
© IEEE – Trial Version 1.00 – May 2001 11–1

CHAPTER 11

SOFTWARE QUALITY

Dolores Wallace* and Larry Reeker
National Institute of Standards and Technology

Gaithersburg, Maryland 20899 USA
{Dolores.Wallace, Larry.Reeker}@NIST.gov

*Dolores Wallace has retired from NIST (but is still available via her NIST e-mail address at the time of publication.)

Table of Contents

1. Introduction and Definition of the Software Quality
Knowledge Area ... 1

2. Breakdown of Topics for Software Quality 2
3. Breakdown Rationale.. 12
4. Matrix of Topics vs. Reference material................... 13
5. Recommended References for Software Quality 16

1. INTRODUCTION AND DEFINITION OF THE SOFTWARE
QUALITY KNOWLEDGE AREA

This chapter deals with software quality considerations that
transcend the life cycle processes. Of course, software
quality is a ubiquitous concern in software engineering, so
it is considered in many of the other KAs (and the reader
will notice pointers those KAs through this KA. There will
also be some inevitable duplication with those other KAs as
a consequence.
Software Quality Assurance (SQA) and Verification and
Validation (V&V) are the major processes discussed in this
KA, as they bear directly on the quality of the software
product. The term “product” will, however, be extended to
mean any artifact that is the output of any process used to
build the final software product. Examples of a product
include, but are not limited to, an entire system
specification, a software requirements specification for a
software component of a system, a design module, code,
test documentation, or reports from quality analysis tasks.
While most treatments of quality are described in terms of
the final system’s performance, sound engineering practice
requires that intermediate products relevant to quality be
checked throughout the development and maintenance
process. The reason for this extension of “product” is that
SQA and V&V can be used to evaluate the intermediate
products and the final product. In addition to intermediate
products and code, it can be applied to user documentation,
which is best developed together with code and can often
force issues regarding requirements and code.

Another major topic of this KA is just trying to answer the
question “What is software quality?” this is not a simple
question, as was concluded by David Garvin [Gar84,
Hya96]. Though we will not go into the complexities that
he studied, we will present a view for the working software
engineer.
The discussion of the purpose and planning of SQA and
V&V is a bridge between the discussion of quality and the
activities and techniques discussion for SQA and V&V, but
it is also an important activity in itself. In the planning
process, the activities are designed to be fitted to the
product and its purposes, including the quality attributes in
the requirements.
Because determining quality of both the final product and
intermediate products requires measurement, the topic of
measurement is relevant to the other parts of this KA. A
separate section is therefore included on the subject of
measurement. Measurement of product quality at all levels
of the project will in the future become more important
than it has been in the past or is today. With increasing
sophistication of systems (moving, for example, into areas
like intelligent web agents), the questions of quality go
beyond whether the system works or not, to how well it
achieves measurable quality goals. In addition, the
availability of more data about software and its production,
along with data mining techniques for analysis of the data,
will help to advance measurement definitions and
procedures. A more relevant, widely-accepted, robust set of
measures will be a sign of maturation in software
engineering.
It has been suggested that this chapter should also deal with
models and criteria that evaluate the capabilities of
software organizations, but those are primarily project
organization and management considerations. Of course it
is not possible to disentangle the quality of the process
from the quality of the product, but the quality of the
software engineering process is not a topic specific to this
KA, whereas the quality of the software product the
assigned topic. So an ability to perform Software Quality
Assurance, for instance, is a major component of a quality
software engineering program, but SQA is itself relevant to

11–2 © IEEE – Trial Version 1.00 – May 2001

software quality.

2. BREAKDOWN OF TOPICS FOR SOFTWARE QUALITY

The quality of a given product is sometimes defined as “the
totality of characteristics [of the product or services] that
bear on its ability to satisfy stated or implied needs”1.
Quality software is sometimes also defined as “the
efficient, effective, and comfortable use by a given set of
users for a set of purposes under specified conditions”.
These two definitions can be related to requirements
conformance - provided the requirements are well
engineered. Both agreement on quality requirements and
communication to the engineer information on what will
constitute quality requires that the aspects of quality be
defined and discussed. For that reason, the first topic is
description of product quality and some of the product
characteristics that relate to it. The importance of
requirements engineering is clearly an issue here.
Sections on the processes SQA and V&V that focus
on software quality follow the discussion on software
quality concepts. These quality-focused processes help to
ensure better software in a given project. They also provide,
as a by-product, general information to management that
can improve the quality of the entire software and
maintenance processes. The knowledge areas Software
Engineering Process and Software Engineering
Management, discuss quality programs for the
organization developing software systems. SQA and V&V
can provide relevant feedback for these areas.
Engineering for quality requires the measurement of quality
in a concrete way, so this knowledge area contains a section
on measurement as applied to SQA and V&V. Other
processes for assuring software product quality are
discussed in other parts of the SWEBOK. One of these,
singled out as a separate KA within the software life cycle,
Software Testing, is also used in both SQA and V&V.

2.1. Software quality concepts

What is software quality, and why is it so important that it
is pervasive in the Software Engineering Body of
Knowledge? Within a system, software is a tool, and tools
have to be selected for quality and for appropriateness. That
is the role of requirements. But software is more than a
tool. The software dictates the performance of the system,
and is therefore important to the system quality. Much
thought must therefore go into the value to place on each
quality attribute desired and on the overall quality of the
system. This section discusses the value and the attributes
of quality.
The notion of “quality” is not as simple as it may seem. For
any engineered product, there are many desired qualities
relevant to a particular project, to be discussed and

1 From Quality—Vocabulary, (ISO 8402: 1986, note 1).

determined at the time that the product requirements are
determined. Quality attributes may be present or absent, or
may be present in greater or lesser degree, with tradeoffs
among them, with practicality and cost as major
considerations. The software engineer needs first of all to
determine the real purpose for the software, which is a
prime point to keep in mind: The customer’s needs come
first, and they include particular levels of quality, not just
functionality. Thus the software engineer has a
responsibility to elicit quality requirements that may not
even be explicit at the outset and to discuss their
importance and the difficulty of attaining them. All
processes associated with software quality (e.g. building,
checking, improving quality) will be designed with these in
mind and carry costs based on the design. Therefore, it is
important to have in mind some of the possible attributes of
quality.
� Various researchers have produced models (usually

taxonomic) of software quality characteristics or
attributes that can be useful for discussing, planning,
and rating the quality of software products. The
models often include measures to “measure” the
degree of each quality attribute the product attains.
They are not always direct measures of the quality
characteristics discussed in the texts of Pressman [Pr],
Pfleeger [Pf] and Kan [Kan94]. Each model may have
a different set of attributes at the highest level of the
taxonomy, and selection of and definitions for the -
attributes at all levels may differ. The important point
is that requirements define the required quality of the
respective software, the definitions of the attributes
for quality, and the measurement methods and
acceptance criteria for the attributes. Some of the
classical thinking in this area is found in McCall
[McC77] and Boehm [Boe78].

2.1.1. Measuring the Value of Quality

A motivation behind a software project is a determination
that it has a value, and this value may or not be quantified
as a cost, but the customer will have some maximum cost
in mind. Within that cost, the customer expects to attain the
basic purpose of the software and may have some
expectation of the necessary quality, or may not have
thought through the quality issues or their related costs. The
software engineer, in discussing software quality attributes
and the processes necessary to assure them, should keep in
mind the value of each attribute and the sensitivity of the
value of the product to changes in it. Is it merely an
adornment or is it essential to the system? If it is
somewhere in between, as almost everything is, it is a
matter of making the customer a part of the decision
process and fully aware of both costs and benefits. Ideally,
most of this decision process goes on in the Requirements
phase (see that KA), but these issues may arise throughout
the software life cycle. There is no definite rule for how the
decisions are made, but the software engineer should be
able to present quality alternatives and their costs. A

© IEEE – Trial Version 1.00 – May 2001 11–3

discussion of measuring cost and value of quality
requirements can be found in [Wei93], Chapter 8, pp118-
134] and [Jon96], Chapter 5.

2.1.2. ISO 9126 Quality Description

Terminology for quality attributes differs from one
taxonomy or model of software quality to another; each
model may have different numbers of hierarchical levels
and a different total number of attributes. A software
engineer should understand the underlying meanings of
quality characteristics regardless of their names, as well as
their value to the system under development or
maintenance. An attempt to standardize terminology in an
inclusive model resulted in ISO 9126 (Information
Technology-Software Product Quality, Part 1: Quality
Model, 1998), of which a synopsis is included in this KA as
Table 1. ISO 9126 is concerned primarily with the
definition of quality characteristics in the final product. ISO
9126 sets out six quality characteristics, each very broad in
nature. They are divided into 21 sub-characteristics. In the
1998 revision, “compliance” to application-specific
requirements is included as a sub-characteristic of each
characteristic The approach taken in the 1998 version is
discussed in [Bev97].

2.1.3. Dependability

For systems whose failure may have extremely severe
consequences, dependability of the overall system
(hardware, software, and humans) is the main goal in
addition to the realization of basic functionality. Software
dependability is the subject of IEC 50-191 and the IEC 300
series of standards. Some types of systems (e.g., radar
control, defense communications, medical devices) have
particular needs for high dependability, including such
attributes as fault tolerance, safety, security, usability.
Reliability is a criterion under dependability and also is
found among the ISO/IEC 9126 (Table 1). In Moore’s
treatment [M], Kiang’s factors [Kia95] are used as shown
in the following list, with the exception of the term
Trustability from Laprie [Lap91].
� Availability: The product’s readiness for use on

demand
� Reliability: The longevity of product performance
� Maintainability: The ease of maintenance and upgrade
� Maintenance support: Continuing support to achieve

availability performance objectives
� Trustability: System’s ability to provide users with

information about service correctness.

There is a large body of literature for systems that must be
highly dependable (“high confidence” or “high integrity
systems”). Terminology from traditional mechanical and
electrical systems that may not include software have been
imported for discussing threats or hazards, risks, system
integrity, and related concepts, and may be found in the
references cited for this section.

2.1.4. Special Types of Systems and Quality Needs

As implied above, there are many particular qualities of
software that may or may not fit under ISO 9126. Particular
classes of application systems may have other quality
attributes to be judged. This is clearly an open-ended set,
but the following are examples:
� Intelligent and Knowledge Based Systems –

“Anytime” property (guarantees best answer that can
be obtained within a given time if called upon for an
answer in that amount of time), Explanation
Capability (explains reasoning process in getting an
answer).

� Human Interface and Interaction Systems – Adaptivity
(to user’s traits, interests), Intelligent Help, Display
Salience.

� Information Systems – Ease of query, High recall
(obtaining most relevant information), High Precision
(not returning irrelevant information), tradeoffs. 3.5
Quality Attributes of Programming Products

Other considerations of software systems are known to
affect the software engineering process while the system is
being built and during its future evolution or modification,
and these can be considered elements of product quality.
These software qualities include, but are not limited to:
� “Stylishness” of Code
� Code and object reusability
� Traceability: From requirements to code/test

documentation, and from code/test documentation to
requirements

� Modularity of code and independence of modules.
These quality attributes can be viewed as satisfying
organizational or project requirements for the software in
the effort to improve the overall performance of the
organization or project. See the Software Engineering
Management and Software Engineering Process KAs for
related material.

11–4 © IEEE – Trial Version 1.00 – May 2001

Software Quality

Software Quality
Concepts

Purpose and
Planning of SQA

and V&V

Activities and
Techniques for
SQA and V&V

Measurement
Applied to SQA

and V&V

Measuring the
Value of Quality

ISO 9126 Quality
Description

Dependability

Special Types of
Systems and Quality

Needs

Common Planning
Activities

The SQA Plan

The V&V Plan

Static Techniques

Dynamic Techiques

Other SQA and
V&V Testing

Fundamentals of
Measurement

Measures

Measurement
Analysis

Techniques

Additional Uses
of SQA and
V&V data

Defect
Characterization

Table 1. Software Quality Characteristics and Attributes – ISO 9126-1998 View
Characteristics & Subcharacteristics Short Description of the Characteristics and Subcharacteristics
Functionality Characteristics relating to achievement of the basic purpose for which the software is being engineered
. Suitability The presence and appropriateness of a set of functions for specified tasks
. Accuracy The provision of right or agreed results or effects
. Interoperability Software’s ability to interact with specified systems
. Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data.
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Reliability Characteristics relating to capability of software to maintain its level of performance under stated

conditions for a stated period of time
. Maturity Attributes of software that bear on the frequency of failure by faults in the software
. Fault tolerance Ability to maintain a specified level of performance in cases of software faults or unexpected inputs
. Recoverability Capability and effort needed to reestablish level of performance and recover affected data after possible failure
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Usability Characteristics relating to the effort needed for use, and on the individual assessment of such

use, by a stated or implied set of users
. Understandability The effort required for a user to recognize the logical concept and its applicability
. Learnability The effort required for a user to learn its application, operation, input, and output
. Operability The ease of operation and control by users
. Attractiveness The capability of the software to be attractive to the user
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Efficiency Characteristic related to the relationship between the level of performance of the software

and the amount of resources used, under stated conditions
. Time behavior The speed of response and processing times and throughput rates in performing its function
. Resource utilization The amount of resources used and the duration of such use in performing its function
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Maintainability Characteristics related effort needed to make modifications, including corrections, improvements or

adaptation of software to changes in environment, requirements and functional specifications

© IEEE – Trial Version 1.00 – May 2001 11–5

Table 1. Software Quality Characteristics and Attributes – ISO 9126-1998 View
Characteristics & Subcharacteristics Short Description of the Characteristics and Subcharacteristics
. Analyzability The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be modified
. Changeability The effort needed for modification fault removal or for environmental change
. Stability The risk of unexpected effect of modifications
. Testability The effort needed for validating the modified software
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Portability Characteristics related to the ability to transfer the software from one organization or hardware or software

environment to another
. Adaptability The opportunity for its adaptation to different specified environments
. Installability The effort needed to install the software in a specified environment
. Co-existence The capability of a software product to co-exist with other independent software in common environment
. Replaceability The opportunity and effort of using it in the place of other software in a particular environment
. Compliance Adherence to application-related standards, conventions, regulations in laws and protocols

2.2. Purpose and Planning of SQA and V&V

The KA Software Requirements describes how the
requirements and their individual features are defined,
prioritized and documented and how the quality of that
documentation can be measured. The set of requirements
has a direct effect on both the intermediate software
engineering products, and the delivered software. Building
in quality as the process takes place and making careful
reference to well-engineered requirements that define the
needed measures and attributes of quality are the most
important determiners of overall software quality.
The Software Engineering Process (discussed overall in
that KA) employs multiple supporting processes to
examine and assure software products for quality. These
supporting processes conduct activities to ensure that the
software engineering process required by the project is
followed. Two related (and sometimes combined)
supporting processes most closely related to product
quality, SQA and V&V, are discussed in this section. These
processes both encourage quality and find possible
problems. But they differ somewhat in their emphasis.
SQA and V&V also provide management with visibility
into the quality of products at each stage in their
development or maintenance. The visibility comes from the
data and measurements produced through the performance
of tasks to assess and measure quality of the outputs of any
software life cycle processes as they are developed. Where
strict quality standards are an overriding factor, the tasks
used to assess quality and capture data and measurements
may be performed by an organization independent of the
project organization, in order to provide a higher degree of
objectivity to the quality assessment.
The SQA process provides assurance that the software
products and processes in the project life cycle conform to
their specified requirements by planning a set of activities
to help build quality into the software. This means ensuring
that the problem is clearly and adequately stated and that
the solution’s requirements are properly defined and
expressed. SQA seeks to retain the quality throughout the

development and maintenance of the product by execution
of a variety of activities at each stage that can result in early
identification of problems, which are almost inevitable in
any complex activity. The SQA role with respect to process
is to ensure that planned processes are appropriate and are
later implemented according to plan and that relevant
measurement processes are provided to the appropriate
organization.
The Verification and Validation process determines
whether products of a given development or maintenance
activity conform to the needs of that activity and those
imposed by previous activities, and whether the final
software product satisfies its intended use and user needs.
Verification attempts to ensure that the product is built
correctly, in the sense that the, output products of an
activity fulfill requirements imposed on them in previous
activities. Validation attempts to ensure that the right
product is built, that is, the product fulfills its specific
intended use. Both verification and validation processes
begin early in the development or maintenance process.
They provide an examination of every product relative both
to its immediate predecessor and to the system
requirements it must satisfy.
In summary, the SWEBOK describes a number of pro ways
of achieving software quality. As described in this KA, the
SQA and V&V processes are closely related processes that
can overlap and are sometimes even combined. They seem
largely reactive in nature because they address the
processes as practiced and the products as produced; but
they have a major role at the planning stage in being
proactive as to the procedures needed to attain the quality
attributes and degree needed by the stakeholders in the
software. They should also produce feedback that can
improve the software engineering process. In summary:
� SQA governs the procedures meant to build the

desired quality into the products by assuring that the
process is well-planned and then applied as prescribed
and defined. It helps keep the organization from
sliding back into less effective processes and habits,
and may provide direct assistance or guidance in
applying the current practices.

11–6 © IEEE – Trial Version 1.00 – May 2001

� V&V is aimed more directly at product quality, in that
it is based on testing that can locate deviations and fix
them. But it also validates the intermediate products
and therefore the intermediate steps of the software
engineering process. So it too can affect the software
engineering process through that evaluation.

It should be noted that sometimes the terms SQA and V&V
are associated with organizations rather than processes.
SQA often is the name of a unit within an organization.
Sometimes an independent organization is contracted to
conduct V&V. Testing may occur in Both SQA and V&V
and is discussed in this KA in relation to those processes.
Details on testing within the software life cycle are found in
the KA on Software Testing. The Software Quality KA is
not intended to define organizations but rather the purposes
and procedures of SQA and V&V, insofar as they relate to
software quality. The organizational aspect is mentioned
here, however, to tie together different KAs and to help
avoid confusion. Some discussion on organizational issues
appears in [Hum98], and the IEEE Std. 1012.

2.2.1. Common Planning Activities

Planning for software quality involves (1) defining, the
required product in terms of its quality attributes and (2)
planning the processes to achieve the required product.
Planning of these processes is discussed in other KAs:
Software Engineering Management, Software
Engineering Design, and Software Engineering Methods
and Tools. These topics are different from planning the
SQA and V&V processes. The SQA and V&V processes
assess predicted adequacy and actual implementation of
those plans, that is, how well software products will or do
satisfy customer and stakeholder requirements, provide
value to the customers and other stakeholders, and meet the
software quality needed to meet the system requirements.
System requirements vary among systems, as do the
activities selected from the disciplines of SQA and V&V.
Various factors influence planning, management and
selection of activities and techniques, including:
1. the environment of the system in which the software

will reside;
2. system and software requirements;
3. the commercial or standard components to be used in

the system;
4. the specific software standards used in developing the

software;
5. the software standards used for quality;
6. the methods and software tools to be used for

development and maintenance and for quality
evaluation and improvement;

7. the budget, staff, project organization, plans and
schedule (size is inherently included) of all the
processes;

8. the intended users and use of the system, and

9. the integrity level of the system.
Information from these factors influences how the SQA and
V&V processes are organized, and documented, how
specific SQA and V&V activities are selected, and what
resources are needed or will impose bounds on the efforts.
The integrity level of a system can be used as an example.
The integrity level is determined based on the possible
consequences of failure of the system and the probability of
failure. For software systems where safety or security is
important, techniques such as hazard analysis for safety or
threat analysis for security may be used to develop a
planning process that would identify where potential
trouble spots lie. Failure history of similar systems may
also help in identifying which activities will be most useful
in detecting faults and assessing quality.
If the SQA and V&V organizations are the same, their
plans may be combined, but we will treat them as separate
plans below, as they are often distinguished from one
another.

2.2.2. The SQA Plan

The SQA plan defines the processes and procedures that
will be used to ensure that software developed for a specific
product meets its requirements and is of the highest quality
possible within project constraints. To do so, it must first
ensure that the quality target is clearly defined and
understood. The plan may be governed by software quality
assurance standards, life cycle standards, quality
management standards and models, company policies and
procedures for quality and quality improvement. It must
consider management, development and maintenance plans
for the software. Standards and models such as ISO9000,
CMM, Baldrige, SPICE, TickIT are related to the Software
Engineering Process and may influence the SQA plan.
The specific activities and tasks are laid our, with their
costs and resource requirements, their overall management,
and their schedule in relation to those in the software
management, development or maintenance plans. The SQA
plan should be cognizant of the software configuration plan
also (see the KA for Software Configuration
Management) The SQA plan identifies documents,
standards, practices, and conventions that govern the
project and how they will be checked and monitored to
ensure adequacy or compliance. The SQA plan identifies
measures, statistical techniques, procedures for problem
reporting and corrective action, resources such as tools,
techniques and methodologies, security for physical media,
training, and SQA reporting and documentation to be
retained. The SQA plan addresses assurance of any other
type of function addressed in the software plans, such as
supplier software to the project or commercial off-the-shelf
software (COTS), installation, and service after delivery of
the system. It can also contain some items less directly
related to quality: acceptance criteria, activity deadlines,
reporting, and management activities that feed experiences
into the development process.

© IEEE – Trial Version 1.00 – May 2001 11–7

2.2.3. The V&V Plan

The V&V plan is the instrument to explain the
requirements and management of V&V and the role of each
technique in satisfying the objectives of V&V. An
understanding of the different purposes of each verification
and validation activity will help in planning carefully the
techniques and resources needed to achieve their purposes.
IEEE standard 1012, section 7, specifies what ordinarily
goes into a V&V plan.
Verification activities examine a specific product, that is,
output of a process, and provide objective evidence that
specified requirements have been fulfilled. The “specified
requirements” refer to the requirements of the examined
product, relative to the product from which it is derived.
For example, code is examined relative to requirements of a
design description, or the software requirements are
examined relative to system requirements.
Validation examines a specific product to provide objective
evidence that the requirements for a specific intended use
are fulfilled. The validation confirms that the product traces
back to the software system requirements and satisfies
them. This includes planning for system testing more or
less in parallel with the system and software requirements
process. This aspect of validation often serves as part of a
requirements verification activity. While some
communities separate completely verification from
validation, the activities of each actually service the other.
V&V activities can be exercised at every step of the life
cycle, often on the same product, possibly using the same
techniques in some instances. The difference is in the
technique’s objectives for that product, and the supporting
inputs to that technique. Sequentially, verification and
validation will provide evidence from requirements to the
final system, a step at a time. This process holds true for
any life cycle model, gradually iterating or incrementing
through the development. The process holds in
maintenance also.
The plan for V&V addresses the management,
communication, policies and procedures of the V&V
activities and their iteration, evaluation of methods,
measures, and tools for the V&V activities, defect reports,
and documentation requirements. The plan describes V&V
activities, techniques and tools used to achieve the goals of
those activities.
The V&V process may be conducted in various
organizational arrangements. First, to re-emphasize, many
V&V techniques may be employed by the software
engineers who are building the product. Second, the V&V
process may be conducted in varying degrees of
independence from the development organization. Finally,
the integrity level of the product may drive the degree of
independence.

2.3. Activities and techniques for SQA and V&V

The SQA and V&V processes consist of activities to
indicate how software plans (e.g., management,
development, configuration management) are being
implemented and how well the evolving and final products
are meeting their specified requirements. Results from
these activities are collected into reports for management
before corrective actions are taken. The management of
SQA and V&V are tasked with ensuring the quality of
these reports, that is, that the results are accurate.
Specific techniques to support the activities software
engineers perform to assure quality may depend upon their
personal role (e.g., programmer, quality assurance staff)
and project organization (e.g., test group, independent
V&V). To build or analyze for quality, the software
engineer understands development standards and methods
and the genesis of other resources on the project (e.g.,
components, automated tool support) and how they will be
used. The software engineer performing quality analysis
activities is aware of and understands considerations
affecting quality assurance: standards for software quality
assurance, V&V, testing, the various resources that
influence the product, techniques, and measurement (e.g.,
what to measure and how to evaluate the product from the
measurements).
The SQA and V&V activities consist of many techniques;
some may directly find defects and others may indicate
where further examination may be valuable. These may be
referred to as direct-defect finding and supporting
techniques. Some often serve as both, such as people-
intensive techniques like reviews, audits, and inspection (as
used here, not to be confused with the term “inspection”
used for static analysis of work products) and some static
techniques like complexity analysis and control flow
analysis. The SQA and V&V techniques can be categorized
as two types: static and dynamic. Static techniques do not
involve the execution of code, whereas dynamic techniques
do. Static techniques involve examination of the
documentation (e.g., requirements specification, design,
plans, code, test documentation) by individuals or groups of
individuals and sometimes with the aid of automated tools.
Often, people tend to think of testing as the only dynamic
technique, but simulation is an example of another one.
Sometimes static techniques are used to support dynamic
techniques, and vice-versa. An individual, perhaps with the
use of a software tool, may perform some techniques; in
others, several people are required to conduct the
technique. Such techniques, requiring two or more people,
are “people-intensive”. Depending on project size, other
techniques, such as testing, may involve many people, but
are not people-intensive in the sense described here.
Static and dynamic techniques are used in either SQA or
V&V. Their selection, specific objectives and organization
depend on project and product requirements. Discussion in
the following sections and the tables in the appendices
provide only highlights about the various techniques; they

11–8 © IEEE – Trial Version 1.00 – May 2001

are not inclusive. There are too many techniques to define
in this document but the lists and references provide a
flavor of SQA and V&V techniques and will yield insights
for selecting techniques and for pursuing additional reading
about techniques.

2.3.1. Static Techniques

Static techniques involve examination of the project’s
documentation, software and other information about the
software products without executing them. The techniques
may include people intensive activities, as defined above,
or analytic activities conducted by individuals, with or
without the assistance of automated tools. These support
both SQA and V&V processes and their specific
implementation can serve the purpose of SQA, verification,
or validation, at every stage of development or
maintenance.

2.3.1.1. People-Intensive Techniques

The setting for people-intensive techniques, including
audits, reviews, and inspections, may vary. The setting may
be a formal meeting, an informal gathering, or a desk-check
situation, but (usually, at least) two or more people are
involved. Preparation ahead of time may be necessary.
Resources in addition to the items under examination may
include checklists and results from analytic techniques and
testing. Another technique that may be included in this
group is the walkthrough. They may also be done on-line.
These activities are discussed in IEEE Std. 1028 on reviews
and audits, [Fre82], [Hor96], and [Jon96], [Rak97].
Reviews that specifically fall under the SQA process are
technical reviews, that is, on technical products. However,
the SQA organization may be asked to conduct
management reviews as well. Persons involved in the
reviews are usually a leader, a recorder, technical staff, and
-in the management review - management staff.
Management reviews determine adequacy of and monitor
progress or inconsistencies against plans and schedules and
requirements. These reviews may be exercised on products
such as audit reports, progress reports, V&V reports and
plans of many types including risk management, project
management, software configuration management, software
safety, and risk assessment, among others. See the
Software Engineering Management KA for related
material.
Technical reviews examine products (again, anything
produced a stage of the software engineering project, such
as software requirement specifications, software design
documents, test documentation, user documentation,
installation procedures), but the coverage of the material
may vary with purpose of the review. The subject of the
review is not necessarily the completed product, but may be
a portion of it. For example, a subset of the software
requirements may be reviewed for a particular set of
functionality, or several design modules may be reviewed,
or separate reviews may be conducted for each category of

test for each of its associated documents (plans, designs,
cases and procedures, reports).
An audit is an independent evaluation of conformance of
software products and processes to applicable regulations,
standards, plans, and procedures. Audits may examine
plans like recovery, SQA, and maintenance, design
documentation. The audit is a formally organized activity,
with participants having specific roles, such as lead auditor,
other auditors, a recorder, an initiator, and a representative
of the audited organization. While for reviews and audits
there may be many formal names such as those identified in
the IEEE Std. 1028, the important point is that they can
occur on almost any product at any stage of the
development or maintenance process.
Software inspections generally involve the author of a
product, while reviews likely do not. Other persons include
a reader and some inspectors. The inspector team may
consist of different expertise, such as domain expertise, or
design method expertise, or language expertise, etc.
Inspections are usually conducted on a relatively small
section of the product. Often the inspection team may have
had a few hours to prepare, perhaps by applying an analytic
technique to a small section of the product, or to the entire
product with a focus only on one aspect, e.g., interfaces. A
checklist, with questions germane to the issues of interest,
is a common tool used in inspections. Inspection sessions
can last a couple of hours or less, whereas reviews and
audits are usually broader in scope and take longer.
The walkthrough is similar to an inspection, but is
conducted by only members of the development group,
who examine a specific part of a product. With the
exception of the walkthrough – primarily an assurance
technique used only by the developer, these people-
intensive techniques are traditionally considered to be SQA
techniques, but may be performed by others. The technical
objectives may also change, depending on who performs
them and whether they are conducted as verification or as
validation activities. Often, when V&V is an organization,
it may be asked to support these techniques, either by
previous examination of the products or by attending the
sessions to conduct the activities.

2.3.1.2 Analytic Techniques

An individual generally applies analytic techniques.
Sometimes several people may be assigned the technique,
but each applies it to different parts of the product. Some
are tool-driven; others are primarily manual. With the
References (Section 7.1) there are tables of techniques
according to their primary purpose. However, many
techniques listed as support may find some defects directly
but are typically used as support to other techniques. Some
however are listed in both categories because they are used
either way. The support group of techniques also includes
various assessments as part of overall quality analysis.
Examples of this group of techniques includes complexity

© IEEE – Trial Version 1.00 – May 2001 11–9

analysis, control flow analysis, algorithm analysis, and use
of formal methods.
Each type of analysis has a specific purpose and not all are
going to be applied to every project. An example of a
support technique is complexity analysis, useful for
determining that the design or code may be too complex to
develop correctly, to test or maintain; the results of a
complexity analysis may be used in developing test cases.
Some listed under direct defect finding, such as control
flow analysis, may also be used as support to another
activity. For a software system with many algorithms,
algorithm analysis is important, especially when an
incorrect algorithm could cause a catastrophic result. There
are too many analytic techniques to define in this document
but the lists and references provide a flavor of software
analysis and will yield to the software engineer insights for
selecting techniques and for pursuing additional reading
about techniques.
A class of analytic techniques that is gaining greater
acceptance is the use of formal methods to verify software
requirements and designs. Proof of correctness may also be
applied to different parts of programs. Their acceptance to
date has mostly been in verification of crucial parts of
critical systems, such as specific security and safety
requirements [NAS97].

2.3.2. Dynamic Techniques

Different kinds of dynamic techniques are performed
throughout the development and maintenance of software
systems. Generally these are testing techniques, but
techniques such as simulation, model checking, and
symbolic execution may be considered dynamic. Code
reading is considered a static technique but experienced
software engineers may execute the code as they read
through it. In this sense, code reading may also fit under
dynamic. This discrepancy in categorizing indicates that
people with different roles in the organization may consider
and apply these techniques differently.
Some testing may fall under the development process, the
SQA process, or V&V, again depending on project
organization. The discipline of V&V encompasses testing
and requires activities for testing at the very beginning of
the project. Because both the SQA and V&V plans address
testing, this section includes some commentary about
testing. The knowledge area on Software Testing provides
discussion and technical references to theory, techniques
for testing, and automation. Supporting techniques for
testing fall under test management, planning and
documentation. V&V testing generally includes component
or module, integration, system, and acceptance testing.
V&V testing may include test of commercial off-the-shelf
software (COTS) and evaluation of tools to be used in the
project (see section 5.3).
The assurance processes of SQA and V&V examine every
output relative to the software requirement specification to
ensure the output’s traceability, consistency, completeness,

correctness, and performance. This confirmation also
includes exercising the outputs of the development and
maintenance processes, that is, the analysis consists of
validating the code by testing to many objectives and
strategies, and collecting, analyzing and measuring the
results. SQA ensures that appropriate types of tests are
planned, developed, and implemented, and V&V develops
test plans, strategies, cases and procedures.

2.4. Other SQA and V&V Testing

Two types of testing fall under SQA and V&V because of
their responsibility for quality of materials used in the
project:
Evaluation and test of tools to be used on the project (See
ISO/IEC 12119 Information Technology – Guidance for the
Evaluation and Selection of CASE Tools)
Conformance test (or review of conformance test) of
components and COTS products to be used in the product.
There now exists a standard for software packages (see
section 7.2.4.)
The SWEBOK knowledge area on Software Testing
addresses special purpose testing. Many of these types are
also considered and performed during planning for SQA or
V&V testing. Occasionally the V&V process may be asked
to perform these other testing activities according to the
project’s organization. Sometimes an independent V&V
organization may be asked to monitor the test process and
sometimes to witness the actual execution, to ensure that it
is conducted in accordance with specified procedures. And,
sometimes, V&V may be called on to evaluate the testing
itself: adequacy of plans and procedures, and adequacy and
accuracy of results.
Another type of testing that may fall under a V&V
organization is third party testing. The third party is not the
developer or in any way associated with the development of
the product. Instead, the third party is an independent
facility, usually accredited by some body of authority.
Their purpose is to test a product for conformance to a
specific set of requirements. Discussion on third party
testing appears in the July/August 1999 IEEE Software
special issue on software certification.

2.5. Measurement applied to SQA and V&V

SQA and V&V discover information at all stages of the
development and maintenance process that provides
visibility into the software development and maintenance
processes. Some of this information involves counting and
classifying defects, where “defect” refers to errors, faults,
and failures. Typically, if the word “defect” is used, it
refers to “fault” as defined below, but different cultures and
standards may differ somewhat in their meaning for these
same terms, so there have been attempts to define them.
Partial definitions taken from the IEEE Std 610.12-1990

11–10 © IEEE – Trial Version 1.00 – May 2001

(“IEEE Standard Glossary of Software Engineering
Terminology”) are these:
� Error: “A difference…between a computed result and

the correct result”
� Fault: “An incorrect step, process, or data definition in

a computer program”
� Failure: “The [incorrect] result of a fault”
� Mistake: “A human action that produces an incorrect

result”.
Mistakes (as defined above) are the subject of the quality
improvement process, which is covered in the Knowledge
Area Software Engineering Process. Failures found in
testing as the result of software faults are included as
defects in the discussion of this section. Reliability models
are built from failure data collected during system testing or
from systems in service, and thus can be used to predict
failure and to assist decisions on when to stop testing.
Information on inadequacies and defects found during SQA
and V&V techniques may be lost unless it is recorded. For
some techniques (e.g., reviews, audits, inspections),
recorders are usually present to record such information,
along with issues, and decisions. When automated tools are
used, the tool output may provide the defect information.
Sometimes data about defects are collected and recorded on
a “trouble report” form and may further be entered into
some type of database, either manually or automatically
from an analysis tool. Reports about the defects are
provided to the software management and development
organizations.
One probable action resulting from SQA and V&V reports
is to remove the defects from the product under
examination. Other actions enable achieving full value
from the findings of the SQA and V&V activities. These
actions include analyzing and summarizing the findings
with use of measurement techniques to improve the product
and the process ands to track the defects and their removal.
Process improvement is primarily discussed in Software
Engineering Process with SQA and V&V process being a
source of information..

2.5.1. Fundamentals of Measurement

The theory of measurement establishes the foundation on
which meaningful measurements can be made. It tells us,
for instance, that the statement that it is twice as warm
today as yesterday if it is 40 degrees Fahrenheit today but
only 20 degrees yesterday is not meaningful because
degrees Fahrenheit is not a “ratio scale” but a similar
statement concerning degrees Kelvin would have a physical
meaning. Measurement is defined in the theory as “the
assignment of numbers to objects in a systematic way to
represent properties of the object.” If the property is just a
constant assigned by counting some aspect it is an
“absolute” measure, but usually not very meaningful. More
meaningful scales are relative to a classification or scale,
and for those, measurement theory provides a succession of

more and more constrained ways of assigning the measures.
If the numbers assigned are merely to provide labels to
classify the objects, they are called “nominal”. If they are
assigned in a way that ranks the objects (e.g. good, better,
best), they are called “ordinal”. If they deal with
magnitudes of the property relative to a defined
measurement unit, they are “interval” (and the intervals are
uniform between the numbers unless otherwise specified,
and are therefore additive). Measurements are at the “ratio”
level if they have an absolute zero point, so ratios of
distances to the zero point are meaningful (as in the
example of temperatures given earlier).
Key terms on software measures and measurement methods
have been defined in ISO/IEC FCD 15939 on the basis of
the ISO international vocabulary of metrology [ISO93].
Nevertheless, readers will encounter terminology
differences in the literature; for example, the term “metric”
is sometimes used in place of “measure”.
Software measures of all of these types have been defined.
A simple example of a ratio scale in software, for instance,
is the number of defects discovered per module. In module
1, there may be 10 defects per function point (where a
function point is a measure of size based on functionality)
in module 2, 15 and in module 3, 20. The difference
between module 1 and 2 is 5 and module 3 has twice as
many defects as module 1. Theories of measurement and
scales are discussed in [Kan94], pp. 54-82. The standard for
functional size measurement is ISO/IEC 14143-1 and
additional, supporting standards are under development. A
number of specific methods, suitable for different purposes,
are available.
Measurement for measurement’s sake does not help define
quality. Instead, the software engineer needs to define
specific questions about the product, and hence the
objectives to be met to answer those questions. Only then
can specific measures be selected. ISO/IEC FCD 15939
defines the activities and tasks necessary to implement a
software measurement process and includes as well a
measurement information model. Another approach is
“Plan-Do-Check-Act” discussed in [Rak97] . Others are
discussed in the references on software measurement. The
point is that there has to be a reason for collecting data, that
is, there is a question to be answered.
Measurement programs are considered useful if they help
project stakeholders (1) understand what is happening
during their processes, and (2) control what is happening on
their projects [Fen95,97, Pf]. For measurement to work
well, it is critical to establish measurement planning,
collection, interpretation and reporting activities as part of a
larger organizational process, for example requirements
engineering, design, or software construction. The
measurement process and its implementation should be
documented in the form of a measurement plan. It defines
the measurement process with exact information on
stakeholders involved, measurement frequency, sources of
measurement data, measurement rules, measurement data

© IEEE – Trial Version 1.00 – May 2001 11–11

interpretation rules, tools support, reports to be produced,
and action items that can be taken based on the
measurement data. In this way, the plan represents a
communication vehicle to ensure that all team members
agree with the measurement approach, while also serving as
the ongoing reference model to manage the implementation
of reuse measures.
Other important measurement practices deal with
experimentation and data collection. Experimentation is
useful in determining the value of a development,
maintenance, or assurance technique and results may be
used to predict where faults may occur. Data collection is
non-trivial and often too many types of data are collected.
Instead, it is important to decide what is the purpose, that
is, what question is to be answered from the data, then
decide what data is needed to answer the question and then
to collect only that data. While a measurement program has
costs in time and money, it may result in savings. Methods
exist to help estimate the costs of a measurement program.
Discussion on the following key topics for measurement
planning are found in ([Bas84], [Kan94], [Pr], [Pf],
[Rak97], [Zel98]:
� Experimentation
� Selection of approach for measurement
� Methods
� Costing
� Data Collection process.

2.5.2. Measures

Measurement models and frameworks for software quality
enable the software engineer to establish specific product
measures as part of the product concept. Models and
frameworks for software quality are discussed in [Kan94],
[Pf], and [Pr].
If they are designed properly measures can support
software quality (among other aspects of the software
engineering process) in multiple ways. They can help
management decision-making. They can find problematic
areas and bottlenecks in the software product; and they can
help the developers in assessing the quality of their work
for SQA purposes and for longer term process quality
assessment.
Data can be collected on various characteristics of software
products. Many of the measures are related to the quality
characteristics defined in Section 2 of this Knowledge
Area. Much of the data can be collected as results of the
static techniques previously discussed and from various
testing activities (see Software Testing Knowledge Area).
The types of measures for which data are collected
generally fall into one or more of these categories and are
discussed in [Jon96], [Lyu96], [Pf], [Pr], [Lyu96], and
[Wei93]:
� Quality characteristics measures
� Reliability models & measures

� Defect features (e.g., counts, density)
� Customer satisfaction
� Product features (e.g., size, which includes source

lines of code)and/or function points [Abr96], number
of requirements)

� Structure measures (e.g., modularity, complexity,
control flow)

� Object-oriented measures.

2.5.3. Measurement Analysis Techniques

While the measures for quality characteristics and product
features may be useful in themselves (for example, the
number of defective requirements or the proportion of
requirements that are defective), mathematical and
graphical techniques can be applied to aid in interpretation
of the measures. These fit into the following categories and
are discussed in [Fen97], [Jon96], [Kan94], [Lyu96] and
[Mus98].
� Statistically based (e.g., Pareto analysis, run charts,

scatter plots, normal distribution)
� Statistical tests (e.g., binomial test; chi-squared test)
� Trend analysis
� Prediction, e.g., reliability models.
The statistically based techniques and tests often provide a
snapshot of the more troublesome areas of the software
product under examination. The resulting charts and graphs
are visualization aids that the decision-makers can use to
focus resources where they appear most needed. Results
from trend analysis may indicate whether a schedule may
be slipped, such as in testing, or may indicate that certain
classes of faults will gain in intensity unless some
corrective action is taken in development. And the
predictive techniques assist in planning test time and
predicting failure. More discussion on these appears in
Software Engineering Process and Software Engineering
Management.

2.5.4. Defect Characterization

SQA and V&V processes discover defects. Characterizing
those defects enables understanding of the product,
facilitates corrections to the process or the product, and
informs the project management or customer of the status
of the process or product. Many defect (fault) taxonomies
exist and while attempts have been made to get consensus
on a fault and failure taxonomy, the literature indicates that
quite a few are in use (IEEE Std. 1044, [Bei90], [Chi92],
[Gra92]). Defect (anomaly) characterization is used in
audits and reviews, too, with the review leader often
presenting a list of anomalies provided by team members
for consideration at a review meeting.
As new design methodologies and languages evolve, along
with advances in overall application technologies, new
classes of defects appear, or, the connection to previously
defined classes requires much effort to realize. When

11–12 © IEEE – Trial Version 1.00 – May 2001

tracking defects, the software engineer is interested not
only in the count of defects, but the types. Without some
classification, information will not really be useful in
identifying the underlying causes of the defects because no
one will be able to group specific types of problems and
make determinations about them. The point, again, as in
selecting a measurement approach with quality
characteristics, measures and measurement techniques, is to
establish a defect taxonomy that is meaningful to the
organization and software system.
The above references as well as [Kan94], [Fen95] and [Pf],
and [Jon89] all provide discussions on analyzing defects.
This is done by measuring defect occurrences and then
applying statistical methods to understand the types of
defects that occur most frequently, that is, answering
questions about where mistakes occur most frequently
(their density). They also aid in understanding the trends
and how well detection techniques are working, and, how
well the development and maintenance processes are
doing.2 Measuring test coverage helps to estimate how
much test effort remains and to predict possible remaining
defects. From these measurement methods, one can develop
defect profiles for a specific application domain. Then, for
the next software system within that organization, the
profiles can be used to guide the SQA and V&V processes,
that is, to expend the effort where the problems are likeliest
to occur. Similarly, benchmarks, or defect counts typical of
that domain, may serve as one aid in determining when the
product is ready for delivery.
The following topics are useful for establishing
measurement approaches for the software products:
� Defect classification and descriptions
� Defect analysis
� Measuring adequacy of the SQA and V&V activities
� Test coverage
� Benchmarks, profiles, baselines, defect densities.

2.5.5. Additional Uses of SQA and V&V data

The measurement section of this KA on SQA and V&V
touches only minimally on measurement, for measurement
is a major topic itself. The purpose here is only to provide
some insight on how the SQA and V&V processes use
measurement directly to support achieving their goals.
There are a few more topics which measurement of results
from SQA and V&V may support. These include some
assistance in deciding when to stop testing. Reliability
models and benchmarks, both using fault and failure data,
are useful for this objective. Again, finding a defect, or
perhaps trends among the defects, may help to locate the
source of the problem.

2 Discussion on using data from SQA and V&V to improve

development and maintenance processes appears in Software
Engineering Management and Software Engineering Process.

The cost of SQA and V&V processes is almost always an
issue raised in deciding how to organize a project. Often
generic models of cost, based on when the defect is found
and how much effort it takes to fix the defect relative to
finding the defect earlier, are used. Data within an
organization from that organization’s projects may give a
better picture of cost for that organization. Discussion on
this topic may be found in [Rak97], pp. 39-50. Related
information can be found in the Software Engineering
Process and Software Engineering Management KAs.
Finally, the SQA and V&V reports themselves provide
valuable information not only to these processes but to all
the other software engineering processes for use in
determining how to improve them. Discussions on these
topics are found in [McC93] and IEEE Std. 1012.

3. BREAKDOWN RATIONALE

One breakdown of topics is provided for this area. The
rationale for that breakdown is largely stated in the KA
introduction. This has been developed through an
evolutionary process as the various rewrites and review
cycles took place.
The original name of the topic, as it came out of the first
meeting of the Industrial Review Board, was “Software
Quality Analysis, and it had resulted from a fusion of

• Software Quality Assurance
• Verification and Validation
• Dependability and Quality
• The jump-start document (produced by the same

authors as this current KA version) suggested
three breakdowns . They were based on

• Criteria for Quality of Software (Basic General
Criteria, Examples of Implicit Requirements,
Special Situations with Additional Quality
Criteria)

• Maintaining and Improving Quality in Software
(Process or Project Quality, Product Quality,
Techniques for Effective V&V)

• Verification and Validation Across the Software
Life Cycle (Initial Project V&V Management,
Software Requirements V&V, Software Design
V&V, Coding V&V, Testing Phase)

It soon became clear that the topic was intended to
transcend life cycle divisions, and that the third suggested
breakdown could be covered by references to the KAs
covering stages of the life cycle. The first two breakdowns
did not really have major overlaps, but each dealt with
topics that related to quality, so they were merged into a
single breakdown.
An attempt to define the title “Software Quality Analysis”
was included in early versions, and it distinguished Quality
Process and Quality Product. The Product portion dwelt in

© IEEE – Trial Version 1.00 – May 2001 11–13

some detail on views of quality characteristics. The Process
section included SQA and V&V and some management-
oriented considerations.
Later it was determined that the management portions were
covered well elsewhere in the SWEBOK, and that the
purpose of this KA was really Quality Product. Other KAs
were describing the process, including quality concerns, in
their descriptions. Nevertheless, there was a place for the
processes (SQA and V&V) whose major concern was
quality, as this would pull together fragmented discussions
in the life cycle KAs and emphasize that these processes
were in principle the same over all stages.
Since the ISO 9126 characteristics are well set out in the
standard, and there are other views of quality characteristics
as well, the detailed examination of them that appeared in
earlier versions has also been reduced and dealt with

through references. This was suggested by reviewers and
by space considerations.
In summary, the breakdown is a product of the original
concept of the editorial team; the suggestions of the
Industrial Advisory Board; the material developed by other
KA authors; and the opinions voiced by dozens of
individuals, representing different points of view, who have
reviewed this KA. During the process, the word “Analysis”
was dropped from the KA title, since it was causing
confusion as to the purpose of the KA by implying to some
readers a scholarly area, rather than an area of concern to
the practitioner.
It is intended that the KA as a whole and its breakdown of
the topic will now evolve based on experience by users,
reflecting its usefulness in fulfilling the multiple objectives
of the SWEBOK.

4. MATRIX OF TOPICS VS. REFERENCE MATERIAL

Software Quality Concepts

[B
oe

78
]

[D
]

[F
en

97
]

[K
ia

95
]

[L
ap

91
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
]

[W
al

96
]

[W
ei

93
]

Value of Quality X X X
Functionality X

Reliability X X X X X X X X

Efficiency X X X

Usability X X X X X X X
Maintainability X X X X X X X

Portability X X X X X

Dependability X X X X X X X X X

Other Qualities X X X X X X X

Definition & Planning
for Quality

[G
ra

92
]

[H
or

96
]

[K
az

99
]

[L
ew

92
]

[L
yu

96
]

[M
cC

93
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

Overall X X X X

SQA X X X X X X X X X
VV X X X X X X X X X

Independent V&V X X X X X X X

Hazard, threat anal. X X X X X

Risk assessment X X X X X X X
Performance analysis X X X

Techniques Requiring
Two or More People

[A
ck

97
]

[E
be

94
]

[F
re

82
]

[G
ra

92
]

[H
or

96
]

[L
ew

92
]

[M
cC

93
]

[P
f]

[P
r]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
al

89
]

[W
al

96
]

Audit X X X X X

Inspection X X X X X X X X X X X X X
Review X X X X X X X X X

Walkthrough X X X X X X X X

11–14 © IEEE – Trial Version 1.00 – May 2001

Support to Other
Techniques

[B
ei

90
]

[C
on

86
]

[F
ri9

5]

[H
et

84
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
]

[F
ri9

5]

[W
al

89
]

[W
al

96
]

Change Impact Anal. X X X X

Checklists X X X X

Complexity Analysis X X X X X
Coverage Analysis X X X

Consistency Analysis X X X

Criticality Analysis X X X X

Hazard Analysis X X X X X
Sensitivity Analysis X X

Slicing X X X

Test documents X X X X X X

Tool evaluation X X X
Traceability Analysis X X X X X X

Threat Analysis X X X X X

Testing Special to SQA
or V&V

[F
ri9

5]

[L
ev

95
]

[L
yu

96
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[V
oa

99
]

[W
ak

99
]

[W
al

89
]

Conformance Test. X X
Configuration Test. X

Certification Testing X X X X X X X

Reliability Testing X X X X X

Safety Testing X X X X
Security Testing X

Statistical Testing X X X X X X

Usability Testing X X

Test Monitoring X
Test Witnessing X

Defect Finding
Techniques

[B
ei

90
]

[F
en

95
]

[F
ri9

5]

H
et

ze
l

[H
or

96
]

[I
pp

95
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
al

89
]

Algorithm Analysis X X X X X
Boundary Value Anal. X X X X X X

Change Impact Anal. X X X X X X

Checklists X X X

Consistency Analysis X X
Control Flow Analysis X X X X X X X X

Database Analysis X X X X X X X

Data Flow Analysis X X X X X X X X X

Distrib. Arch. Assess. X
Evaluation of Docts.:
Concept, Reqmts.

 X X X X X X

© IEEE – Trial Version 1.00 – May 2001 11–15

Defect Finding
Techniques

[B
ei

90
]

[F
en

95
]

[F
ri9

5]

H
et

ze
l

[H
or

96
]

[I
pp

95
]

[L
ev

95
]

[L
ew

92
]

[L
yu

96
]

[M
]

[M
us

98
]

[P
f]

[P
r]

[R
ak

97
]

[R
ub

94
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
al

89
]

Evaluation of Docts.:
Design, Code, Test

 X X X X X

Evaluation of Doc.:
User, Installation

 X X X X X

Event Tree Analysis X X

Fault Tree Analysis X X X X X

Graphical Analysis X X X X

Hazard Analysis X X X X X X X
Interface Analysis X X X X X X X

Formal Proofs X X X X X

Mutation Analysis X X X X

Perform. Monitoring X X
Prototyping X X X X X

Reading X X

Regression Analysis X X X X X X
Simulation X X

Sizing & Timing Anal. X X X X X X

Threat Analysis X X X

Measurement in
Software Quality

Analysis [B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

95
]

[F
en

97
]

[F
ri9

5]

[G
ra

92
]

[H
et

84
]

[H
or

96
]

[J
on

96
]

[K
an

94
]

[L
ew

92
]

[L
yu

96
]

[M
us

89
]

[M
us

98
]

[P
en

92
]

[P
f]

[P
r]

[M
cC

93
]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
ei

93
]

[Z
el

98
]

Benchmarks, profiles, etc. X X X X X
Company Measures
Progs.

 X X X X X X

Costing X X X X X X X X X X X X
Customer satisfaction X X X
Data Collection process X X X X X X
Debugging X X X X X X
Defect Analysis X X X X X X X X X X X X X X
Defect Classif. and Descr. X X X X X X X X X X X X
Defect Features X X X X X X X X
Example of applied GQM X X
Experimentation: X X X X X X
Framework X X
GQM X X X X X X
Methods X X X X X X X
Measures X X X X X X X X X X X X
Models X X X X
Prediction X X X X X
Prod. features: O/O Metr. X
Prod. Features: Structure X X X X X X
Product features: Size X X X X X

11–16 © IEEE – Trial Version 1.00 – May 2001

Measurement in
Software Quality

Analysis [B
as

84
]

[B
ei

90
]

[C
on

86
]

[C
hi

96
]

[F
en

95
]

[F
en

97
]

[F
ri9

5]

[G
ra

92
]

[H
et

84
]

[H
or

96
]

[J
on

96
]

[K
an

94
]

[L
ew

92
]

[L
yu

96
]

[M
us

89
]

[M
us

98
]

[P
en

92
]

[P
f]

[P
r]

[M
cC

93
]

[R
ak

97
]

[S
ch

98
]

[S
]

[W
ak

99
]

[W
ei

93
]

[Z
el

98
]

Quality Attributes X X X X
Quality Character. Meas. X X X X
Reliab. Models & Meas. X X X X X X X X
Scales X X X X
SQA & V&V reports * X X X X
Statistical tests X X X X X X
Statistical Analysis &
measurement

 X X X X X X X X X

Test coverage X X
Theory X X X X
Trend analysis X
When to stop testing* X X X

Standards
Quality

Requirements &
planning

Reviews/
Audits

SQA/V&V
planning

Safety/security
analysis, tests

Documentation of
quality analysis Measurement

ISO 9000 X X X X
ISO 9126 X
IEC 61508 X X X
ISO/IEC 14598 X X X
ISO/IEC 15026 X
ISO FDIS 15408 X X
FIPS 140-1 X X
IEEE 730 X X X
IEEE 1008 X
IEEE 1012 X X X X
IEEE 1028 X
IEEE 1228 X
IEEE 829 X
IEEE 982.1,.2 X
IEEE 1044 X
IEEE 1061 X

5. RECOMMENDED REFERENCES FOR SOFTWARE
QUALITY

5.1. Basic SWEBOK References

Dorfman, M., and R.H. Thayer, Software Engineering.
IEEE Computer Society Press, 1997. [D]
Moore, J.W., Software Engineering Standards: A User’s
Road Map. IEEE Computer Society Press, 1998. [M]
Pfleeger, S.L., Software Engineering – Theory and
Practice. Prentice Hall, 1998. [Pf]

Pressman, R.S., Software Engineering: A Practitioner’s
Approach (4th edition). McGraw-Hill, 1997. [Pr]
Sommerville, I., Software Engineering (5th edition).
Addison-Wesley, 1996. [S]

5.2. Software Quality KA References

Ackerman, Frank A., “Software Inspections and the Cost
Effective Production of Reliable Software,” in [D] pp. 235-
255. [Ack97]
Basili, Victor R. and David M. Weiss, A Methodology for
Collecting Valid Software Engineering Data, IEEE

© IEEE – Trial Version 1.00 – May 2001 11–17

Transactions on Software Engineering, pp. 728-738, Vol.
SE-10, no. 6, November 1984. [Bas84]
Beizer, Boris, Software Testing Techniques, International
Thomson Press, 1990. [Bei90]
Boehm, B.W. et al., Characteristics of Software Quality”,
TRW series on Software Technologies, Vol. 1, North
Holland, 1978. [Boe78]
Chilllarege, Ram, Chap. 9, pp359-400, in [Lyu96]. [Chi96]
Conte, S.D., et al, Software Engineering Metrics and
Models, The Benjamin / Cummings Publishing Company,
Inc., 1986. [Con86]
Ebenau, Robert G., and Susan Strauss, Software Inspection
Process, McGraw-Hill, 1994. [Ebe94]
Fenton, Norman E., Software Metrics: A rigorous and
practical approach (2nd edition), International Thomson
Computer Press, 1995. [Fen95]
Fenton, Norman E., and Shari Lawrence Pfleeger, Software
Metrics, International Thomson Computer Press, 1997.
[Fen97]
Freedman, Daniel P., and Gerald M. Weinberg, Handbook
of Walkthroughs, Inspections, and Technical Reviews,
Little, Brown and Company, 1982. [Fre82]
Friedman, Michael A., and Jeffrey M. Voas, Software
Assessment: reliability, safety testability, John Wiley &
Sons, Inc., 1995. [Fri95]
Grady, Robert B, Practical Software Metrics for project
Management and Process Management, Prentice Hall,
Englewood Cliffs, NJ 07632, 1992. [Gra92]
Hetzel, William, The Complete Guide to Software Testing,
QED Information Sciences, Inc., 1984, pp177-197. [Het84]
Horch, John W., Practical Guide to Software Quality
Management, Artech-House Publishers, 1996. [Hor96]
Ippolito, Laura M. and Dolores R. Wallace, NISTIR 5589,
A Study on Hazard Analysis in High Integrity Software
Standards and Guidelines,@ U.S. Department. of
Commerce, Technology Administration, National Institute
of Standards and Tech., Jan 1995.
http://hissa.nist.gov/HAZARD/ [Ipp95]
Jones, Capers, Applied Software Measurement: Assuring
Productivity and Quality, McGraw-Hill, Inc., 2nd edition,
1996.; (Chapters on Mechanics of Measurement and User
Satisfaction). [Jon96]
Kan, Stephen, H., Metrics and Models in Software Quality
Engineering, Addison-Wesley Publishing Co., 1995.
[Kan94]
Kazman, R., M. Barbacci, M. Klein, S. J. Carriere, S. G.
Woods, Experience with Performing Architecture Tradeoff
Analysis, Proceedings of ICSE 21, (Los Angeles, CA),
IEEE Computer Society, May 1999, 54-63. [Kaz99]
Kiang, David, Harmonization of International Software
Standards on Integrity and Dependability, Proc. IEEE
International Software Engineering Standards Symposium,

IEEE Computer Society Press, Los Alamitos, CA, 1995,
pp. 98-104. [Kia95]
Laprie, J.C., Dependability: Basic Concepts and
Terminology in English, French, German, Italian and
Japanese, IFIP WG 10.4, Springer-Verlag, New York
1991. [Lap91]
Leveson, Nancy, SAFEWARE: System Safety and
Computers, Addison-Wesley, 1995. [Lev95]
Lewis, Robert O., Independent Verification and Validation:
A Life Cycle Engineering Process for Quality Software ,
John Wiley & Sons, Inc., 1992. [Lew92]
Lyu , Michael R., Handbook of Software Reliability
Engineering, McGraw Hill, 1996. [Lyu96]
McCall, J.A. - Factors in Software Quality - General
Electric, n77C1502, June 1977 [McC77]
McConnell, Steve C., Code Complete: a practical
handbook of software construction, Microsoft Press, 1993.
[McC93]
Musa, John D., and A. Frank Ackerman, “Quantifying
Software Validation: When to stop testing?” IEEE
Software, vol. 6, no. 3, May 1989, 19-27. [Mus89]
Musa, John, Software Reliability Engineering: More
Reliable Software, Faster Development and Testing,
McGraw Hill, 1999. [Mus98]
Peng, Wendy W. and Dolores R. Wallace, “Software Error
Analysis,” NIST SP 500-209, National Institute of
Standards and Technology, Gaithersburg, MD 20899,
December 1993.] http://hissa.nist.gov/SWERROR/.
[Pen92]
Rakitin, Steven R., Software Verification and Validation, A
Practitioner’s Guide, Artech House, Inc., 1997. [Rak97]
Rubin, Jeffrey, Handbook of Usability Testing: How to
Plan, Design, and Conduct Effective Tests, John Wiley &
Sons, 1994. [Rub94]
Schulmeyer, Gordon C., and James I. McManus, Handbook
of Software Quality Assurance, Third Edition, Prentice
Hall, NJ, 1999. [Sch98]
Voas, Jeffrey, “Certifying Software For High Assurance
Environments, “ IEEE Software, Vol. 16, no. 4, July-
August, 1999, pp. 48-54. [Voa99]
Wakid, Shukri, D. Richard Kuhn, and Dolores R. Wallace,
“Toward Credible IT Testing and Certification,” IEEE
Software, July-August 1999, 39-47. [Wak99]
Wallace, Dolores R., and Roger U. Fujii, “Software
Verification and Validation: An Overview,” IEEE
Software, Vol. 6, no. 3, May 1989, 10-17. [Wal89]

Wallace, Dolores R., Laura Ippolito, and Barbara Cuthill,
Reference Information for the Software Verification and
Validation Process,@ NIST SP 500-234, NIST,
Gaithersburg, MD 20899, April, 1996.
http://hissa.nist.gov/VV234/. [Wal96]

11–18 © IEEE – Trial Version 1.00 – May 2001

Weinberg, Gerald M., Quality Software Management, Vol
2: First-Order Measurement, Dorset House, 1993. (Ch. 8,
Measuring Cost and Value). [Wei93]
Zelkowitz, Marvin V. and Dolores R. Wallace,
Experimental Models for Validating Technology,
Computer, Vol. 31 No.5, 1998 pp.23-31. [Zel98]

© IEEE – Trial Version 1.00 – May 2001 11–19

APPENDIX A – LIST OF FURTHER READINGS

A.1 Books and Articles

Abran, A.; Robillard, P.N. , Function Points Analysis: An
Empirical Study of its Measurement Processes, in IEEE
Transactions on Software Engineering, vol. 22, 1996, pp.
895-909. [Abr96]
Bevan, N., “Quality and usability: a new framework”, in
Achieving Software Product Quality, ed. E. van
Veenendaal & J. McMullan, Uitgeverij Tutein Nolthenius,
Holland, 1997.[Bev97]
Department of Defense and US Army, Practical Software
and Systems Measurement : A Foundation for Objective
Project Management, Version 4.0b, October 2000.
Available at : www.psmsc.com [DOD00]
Garvin, D., “What Does ‘Product Quality’ Really Mean?”
Sloan Management Review, Fall 1984, pp 25-45. [Gar84]
Humphrey, Watts S., Managing the Software Process,
Addison Wesley, 1989 Chapters 8, 10, 16. [Hum89]
Hyatt, L.E. and L. Rosenberg, A Software Quality Model
and Metrics for Identifying Project Risks and Assessing
Software Quality, 8th Annual Software Technology
Conference, Utah, April 1996. [Hya96]
Ince, Darrel, ISO 9001 and Software Quality Assurance,
McGraw-Hill, 1994. [Inc94]
NASA, Formal Methods Specification and Analysis
Guidebook for the Verification of Software and Computer
Systems, Volume II: A Practitioner’s Companion, [NASA-
GB-001-97], 1997, http://eis.jpl.nasa.gov/quality/Formal_
Methods/. [NAS97]
Palmer, James D., “Traceability,” In: [Dorf], pp. 266-276.
[Pal97]
Rosenberg, Linda, Applying and Interpreting Object-
Oriented Metrics, Software Tech. Conf. 1998,
http://satc.gsfc.nasa.gov/support/index.html. [Ros98]
Vincenti, W.G., What Engineers Know and How They
Know It – Analytical Studies form Aeronautical History.
Baltimore and London: John Hopkins, 1990. [Vin90]

A.2 Relevant Standards

FIPS 140-1, 1994, Security Requirements for
Cryptographic Modules
IEC 61508 Functional Safety - Safety -related Systems
Parts 1,2,3
IEEE 610.12-1990, Standard Glossary of Software
Engineering Terminology
IEEE 730-1998 Software Quality Assurance Plans
IEEE 829 -1998 Software Test Documentation
IEEE Std 982.1 and 982.2 Standard Dictionary of Measures
to Produce Reliable Software

IEEE 1008-1987 Software Unit Test
IEEE 1012-1998 Software Verification and Validation
IEEE 1028 -1997 Software Reviews
IEEE 1044 -1993 Standard Classification for Software
Anomalies
IEEE Std 1061-1992 Standard for A Software Quality
Metrics Methodology
IEEE Std 1228-1994 Software Safety Plans
ISO 8402-1986 Quality - Vocabulary
ISO 9000-1994 Quality Management and Quality
Assurance Standards
ISO 9001-1994 Quality Systems
ISO/IEC 9126-1999: Software Product Quality
ISO 12207 Software Life Cycle Processes 1995
ISO/IEC 12119 Information technology - Software package
- Quality requirements and test
ISO/IEC 14598-1998: Software Product Evaluation
ISO/IEC 15026:1998, Information technology -- System
and software integrity levels.
ISO/IEC 25939: Information Technology – Software
Measurement Process, International Organization for
Standardization and the International Electrotechnical
Commission, 2000. Available at www.info.uqam.ca/
Labo_Recherche/Lrgl/sc7/private_files/07n2410.pdf
The Common Criteria for Information Technology Security
Evaluation (CC) VERSION 2.0 / ISO FDIS 15408.

