of the software process engineering
cycle, and the relationship of its activities to the KA topics.
The circles are the activities in the process engineering
cycle. The square in the middle of the cycle is a data store.
The bulleted boxes are the topics in this Knowledge Area
that map to each of the activities in the cycle. The numbers
refer to the topic sections in this chapter.
The topics in this KA are as follows:

Process Infrastructure: This is concerned with
putting in place an infrastructure for software process
engineering.
Process Measurement: This is concerned with
quantitative techniques to diagnose software processes;
to identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and afterwards to evaluate the consequences of
process implementation and change.
Process Definition: This is concerned with defining
processes in the form of models, plus the automated
support that is available for the modeling task, and for
enacting the models during the software process.
Qualitative Process Analysis: This is concerned with
qualitative techniques to analyze software processes, to
identify strengths and weaknesses. This can be
performed to initiate process implementation and
change, and afterwards to evaluate the consequences of
process implementation and change.

Process Implementation and Change: This is
concerned with deploying processes for the first time
and with changing existing process. This topic focuses
on organizational change. It describes the paradigms,
infrastructure, and critical success factors necessary for
successful process implementation and change. Within
the scope of this topic, we also present some
conceptual issues about the evaluation of process
change.

The main, generally accepted, themes in the software
engineering process field have been described by Dowson
in [35]. His themes are a subset of the topics that we cover
in this KA. Below are Dowson’s themes:
� Process definition: covered in topic 3.4 of this KA

breakdown
� Process assessment: covered in topic 3.3 of this KA

breakdown
� Process improvement: covered in topics 3.2 and 3.6 of

this KA breakdown
� Process support: covered in topic 3.4 of this KA

breakdown
We also add one theme in this KA description, namely the
qualitative process analysis (covered in topic 3.5).

3.1.2 Terminology

There is no single universal source of terminology for the
software engineering process field, but good sources that
define important terms are [51][96], and the vocabulary
(Part 9) in the ISO/IEC TR 15504 documents [81].

3.2 Process Infrastructure

At the initiation of process engineering, it is necessary to
have an appropriate infrastructure in place. This includes
having the resources (competent staff, tools and funding),
as well as the assignment of responsibilities. This is an
indication of management commitment to and ownership of
the process engineering effort. Various committees may
have to be established, such as a steering committee to
oversee the process engineering effort.
It is widely recognized that a team separate from the
developers/maintainers must be set up and tasked with
process analysis, implementation and change [16]. The
main reason for this is that the priority of the
developers/maintainers is to produce systems or releases,
and therefore process engineering activities will not receive
as much attention as they deserve or need. This, however,
should not mean that the project organization is not
involved in the process engineering effort at all. To the
contrary, their involvement is essential. Especially in a
small organization, outside help (e.g., consultants) may be
required to assist in making up a process team.
Two types of infrastructure are have been used in practice:
the Experience Factory [8][9] and the Software Engineering
Process Group [54]. The IDEAL handbook [100] provides

© IEEE – Trial Version 1.00 – May 2001 9–5

a good description of infrastructure for process
improvement in general.

3.2.1 The Software Engineering Process Group

The SEPG is intended to be the central focus for process
improvement within an organization. The SEPG typically
has the following ongoing activities:
� Obtains and maintains the support of all levels of

management
� Facilitates software process assessments (see below)
� Works with line managers whose projects are affected

by changes in software engineering practice
� Maintains collaborative working relationships with

software engineers
� Arranges and supports any training or continuing

education related to process implementation and
change

� Tracks, monitors, and reports on the status of
particular improvement efforts

� Facilitates the creation and maintenance of process
definitions

� Maintains a process database
� Provides process consultation to development projects

and management
� Participate in integrating software engineering

processes with other organizational processes, such as
systems engineering

Fowler and Rifkin [54] suggest the establishment of a
steering committee consisting of line and supervisory
management. This would allow management to guide
process implementation and change, align this effort with
strategic and business goals of the organization, and also
provides them with visibility. Furthermore, technical
working groups may be established to focus on specific
issues, such as selecting a new design method to setting up
a measurement program.

3.2.2 The Experience Factory

The concept of the EF separates the project organization
(e.g., the software development organization) from the
improvement organization. The project organization
focuses on the development and maintenance of
applications. The EF is concerned with improvement. Their
relationship is depicted in Figure 2.
The EF is intended to institutionalize the collective learning
of an organization by developing, updating, and delivering
to the project organization experience packages (e.g., guide
books, models, and training courses).2 The project
organization offers to the experience factory their products,
the plans used in their development, and the data gathered

2 Also refered to as process assets.

during development and operation. Examples of experience
packages include:
� resource models and baselines3 (e.g., local cost

models, resource allocation models)
� change and defect baselines and models (e.g., defect

prediction models, types of defects expected for the
application)

� project models and baselines (e.g., actual vs. expected
product size)

� process definitions and models (e.g., process models
for Cleanroom, Ada waterfall model)

� method and technique evaluations (e.g., best method
for finding interface faults)

� products and product parts (e.g., Ada generics for
simulation of satellite orbits)

� quality models (e.g., reliability models, defect
slippage models, ease of change models), and

� lessons learned (e.g., risks associated with an Ada
development).

Application
Developers

Experience Factory:
Capture, Analyze, and Package

Experiences

Project
Organization:

Develop
Applications

Mission
Analysts

Application
Testers

Data Base
Personnel

Researchers

Packagers

metrics &
lessons
learned

guide books,
models,
training

Application

Figure 2 The relationship between the Experience Factory
and the project organization as implemented at the
Software Engineering Laboratory at NASA/GSFC. This
diagram is reused here from [10] with permission of the
authors.

3.3 Process Measurement

Process measurement, as used here, means that quantitative
information about the process is collected, analyzed, and
interpreted. Measurement is used to identify the strengths
and weaknesses of processes, and to evaluate processes
after they have been implemented and/or changed (e.g.,
evaluate the ROI from implementing a new process).4

3 Baselines can be interpreted as descriptive reports presenting the

current status.
4 Process measurement may serve other purposes as well. For example,

process measurement is useful for managing a software project. Some
of these are covered in the Software Engineering Management and

9–6 © IEEE – Trial Version 1.00 – May 2001

An important assumption made in most process engineering
work is illustrated by the path diagram in Figure 3. Here,
we assume that the process has an impact on process
outcomes. Process outcomes could be, for example, product
quality (faults per KLOC or per FP), maintainability (effort
to make a certain type of change), productivity (LOC or FP
per person month), time-to-market, the extent of process
variation, or customer satisfaction (as measured through a
customer survey). This relationship depends on the
particular context (e.g., size of the organization, or size of
the project).

Process Process
Outcomes

Context

Figure 3 Path diagram showing the relationship between
process and outcomes (results). The context affects the
relationship between the process and process outcomes.
This means that this process to process outcome
relationship depends on the context value.

Not every process will have a positive impact on all
outcomes. For example, the introduction of software
inspections may reduce testing effort and cost, but may
increase interval time if each inspection introduces large
delays due to the scheduling of large inspection meetings
[131]. Therefore, it is preferred to use multiple process
outcome measures that are important for the organization’s
business.
In general, we are most concerned about the process
outcomes. However, in order to achieve the process
outcomes that we desire (e.g., better quality, better
maintainability, greater customer satisfaction) we have to
implement the appropriate process.
Of course, it is not only process that has an impact on
outcomes. Other factors such as the capability of the staff
and the tools that are used play an important role.5
Furthermore, the extent to which the process is
institutionalized or implemented (i.e., process fidelity) is
important as it may explain why “good” processes do not
give the desired outcomes.
One can measure the quality of the software process itself,
or the process outcomes. The methodology in Section 3.3.1
is applicable to both. We will focus in Section 3.3.2 on
process measurement since the measurement of process

other KA’s. Here we focus on process measurement for the purpose of
process implementation and change.

5 And when evaluating the impact of a process change, for example, it
is important to factor out these other influeneces.

outcomes is more general and applicable in other
Knowledge Areas.

3.3.1 Methodology in Process Measurement

A number of guides for measurement are available
[108][109][126]. All of these describe a goal-oriented
process for defining measures. This means that one should
start from specific information needs and then identify the
measures that will satisfy these needs, rather than start from
specific measures and try to use them. A good practical text
on establishing and operating a measurement program has
been produced by the Software Engineering Laboratory
[123]. This also discusses the cost of measurement. Texts
that present experiences in implementing measurement in
software organizations include [86][105][115]. An
emerging international standard that defines a generic
measurement process is also available (ISO/IEC CD 15939:
Information Technology – Software Measurement Process)
[82].
Two important issues in the measurement of software
engineering processes are the reliability and validity of
measurement. Reliability is concerned with random
measurement error. Validity is concerned with the ability of
the measure to really measure what we think it is
measuring.
Reliability becomes important when there is subjective
measurement, for example, when assessors assign scores to
a particular process. There are different types of validity
that ought to be demonstrated for a software process
measure, but the most critical one is predictive validity.
This is concerned with the relationship between the process
measure and the process outcome. A discussion of both of
these and different methods for achieving them can be
found in [40][59]. An IEEE Standard describes a
methodology for validating metrics (IEEE Standard for a
Software Quality Metrics Methodology. IEEE Std 1061-
1998) [76].
An overview of existing evidence on reliability of software
process assessments can be found in [43][49], and for
predictive validity in [44][49][59][88].

3.3.2 Process Measurement Paradigms

Two general paradigms that are useful for characterizing
the type of process measurement that can be performed
have been described by Card [21]. The distinction made by
Card is a useful conceptual one. Although, there may be
overlaps in practice.
The first is the analytic paradigm. This is characterized as
relying on “quantitative evidence to determine where
improvements are needed and whether an improvement
initiative has been successful”.6 The second, the
benchmarking paradigm, “depends on identifying an
‘excellent’ organization in a field and documenting its

6 Although qualitative evidence also can play an important role. In such

a case, see Section 3.5 on qualitative process analysis.

© IEEE – Trial Version 1.00 – May 2001 9–7

practices and tools”. Benchmarking assumes that if a less-
proficient organization adopts the practices of the excellent
organization, it will also become excellent. Of course, both
paradigms can be followed at the same time, since they are
based on different types of information.
We use these paradigms as general titles to distinguish
between different types of measurement.

3.3.2.1 Analytic Paradigm7

The analytic paradigm is exemplified by the Quality
Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [124].
Experimental and Observational Studies
� Experimentation involves setting up controlled or

quasi experiments in the organization to evaluate
processes [101]. Usually, one would compare a new
process with the current process to determine whether
the former has better process outcomes. Correlational
(nonexperimental) studies can also provide useful
feedback for identifying process improvements (e.g.,
for example, see the study described by Agresti [2]).

Process Simulation
� The process simulation approach can be used to

predict process outcomes if the current process is
changed in a certain way [117]. Initial data about the
performance of the current process needs to be
collected, however, as a basis for the simulation.

Orthogonal Defect Classification
� Orthogonal Defect Classification is a technique that

can be used to link faults found with potential causes.
It relies on a mapping between fault types and fault
triggers [22][23]. There exists an IEEE Standard on
the classification of faults (or anomalies) that may
also be useful in this context (IEEE Standard for the
Classification of Software Anomalies. IEEE Std 1044-
1993) [74].

Statistical Process Control
� Placing the software process under statistical process

control, through the use of control charts and their
interpretations, is an effective way to identify
stability, or otherwise, in the process. One recent book
provides a good introduction to SPC in the context of
software engineering [53].

The Personal Software Process
� This defines a series of improvements to an

individual’s development practices in a specified
order [70]. It is ‘bottom-up’ in the sense that it
stipulates personal data collection and improvements
based on the data interpretations.

7 These are intended as examples of the analytic paradigm, and reflect

what is currently done in practice. Whether a specific organization
uses all of these techniaues will depend, at least partially, on its
maturity.

3.3.2.2 Benchmarking Paradigm

This paradigm involves measuring the maturity of an
organization or the capability of its processes. The
benchmarking paradigm is exemplified by the software
process assessment8 work. A general introductory overview
of process assessments and their application is provided in
[135].
� Process assessment models

An assessment model captures what are believed to be
good practices. The good practices may pertain to
technical software engineering activities only, or may
also encompass, for example, management, systems
engineering, and human resources management
activities as well.
Architectures of assessment models
There are two general architectures for an assessment
model that make different assumptions about the order
in which processes must be measured: the continuous
and the staged architectures [110]. At this point it is
not possible to make a recommendation as to which
approach is better than another. They have
considerable differences. An organization should
evaluate them to see which are most pertinent to their
needs and objectives when selecting a model.
Assessment models
The most commonly used assessment model in the
software community is the SW-CMM [122]. It is also
important to recognize that ISO/IEC 15504 is an
emerging international standard on software process
assessments [42][81]. It defines an exemplar
assessment model and conformance requirements on
other assessment models. ISO 9001 is also a common
model that has been applied by software organizations
(usually in conjunction with ISO 9000-1) [132]. Other
notable examples of assessment models are Trillium
[25], Bootstrap [129], and the requirements
engineering capability model [128]. There are also
maturity models for other software processes
available, such as for testing [18][19][20], a
measurement maturity model [17], and a maintenance
maturity model [36] (although, there have been many
more capability and maturity models that have been
defined, for example, for design, documentation, and
formal methods, to name a few). A maturity model for
systems engineering has also been developed, which
would be useful where a project or organization is
involved in the development and maintenance of
systems including software [39]. The applicability of
assessment models to small organizations is addressed
in [85][120], where assessments models tailored to
small organizations are presented.

8 In some instances the term “appraisal” is used instead of assessment,

and the term “capabillity evaluation” is used when the appraisal is for
the purpose of contract award.

9–8 © IEEE – Trial Version 1.00 – May 2001

� Process assessment methods
In order to perform an assessment, a specific
assessment method needs to be followed. In addition
to producing a quantitative score that characterizes the
capability of the process (or maturity of the
organization), an important purpose of an assessment
is to create a climate for change within the
organization [37]. In fact, it has been argued that the
latter is the most important purpose of doing an
assessment [38].
The most well known method that has a reasonable
amount of publicly available documentation is the
CBA IPI [37]. This method focuses on assessments
for the purpose of process improvement using the
SW-CMM. Many other methods are refinements of
this for particular contexts. Another well known
method using the SW-CMM, but for supplier
selection, is the SCE [6]. The activities performed
during an assessment, the distribution of effort on
these activities, as well as the atmosphere during an
assessment is different if it is for the purpose of
improvement versus contract award. Requirements on
both types of methods that reflect what are believed to
be good assessment practices are provided in [81][99].

There have been criticisms of various models and methods
following the benchmarking paradigm, for example
[12][50][62][87]. Most of these criticisms were concerned
with the empirical evidence supporting the use of
assessments models and methods. However, since the
publication of these articles, there has been an
accumulation of systematic evidence supporting the
efficacy of process assessments
[24][47][48][60][64][65][66][94].

3.4 Process Definition

Software engineering processes are defined for a number of
reasons, including: facilitating human understanding and
communication, supporting process improvement,
supporting process management, providing automated
process guidance, and providing automated execution
support [29][52][68]. The types of process definitions
required will depend, at least partially, on the reason.
It should be noted also that the context of the project and
organization will determine the type of process definition
that is most important. Important variables to consider
include the nature of the work (e.g., maintenance or
development), the application domain, the structure of the
delivery process (e.g., waterfall, incremental, evolutionary),
and the maturity of the organization.
There are different approaches that can be used to define
and document the process. Under this topic the approaches
that have been presented in the literature are covered,
although at this time there is no data on the extent to which
these are used in practice.

3.4.1 Types of Process Definitions

Processes can be defined at different levels of
abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs.
proscriptive). The differentiation amongst these has
been described in [69][97][111].
Orthogonal to the levels above, there are also types of
process definitions. For example, a process definition
can be a procedure, a policy, or a standard.

3.4.2 Life Cycle Framework Models

These framework models serve as a high level
definition of the phases that occur during
development. They are not detailed definitions, but
only the high level activities and their
interrelationships. The common ones are: the waterfall
model, throwaway prototyping model, evolutionary
prototyping model, incremental/iterative development,
spiral model, reusable software model, and automated
software synthesis. (see [11][28][84][111][113]).
Comparisons of these models are provided in
[28][32], and a method for selection amongst many of
them in [3].

3.4.3 Software Life Cycle Process Models

Definitions of life cycle process models tend to be
more detailed than framework models. Another
difference being that life cycle process models do not
attempt to order their processes in time. Therefore, in
principle, the life cycle processes can be arranged to
fit any of the life cycle frameworks. The two main
references in this area are ISO/IEC 12207:
Information Technology – Software Life Cycle
Processes [80] and ISO/IEC TR 15504: Information
Technology – Software Process Assessment [42][81].
Extensive guidance material for the application of the
former has been produced by the IEEE (Guide for
Information Technology - Software Life Cycle
Processes - Life cycle data, IEEE Std 12207.1-1998,
and Guide for Information Technology - Software Life
Cycle Processes – Implementation. Considerations.
IEEE Std 12207.2-1998) [77][78]. The latter defines a
two dimensional model with one dimension being
processes, and the second a measurement scale to
evaluate the capability of the processes. In principle,
ISO/IEC 12207 would serve as the process dimension
of ISO/IEC 15504.
The IEEE standard on developing life cycle processes
also provides a list of processes and activities for
development and maintenance (IEEE Standard for
Developing Software Life Cycle Processes, IEEE Std
1074-1991) [73], and provides examples of mapping
them to life cycle framework models. A standard that
focuses on maintenance processes is also available
from the IEEE (IEEE Standard for Software
Maintenance, IEEE Std 1219-1992) [75].

© IEEE – Trial Version 1.00 – May 2001 9–9

3.4.4 Notations for Process Definitions

Different elements of a process can be defined, for
example, activities, products (artifacts), and resources [68].
Detailed frameworks that structure the types of information
required to define processes are described in [4][98].
There are a large number of notations that have been used
to define processes. They differ in the types of information
defined in the above frameworks that they capture. A text
that describes different notations is [125].
Because there is no data on which of these was found to be
most useful or easiest to use under which conditions, this
Guide covers what seemingly are popular approaches in
practice: data flow diagrams [55], in terms of process
purpose and outcomes [81], as a list of processes
decomposed in constituent activities and tasks defined in
natural language [80], Statecharts [89][117] (also see [63]
for a comprehensive description of Statecharts), ETVX
[116], Actor-Dependency modeling [14][134], SADT
notation [102], Petri nets [5], IDEF0 [125], rule-based [7],
and System Dynamics [1]. Other process programming
languages have been devised, and these are described in
[29][52][68].

3.4.5 Process Definition Methods

These methods specify the activities that must be
performed in order to develop and maintain a process
definition. These may include eliciting information from
developers to build a descriptive process definition from
scratch, and to tailoring an existing standard or commercial
process. Examples of methods that have been applied in
practice are [13][14][90][98][102]. In general, there is a
strong similarity amongst them in that they tend to follow a
traditional software development life cycle.

3.4.6 Automation

Automated tools either support the execution of the process
definitions, or they provide guidance to humans performing
the defined processes. In cases where process analysis is
performed, some tools allow different types of simulations
(e.g., discrete event simulation).
There exist tools that support each of the above process
definition notations. Furthermore, these tools can execute
the process definitions to provide automated support to the
actual processes, or to fully automate them in some
instances. An overview of process modeling tools can be
found in [52], and of process-centered environments in
[57][58].
Recent work on the application of the Internet to the
provision of real-time process guidance is described in [91].

3.5 Qualitative Process Analysis

The objective of qualitative process analysis is to identify
the strengths and weaknesses of the software process. It can
be performed as a diagnosis before implementing or
changing a process. It could also be performed after a

process is implemented or changed to determine whether
the change has had the desired effect.
Below we present two techniques for qualitative analysis
that have been used in practice. Although it is plausible that
new techniques would emerge in the future.

3.5.1 Process Definition Review

Qualitative evaluation means reviewing a process definition
(either a descriptive or a prescriptive one, or both), and
identifying deficiencies and potential process
improvements. Typical examples of this are presented in
[5][89]. An easily operational way to analyze a process is to
compare it to an existing standard (national, international,
or professional body), such as ISO/IEC 12207 [80].
With this approach, one does not collect quantitative data
on the process. Or if quantitative data is collected, it plays a
supportive role. The individuals performing the analysis of
the process definition use their knowledge and capabilities
to decide what process changes would potentially lead to
desirable process outcomes.

3.5.2 Root Cause Analysis

Another common qualitative technique that is used in
practice is a “Root Cause Analysis”. This involves tracing
back from detected problems (e.g., faults) to identify the
process causes, with the aim of changing the process to
avoid the problems in the future. Examples of this for
different types of processes are described in
[13][27][41][107].
With this approach, one starts from the process outcomes,
and traces back along the path in Figure 3 to identify the
process causes of the undesirable outcomes. The
Orthogonal Defect Classification technique described in
Section 3.3.2.1 can be considered a more formalized
approach to root cause analysis using quantitative
information.

3.6 Process Implementation and Change

This topic describes the situation when processes are
deployed for the first time (e.g., introducing an inspection
process within a project or a complete methodology, such
as Fusion [26] or the Unified Process [83]), and when
current processes are changed (e.g., introducing a tool, or
optimizing a procedure).9 In both instances, existing
practices have to be modified. If the modifications are
extensive, then changes in the organizational culture may
be necessary.

3.6.1 Paradigms for Process Implementation and Change

Two general paradigms that have emerged for driving
process implementation and change are the Quality
Improvement Paradigm (QIP) [124] and the IDEAL model

9 This can also be termed “process evolution”.

9–10 © IEEE – Trial Version 1.00 – May 2001

[100]. The two paradigms are compared in [124]. A
concrete instantiation of the QIP is described in [16].

3.6.2 Guidelines for Process Implementation and Change

Process implementation and change is an instance of
organizational change. Most successful organizational
change efforts treat the change as a project in its own right,
with appropriate plans, monitoring, and review.
Guidelines about process implementation and change
within software engineering organizations, including action
planning, training, management sponsorship and
commitment, and the selection of pilot projects, and that
cover both the transition of processes and tools, are given in
[33][92][95][104][114][120][127][130][133]. An empirical
study evaluating success factors for process change is
reported in [46]. Grady describes the process improvement
experiences at Hewlett-Packard, with some general
guidance on implementing organizational change [61].
The role of change agents in this activity should not be
underestimated. Without the enthusiasm, influence,
credibility, and persistence of a change agent,
organizational change has little chance of succeeding. This
is further discussed in [72].
Process implementation and change can also be seen as an
instance of consulting (either internal or external). A
suggested text, and classic, on consulting is that of Schein
[121].
One can also view organizational change from the
perspective of technology transfer. The classic text on the
stages of technology transfer is that by Rogers [119].
Software engineering articles that discuss technology
transfer, and the characteristics of recipients of new
technology (which could include process related
technologies) are [112][118].

3.6.3 Evaluating the Outcome of Process Implementation
and Change

Evaluation of process implementation and change
outcomes can be qualitative or quantitative. The topics
above on qualitative analysis and measurement are relevant
when evaluating implementation and change since they
describe the techniques. Below we present some conceptual
issues that become important when evaluating the outcome
of implementation and change.
There are two ways that one can approach evaluation of
process implementation and change. One can evaluate it in
terms of changes to the process itself, or in terms of
changes to the process outcomes (for example, measuring
the Return on Investment from making the change). This
issue is concerned with the distinction between cause and
effect (as depicted in the path diagram in Figure 3), and is
discussed in [16].
Sometimes people have very high expectations about what
can be achieved in studies that evaluate the costs and
benefits of process implementation and change. A
pragmatic look at what can be achieved from such
evaluation studies is given in [67].
Overviews of how to evaluate process change, and
examples of studies that do so can be found in
[44][59][88][92][93][101].

4 KEY REFERENCES VS. TOPICS MAPPING

Below are the matrices linking the topics to key references.
In an attempt to limit the number of references and the total
number of pages, as requested, some relevant articles are
not included in this matrix. The reference list below
provides a more comprehensive coverage.
In the cells, where there is a check mark it indicates that the
whole reference (or most of it) is relevant. Otherwise,
specific chapter numbers are provided in the cell.

 Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Madhavji
[97]

Dowson
[35]

Software Engineering
Process Concepts

Themes √
Terminology

Process Infrastructure
The Software Engineering
Process Group

The Experience Factory
Process Measurement

Methodology in Process
Measurement

Process Measurement
Paradigms

Ch. 1, 7 Ch. 3

Process Definition
Types of Process

fi i i
 √

© IEEE – Trial Version 1.00 – May 2001 9–11

 Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Madhavji
[97]

Dowson
[35]

Definitions
Life Cycle Framework
Models

 Ch. 2

Software Life Cycle
Process Models

 Ch. 13

Notations for Process
Definitions

 Ch. 1

Process Definition
Methods

Ch. 7

Automation Ch. 2 Ch. 2
Qualitative Process
Analysis

Process Definition Review Ch. 7
Root Cause Analysis Ch. 7

Process Implementation
and Change

Paradigms for Process
Implementation and
Change

Ch. 1, 7

Guidelines for Process
Implementation and
Change

Ch. 11 Ch. 4 Ch. 16

Evaluating the Outcome of
Process Implementation
and Change

 Ch. 7

 Feiler &

Humphrey
[51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer

[34]

El Emam &
Goldenson

[49]
Software Engineering
Process Concepts

Themes
Terminology √

Process Infrastructure
The Software Engineering
Process Group

 √

The Experience Factory √
Process Measurement

Methodology in Process
Measurement

 √ √

Process Measurement
Paradigms

 √

Process Definition
Types of Process Definitions
Life Cycle Framework
Models

 Ch. 11

Software Life Cycle Process
Models

Notations for Process
Definitions

Process Definition Methods

9–12 © IEEE – Trial Version 1.00 – May 2001

 Feiler &
Humphrey

[51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer

[34]

El Emam &
Goldenson

[49]
Automation

Qualitative Process Analysis
Process Definition Review √
Root Cause Analysis √

Process Implementation and
Change

Paradigms for Process
Implementation and Change

 √ √

Guidelines for Process
Implementation and Change

 √ √ √

Evaluating the Outcome of
Process Implementation and
Change

 √ √

5 RECOMMENDED REFERENCES FOR SOFTWARE
PROCESS

The following are the key references that are recommended
for this knowledge area. The mapping to the topics is given
in Section 4.
K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press,
1999.
This IEEE edited book provides detailed chapters on the
software process assessment and improvement area. It
could serve as a general reference for this knowledge area,
however, specifically chapters 1, 7, and 11 cover quite a bit
of ground in a succinct manner.
K. El Emam, J-N Drouin, W. Melo (eds.): SPICE: The
Theory and Practice of Software Process Improvement and
Capability Determination. IEEE CS Press, 1998.
This IEEE edited book describes the emerging ISO/IEC
15504 international standard and its rationale. Chapter 3
provides a description of the overall architecture of the
standard, which has since then been adopted in other
assessment models.
S-L. Pfleeger: Software Engineering: Theory and Practice.
Prentice-Hall, 1998.
This general software engineering reference has a good
chapter, chapter 2, that discusses many issues related to the
process modeling area.
Fuggetta and A. Wolf: Software Process, John Wiley &
Sons, 1996.
This edited book provides a good overview of the process
area, and covers modeling as well as assessment and
improvement. Chapters 1 and 2 are reviews of modeling
techniques and tools, and chapter 4 gives a good overview
of the human and organizational issues that arise during
process implementation and change.

R. Messnarz and C. Tully (eds.): Better Software Practice
for Business Benefit: Principles and Experiences, IEEE CS
Press, 1999.
This IEEE edited book provides a comprehensive
perspective on process assessment and improvement efforts
in Europe. Chapter 7 is a review of the costs and benefits of
process improvement, with many references to prior work.
Chapter 16 describes factors that affect the success of
process improvement.
J. Moore: Software Engineering Standards: A User’s Road
Map. IEEE CS Press, 1998.
This IEEE book provides a comprehensive framework and
guidance on software engineering standards. Chapter 13 is
the process standards chapter.
N. H. Madhavji: “The Process Cycle”. In Software
Engineering Journal, 6(5):234-242, 1991.
This article provides an overview of different types of
process definitions and relates them within an
organizational context.
M. Dowson: “Software Process Themes and Issues”. In
Proceedings of the 2nd International Conference on the
Software Process, pages 54-62, 1993.
This article provides an overview of the main themes in the
software process area. Although not recent, most of the
issues raised are still valid today.
P. Feiler and W. Humphrey: “Software Process
Development and Enactment: Concepts and Definitions”.
In Proceedings of the Second International Conference on
the Software Process, pages 28-40, 1993.
This article was one of the first attempts to define
terminology in the software process area. Most of its terms
are commonly used nowadays.
L. Briand, C. Differding, and H. D. Rombach: “Practical
Guidelines for Measurement-Based Process Improvement”.

© IEEE – Trial Version 1.00 – May 2001 9–13

In Software Process Improvement and Practice, 2:253-280,
1996.
This article provides a pragmatic look at using
measurement in the context of process improvement, and
discusses most of the issues related to setting up a
measurement program.
Software Engineering Laboratory: Software Process
Improvement Guidebook. NASA/GSFC, Technical Report
SEL-95-102, April 1996. (available from
http://sel.gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf)
This is a standard reference on the concepts of the QIP and
EF.
P. Fowler and S. Rifkin: Software Engineering Process
Group Guide. Software Engineering Institute, Technical
Report CMU/SEI-90-TR-24, 1990. (available from
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.
90.pdf)
This is the standard reference on setting up and running an
SEPG.
M. Dorfmann and R. Thayer (eds.): Software Engineering,
IEEE CS Press, 1997.
Chapter 11 of this IEEE volume gives a good overview of
contemporary life cycle models.
K. El Emam and D. Goldenson: “An Empirical Review of
Software Process Assessments”. In Advances in
Computers, vol. 53, pp. 319-423, 2000.
This chapter provides the most up-to-date review of
evidence supporting process assessment and improvement,
as well as a historical perspective on some of the early MIS
work.

9–14 © IEEE – Trial Version 1.00 – May 2001

APPENDIX A – LIST OF FURTHER READINGS

[1] T. Abdel-Hamid and S. Madnick, Software Project
Dynamics: An Integrated Approach, Prentice-Hall,
1991.

[2] W. Agresti, “The Role of Design and Analysis in
Process Improvement,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), IEEE CS Press, 1999.

[3] L. Alexander and A. Davis, “Criteria for Selecting
Software Process Models,” in Proceedings of
COMPSAC’91, pp. 521-528, 1991.

[4] J. Armitage and M. Kellner, “A Conceptual Schema
for Process Definitions and Models,” in Proceedings
of the Third International Conference on the
Software Process, pp. 153-165, 1994.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and
G. Picco, “Modeling and Improving an Industrial
Software Process,” IEEE Transactions on Software
Engineering, vol. 21, no. 5, pp. 440-454, 1995.

[6] R. Barbour, “Software Capability Evaluation -
Version 3.0 : Implementation Guide for Supplier
Selection,” Software Engineering Institute,
CMU/SEI-95-TR012, 1996. (available at
http://www.sei.cmu.edu/publications/documents/95.
reports/95.tr.012.html)

[7] N. Barghouti, D. Rosenblum, D. Belanger, and C.
Alliegro, “Two Case Studies in Modeling Real,
Corporate Processes,” Software Process -
Improvement and Practice, vol. Pilot Issue, pp. 17-
32, 1995.

[8] V. Basili, G. Caldiera, and G. Cantone, “A
Reference Architecture for the Component Factory,”
ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 1, pp. 53-80, 1992.

[9] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G.
Page, and S. Waligora, “The Software Engineering
Laboratory - An Operational Software Experience
Factory,” in Proceedings of the International
Conference on Software Engineering, pp. 370-381,
1992.

[10] V. Basili, S. Condon, K. El-Emam, R. Hendrick, and
W. Melo, “Characterizing and Modeling the Cost of
Rework in a Library of Reusable Software
Components,” in Proceedings of the 19th
International Conference on Software Engineering,
pp. 282-291, 1997.

[11] B. Boehm, “A Spiral Model of Software
Development and Enhancement,” Computer, vol.
21, no. 5, pp. 61-72, 1988.

[12] T. Bollinger and C. McGowan, “A Critical Look at
Software Capability Evaluations,” IEEE Software,
pp. 25-41, July, 1991.

[13] L. Briand, V. Basili, Y. Kim, and D. Squire, “A
Change Analysis Process to Characterize Software

Maintenance Projects,” in Proceedings of the
International Conference on Software Maintenance,
1994.

[14] L. Briand, W. Melo, C. Seaman, and V. Basili,
“Characterizing and Assessing a Large-Scale
Software Maintenance Organization,” in
Proceedings of the 17th International Conference on
Software Engineering, pp. 133-143, 1995.

[15] L. Briand, C. Differding, and H.D. Rombach,
“Practical Guidelines for Measurement-Based
Process Improvement,” Software Process
Improvement and Practice, vol. 2, pp. 253-280,
1996.

[16] L. Briand, K. El Emam, and W. Melo, “An
Inductive Method for Software Process
Improvement: Concrete Steps and Guidelines,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. Madhavji (eds.),
IEEE CS Press, 1999.

[17] F. Budlong and J. Peterson, “Software Metrics
Capability Evaluation Guide,” The Software
Technology Support Center, Ogden Air Logistics
Center, Hill Air Force Base, 1995.

[18] I. Burnstein, T. Suwannasart, and C. Carlson,
“Developing a Testing Maturity Model: Part II,”
Crosstalk, pp. 19-26, September, 1996. (available at
http://www.stsc.hill.af.mil/crosstalk/)

[19] I. Burnstein, T. Suwannasart, and C. Carlson,
“Developing a Testing Maturity Model: Part I,”
Crosstalk, pp. 21-24, August, 1996. (available at
http://www.stsc.hill.af.mil/crosstalk/)

[20] I. Burnstein, A. Homyen, T. Suwanassart, G.
Saxena, and R. Grom, “A Testing Maturity Model
for Software Test Process Assessment and
Improvement,” Software Quality Professional, vol.
1, no. 4, pp. 8-21, 1999.

[21] D. Card, “Understanding Process Improvement,”
IEEE Software, pp. 102-103, July, 1991.

[22] R. Chillarege, I. Bhandhari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, and M. Wong, “Orthogonal
Defect Classification - A Concept for In-Process
Measurement,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, 1992.

[23] R. Chillarege, “Orthogonal Defect Classification,”
in Handbook of Software Reliability Engineering,
M. Lyu (eds.), IEEE CS Press, 1996.

[24] B. Clark, “The Effects of Software Process Maturity
on Software Development Effort,” University of
Southern California, PhD Thesis, 1997.

[25] F. Coallier, J. Mayrand, and B. Lague, “Risk
Management in Software Product Procurement,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

© IEEE – Trial Version 1.00 – May 2001 9–15

[26] D. Coleman, P. Arnold, S. Godoff, C. Dollin, H.
Gilchrist, F. Hayes, and P. Jeremaes, Object-
Oriented Development: The Fusion Method.,
Englewood Cliffs, NJ:Prentice Hall., 1994.

[27] J. Collofello and B. Gosalia, “An Application of
Causal Analysis to the Software Production
Process,” Software Practice and Experience, vol.
23, no. 10, pp. 1095-1105, 1993.

[28] E. Comer, “Alternative Software Life Cycle
Models,” in Software Engineering, M. Dorfmann
and R. Thayer (eds.), IEEE CS Press, 1997.

[29] B. Curtis, M. Kellner, and J. Over, “Process
Modeling,” Communications of the ACM, vol. 35,
no. 9, pp. 75-90, 1992.

[30] B. Curtis, W. Hefley, and S. Miller, “People
Capability Maturity Model,” Software Engineering
Institute, CMU/SEI-95-MM-02, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/mm002.95.pdf)

[31] B. Curtis, W. Hefley, S. Miller, and M. Konrad,
“The People Capability Maturity Model for
Improving the Software Workforce,” in Elements of
Software Process Assessment and Improvement, K.
El-Emam and N. Madhavji (eds.), IEEE CS Press,
1999.

[32] A. Davis, E. Bersoff, and E. Comer, “A Strategy for
Comparing Alternative Software Development Life
Cycle Models,” IEEE Transactions on Software
Engineering, vol. 14, no. 10, pp. 1453-1461, 1988.

[33] R. Dion, “Starting the Climb Towards the CMM
Level 2 Plateau,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

[34] M. Dorfmann and R. Thayer (eds.), “Software
Engineering,” IEEE CS Press, 1997.

[35] M. Dowson, “Software Process Themes and Issues,”
in Proceedings of the 2nd International Conference
on the Software Process, pp. 54-62, 1993.

[36] D. Drew, “Tailoring the Software Engineering
Institute’s (SEI) Capability Maturity Model (CMM)
to a Software Sustaining Engineering Organization,”
in Proceedings of the International Conference on
Software Maintenance, pp. 137-144, 1992.

[37] D. Dunnaway and S. Masters, “CMM-Based
Appraisal for Internal Process Improvement (CBA
IPI): Method Description,” Software Engineering
Institute, CMU/SEI-96-TR-007, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/tr007.96.pdf)

[38] K. Dymond, “Essence and Accidents in SEI-Style
Assessments or ‘Maybe this Time the Voice of the
Engineer Will be Heard’,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), IEEE CS Press, 1999.

[39] EIA, “EIA/IS 731 Systems Engineering Capability
Model,”. (available at
http://www.geia.org/eoc/G47/index.html)

[40] K. El-Emam and D. R. Goldenson, “SPICE: An
Empiricist’s Perspective,” in Proceedings of the
Second IEEE International Software Engineering
Standards Symposium, pp. 84-97, 1995.

[41] K. El-Emam, D. Holtje, and N. Madhavji, “Causal
Analysis of the Requirements Change Process for a
Large System,” in Proceedings of the International
Conference on Software Maintenance, pp. 214-221,
1997.

[42] K. El-Emam, J-N Drouin, and W. Melo, SPICE: The
Theory and Practice of Software Process
Improvement and Capability Determination, IEEE
CS Press, 1998.

[43] K. El-Emam, “Benchmarking Kappa: Interrater
Agreement in Software Process Assessments,”
Empirical Software Engineering: An International
Journal, vol. 4, no. 2, pp. 113-133, 1999.

[44] K. El-Emam and L. Briand, “Costs and Benefits of
Software Process Improvement,” in Better Software
Practice for Business Benefit: Principles and
Experiences, R. Messnarz and C. Tully (eds.), IEEE
CS Press, 1999.

[45] K. El-Emam and N. Madhavji, Elements of Software
Process Assessment and Improvement, IEEE CS
Press, 1999.

[46] K. El-Emam, B. Smith, and P. Fusaro, “Success
Factors and Barriers in Software Process
Improvement: An Empirical Study,” in Better
Software Practice for Business Benefit: Principles
and Experiences, R. Messnarz and C. Tully (eds.),
IEEE CS Press, 1999.

[47] K. El-Emam and A. Birk, “Validating the ISO/IEC
15504 Measures of Software Development Process
Capability,” Journal of Systems and Software, vol.
51, no. 2, pp. 119-149, 2000. (available at
E:\Articles\ElEmam_Birk_JSS.pdf)

[48] K. El-Emam and A. Birk, “Validating the ISO/IEC
15504 Measures of Software Requirements Analysis
Process Capability,” IEEE Transactions on Software
Engineering, vol. 26, no. 6, pp. 541-566, June, 2000.

[49] K. El-Emam and D. Goldenson, “An Empirical
Review of Software Process Assessments,”
Advances in Computers, vol. 53, pp. 319-423, 2000.

[50] M. Fayad and M. Laitinen, “Process Assessment:
Considered Wasteful,” Communications of the
ACM, vol. 40, no. 11, November, 1997.

[51] P. Feiler and W. Humphrey, “Software Process
Development and Enactment: Concepts and
Definitions,” in Proceedings of the Second
International Conference on the Software Process,
pp. 28-40, 1993.

9–16 © IEEE – Trial Version 1.00 – May 2001

[52] A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.),
“Software Process Modeling and Technology,”
Research Studies Press Ltd., 1994.

[53] W. Florac and A. Carleton, Measuring the Software
Process: Statistical Process Control for Software
Process Improvement, Addison Wesley, 1999.

[54] P. Fowler and S. Rifkin, “Software Engineering
Process Group Guide,” Software Engineering
Institute, CMU/SEI-90-TR-24, 1990. (available at
http://www.sei.cmu.edu/pub/documents/90.reports/p
df/tr24.90.pdf)

[55] D. Frailey, “Defining a Corporate-Wide Software
Process,” in Proceedings of the 1st International
Conference on the Software Process, pp. 113-121,
1991.

[56] A. Fuggetta and A. Wolf, Software Process, John
Wiley & Sons, 1996.

[57] P. Garg and M. Jazayeri, Process-Centered Software
Engineering Environments, IEEE CS Press, 1995.

[58] P. Garg and M. Jazayeri, “Process-Centered
Software Engineering Environments: A Grand
Tour,” in Software Process, A. Fuggetta and A.
Wolf (eds.), John Wiley & Sons, 1996.

[59] D. Goldenson, K. El-Emam, J. Herbsleb, and C.
Deephouse, “Empirical Studies of Software Process
Assessment Methods,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. H. Madhavji (eds.), IEEE CS Press, 1999.

[60] D.R. Goldenson and J. Herbsleb, “After the
Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that
Influence Success,” Software Engineering Institute,
CMU/SEI-95-TR-009, 1995.

[61] R. Grady, Successful Software Process
Improvement, Prentice Hall, 1997.

[62] E. Gray and W. Smith, “On the Limitations of
Software Process Assessment and the Recognition
of a Required Re-Orientation for Global Process
Improvement,” Software Quality Journal, vol. 7, pp.
21-34, 1998.

[63] D. Harel and M. Politi, Modeling Reactive Systems
with Statecharts: The Statemate Approach,
McGraw-Hill, 1998.

[64] J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and
D.Zubrow, “Benefits of CMM-based Software
Process Improvement: Initial Results,” Software
Engineering Institute, CMU/SEI-94-TR-13, 1994.

[65] J. Herbsleb and D. Goldenson, “A Systematic
Survey of CMM Experience and Results,” in
Proceedings of the International Conference on
Software Engineering, pp. 25-30, 1996.

[66] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes,
and M. Paulk, “Software Quality and the Capability
Maturity Model,” Communications of the ACM, vol.
40, no. 6, pp. 30-40, 1997.

[67] J. Herbsleb, “Hard Problems and Hard Science: On
the Practical Limits of Experimentation,” IEEE
TCSE Software Process Newsletter, vol. 11, pp. 18-
21, 1998. (available at
http://www.seg.iit.nrc.ca/SPN)

[68] K. Huff, “Software Process Modeling,” in Software
Process, A. Fuggetta and A. Wolf (eds.), John Wiley
& Sons, 1996.

[69] W. Humphrey, Managing the Software Process,
Addison Wesley, 1989.

[70] W. Humphrey, A Discipline for Software
Engineering, Addison Wesley, 1995.

[71] W. Humphrey, An Introduction to the Team
Software Process, Addison-Wesley, 1999.

[72] D. Hutton, The Change Agent’s Handbook: A
Survival Guide for Quality Improvement
Champions, Irwin, 1994.

[73] IEEE, “IEEE Standard for Developing Software Life
Cycle Processes,” IEEE Computer Society, IEEE
Std 1074-1991, 1991.

[74] IEEE, “IEEE Standard for the Classification of
Software Anomalies,” IEEE Computer Society,
IEEE Std 1044-1993, 1993.

[75] IEEE, “IEEE Standard for Software Maintenance,”
IEEE Computer Society, IEEE Std 1219-1998,
1998.

[76] IEEE, “IEEE Standard for a Software Quality
Metrics Methodology,” IEEE Computer Society,
IEEE Std 1061-1998, 1998.

[77] IEEE, “Guide for Information Technology -
Software Life Cycle Processes - Life cycle data,”
IEEE Computer Society, IEEE Std 12207.1-1998,
1998.

[78] IEEE, “Guide for Information Technology -
Software Life Cycle Processes - Implementation.
Considerations,” IEEE Computer Society, IEEE Std
12207.2-1998, 1998.

[79] K. Ishikawa, What Is Total Quality Control ? The
Japanese Way, Prentice Hall, 1985.

[80] ISO/IEC, “ISO/IEC 12207: Information Technology
- Software Life Cycle Processes,” International
Organization for Standardization and the
International Electrotechnical Commission, 1995.

[81] ISO/IEC, “ISO/IEC TR 15504: Information
Technology - Software Process Assessment (parts 1-
9),” International Organization for Standardization
and the International Electrotechnical Commission,
1998 (part 5 was published in 1999). (available at
http://www.seg.iit.nrc.ca/spice)

[82] ISO/IEC, “ISO/IEC CD 15939: Information
Technology - Software Measurement Process,”
International Organization for Standardization and
the International Electrotechnical Commission,
2000. (available at

© IEEE – Trial Version 1.00 – May 2001 9–17

http://www.info.uqam.ca/Labo_Recherche/Lrgl/sc7/
private_files/07n2274.pdf)

[83] I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process, Addison-
Wesley, 1998.

[84] P. Jalote, An Integrated Approach to Software
Engineering, Springer, 1997.

[85] D. Johnson and J. Brodman, “Tailoring the CMM
for Small Businesses, Small Organizations, and
Small Projects,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[86] C. Jones, Applied Software Measurement, McGraw-
Hill, 1994.

[87] C. Jones, “Gaps in SEI Programs,” Software
Development, vol. 3, no. 3, pp. 41-48, March, 1995.

[88] C. Jones, “The Economics of Software Process
Improvements,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

[89] M. Kellner and G. Hansen, “Software Process
Modeling: A Case Study,” in Proceedings of the
22nd International Conference on the System
Sciences, 1989.

[90] M. Kellner, L. Briand, and J. Over, “A Method for
Designing, Defining, and Evolving Software
Processes,” in Proceedings of the 4th International
Conference on the Software Process, pp. 37-48,
1996.

[91] M. Kellner, U. Becker-Kornstaedt, W. Riddle, J.
Tomal, and M. Verlage, “Process Guides: Effective
Guidance for Process Participants,” in Proceedings
of the 5th International Conference on the Software
Process, pp. 11-25, 1998.

[92] B. Kitchenham, “Selecting Projects for Technology
Evaluation,” IEEE TCSE Software Process
Newsletter, no. 11, pp. 3-6, 1998. (available at
http://www.seg.iit.nrc.ca/SPN)

[93] H. Krasner, “The Payoff for Software Process
Improvement: What it is and How to Get it,” in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

[94] M. S. Krishnan and M. Kellner, “Measuring Process
Consistency: Implications for Reducing Software
Defects,” IEEE Transactions on Software
Engineering, vol. 25, no. 6, pp. 800-815,
November/December, 1999.

[95] C. Laporte and S. Trudel, “Addressing the People
Issues of Process Improvement Activities at
Oerlikon Aerospace,” Software Process -
Improvement and Practice, vol. 4, no. 4, pp. 187-
198, 1998.

[96] J. Lonchamp, “A Structured Conceptual and
Terminological Framework for Software Process

Engineering,” in Proceedings of the Second
International Conference on the Software Process,
pp. 41-53, 1993.

[97] N. Madhavji, “The Process Cycle,” Software
Engineering Journal, vol. 6, no. 5, pp. 234-242,
1991.

[98] N. Madhavji, D. Hoeltje, W. Hong, and T.
Bruckhaus, “Elicit: A Method for Eliciting Process
Models,” in Proceedings of the Third International
Conference on the Software Process, pp. 111-122,
1994.

[99] S. Masters and C. Bothwell, “CMM Appraisal
Framework - Version 1.0,” Software Engineering
Institute, CMU/SEI-TR-95-001, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/tr001.95.pdf)

[100] B. McFeeley, “IDEAL: A User’s Guide for Software
Process Improvement,” Software Engineering
Institute, CMU/SEI-96-HB-001, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/hb001.96.pdf)

[101] F. McGarry, R. Pajerski, G. Page, S. Waligora, V.
Basili, and M. Zelkowitz, “Software Process
Improvement in the NASA Software Engineering
Laboratory,” Software Engineering Institute,
CMU/SEI-94-TR-22, 1994. (available at
http://www.sei.cmu.edu/pub/documents/94.reports/p
df/tr22.94.pdf)

[102] C. McGowan and S. Bohner, “Model Based Process
Assessments,” in Proceedings of the International
Conference on Software Engineering, pp. 202-211,
1993.

[103] R. Messnarz and C. Tully (eds.), “Better Software
Practice for Business Benefit: Principles and
Experiences,” IEEE CS Press, 1999.

[104] D. Moitra, “Managing Change for Software Process
Improvement Initiatives: A Practical Experience-
Based Approach,” Software Process - Improvement
and Practice, vol. 4, no. 4, pp. 199-207, 1998.

[105] K. Moller and D. Paulish, Software Metrics,
Chapman & Hall, 1993.

[106] J. Moore, Software Engineering Standards: A
User’s Road Map, IEEE CS Press, 1998.

[107] T. Nakajo and H. Kume, “A Case History Analysis
of Software Error Cause-Effect Relationship,” IEEE
Transactions on Software Engineering, vol. 17, no.
8, 1991.

[108] Office of the Under Secretary of Defense for
Acquisitions and Technology, “Practical Software
Measurement: A Foundation for Objective Project
Management,” 1998. (available at
http://www.psmsc.com)

[109] R. Park, W. Goethert, and W. Florac, “Goal-Driven
Software Measurement - A Guidebook,” Software
Engineering Institute, CMU/SEI-96-HB-002, 1996.

9–18 © IEEE – Trial Version 1.00 – May 2001

(available at http://www.sei.cmu.edu/pub/documents
/96.reports/pdf/hb002.96.pdf)

[110] M. Paulk and M. Konrad, “Measuring Process
Capability Versus Organizational Process Maturity,”
in Proceedings of the 4th International Conference
on Software Quality, 1994.

[111] S-L. Pfleeger, Software Engineering: Theory and
Practice, Prentice-Hall, 1998.

[112] S-L. Pfleeger, “Understanding and Improving
Technology Transfer in Software Engineering,”
Journal of Systems and Software, vol. 47, pp. 111-
124, 1999.

[113] R. Pressman, Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 1997.

[114] J. Puffer, “Action Planning,” in Elements of
Software Process Assessment and Improvement, K.
El-Emam and N. H. Madhavji (eds.), IEEE C S
Press, 1999.

[115] L. Putnam and W. Myers, Measures for Excellence:
Reliable Software on Time, Within Budget, Yourdon
Press, 1992.

[116] R. Radice, N. Roth, A. O’Hara Jr., and W. Ciarfella,
“A Programming Process Architecture,” In IBM
Systems Journal, vol. 24, no. 2, pp. 79-90, 1985.

[117] D. Raffo and M. Kellner, “Modeling Software
Processes Quantitatively and Evaluating the
Performance of Process Alternatives,” in Elements
of Software Process Assessment and Improvement,
K. El-Emam and N. Madhavji (eds.), IEEE CS
Press, 1999.

[118] S. Raghavan and D. Chand, “Diffusing Software-
Engineering Methods,” IEEE Software, pp. 81-90,
July, 1989.

[119] E. Rogers, Diffusion of Innovations, Free Press,
1983.

[120] M. Sanders (eds.), “The SPIRE Handbook: Better,
Faster, Cheaper Software Development in Small
Organisations,” European Comission, 1998.

[121] E. Schein, Process Consultation Revisited: Building
the Helping Relationship, Addison-Wesley, 1999.

[122] Software Engineering Institute, The Capability
Maturity Model: Guidelines for Improving the
Software Process, Addison Wesley, 1995.

[123] Software Engineering Laboratory, “Software
Measurement Guidebook (Revision 1),”, SEL-94-
102, 1995. (available at http://sel.gsfc.nasa.gov/
website/documents/online-doc/94-102.pdf)

[124] Software Engineering Laboratory, “Software
Process Improvement Guidebook. NASA/GSFC,”,
SEL-95-102, 1996. (available at
http://sel.gsfc.nasa.gov/website/documents/online-
doc/95-102.pdf)

[125] Software Productivity Consortium, “Process
Definition and Modeling Guidebook,”, SPC-92041-
CMC, 1992.

[126] R. van Solingen and E. Berghout, The
Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development,
McGraw Hill, 1999.

[127] I. Sommerville and T. Rodden, “Human, Social and
Organisational Influences on the Software Process,”
in Software Process, A. Fuggetta and A. Wolf
(eds.), John Wiley & Sons, 1996.

[128] I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practice Guide, John Wiley &
Sons, 1997.

[129] H. Steinen, “Software Process Assessment and
Improvement: 5 Years of Experiences with
Bootstrap,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[130] D. Stelzer and W. Mellis, “Success Factors of
Organizational Change in Software Process
Improvement,” Software Process: Improvement and
Practice, vol. 4, no. 4, pp. 227-250, 1998.

[131] L. Votta, “Does Every Inspection Need a Meeting
?,” ACM Software Engineering Notes, vol. 18, no. 5,
pp. 107-114, 1993.

[132] S. Weissfelner, “ISO 9001 for Software
Organizations,” in Elements of Software Process
Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[133] K. Wiegers, Creating a Software Engineering
Culture, Dorset house, 1996.

[134] E. Yu and J. Mylopolous, “Understanding ‘Why’ in
Software Process Modeling, Analysis, and Design,”
in Proceedings of the 16th International Conference
on Software Engineering, 1994.

[135] S. Zahran, Software Process Improvement: Practical
Guidelines for Business Success, Addison Wesley,
1998.

