
1 
 

Software Development Life Cycle 
https://www.tutorialspoint.com/sdlc/index.htm 

 

SDLC - Overview 
Software Development Life Cycle (SDLC) is a process used by the software industry to 
design, develop and test high quality software. The SDLC aims to produce a high-quality 
software that meets or exceeds customer expectations, reaches completion within times 
and cost estimates. 

• SDLC is the acronym of Software Development Life Cycle. 

• It is also called as Software Development Process. 

• SDLC is a framework defining tasks performed at each step in the software development 
process. 

• ISO/IEC 12207 is an international standard for software life-cycle processes. It aims to be the 
standard that defines all the tasks required for developing and maintaining software. 

What is SDLC? 
SDLC is a process followed for a software project, within a software organization. It 
consists of a detailed plan describing how to develop, maintain, replace and alter or 
enhance specific software. The life cycle defines a methodology for improving the quality 
of software and the overall development process. 

The following figure is a graphical representation of the various stages of a typical SDLC. 

https://www.tutorialspoint.com/sdlc/index.htm


2 
 

 
A typical Software Development Life Cycle consists of the following stages − 

Stage 1: Planning and Requirement Analysis 

Requirement analysis is the most important and fundamental stage in SDLC. It is 
performed by the senior members of the team with inputs from the customer, the sales 
department, market surveys and domain experts in the industry. This information is then 
used to plan the basic project approach and to conduct product feasibility study in the 
economical, operational and technical areas. 

Planning for the quality assurance requirements and identification of the risks associated 
with the project is also done in the planning stage. The outcome of the technical feasibility 
study is to define the various technical approaches that can be followed to implement 
the project successfully with minimum risks. 

Stage 2: Defining Requirements 

Once the requirement analysis is done the next step is to clearly define and document 
the product requirements and get them approved from the customer or the market 
analysts. This is done through an SRS (Software Requirement 
Specification) document which consists of all the product requirements to be designed 
and developed during the project life cycle. 



3 
 

Stage 3: Designing the Product Architecture 

SRS is the reference for product architects to come out with the best architecture for the 
product to be developed. Based on the requirements specified in SRS, usually more than 
one design approach for the product architecture is proposed and documented in a DDS 
- Design Document Specification. 

This DDS is reviewed by all the important stakeholders and based on various parameters 
as risk assessment, product robustness, design modularity, budget and time constraints, 
the best design approach is selected for the product. 

A design approach clearly defines all the architectural modules of the product along with 
its communication and data flow representation with the external and third party modules 
(if any). The internal design of all the modules of the proposed architecture should be 
clearly defined with the minutest of the details in DDS. 

Stage 4: Building or Developing the Product 

In this stage of SDLC the actual development starts and the product is built. The 
programming code is generated as per DDS during this stage. If the design is performed 
in a detailed and organized manner, code generation can be accomplished without much 
hassle. 

Developers must follow the coding guidelines defined by their organization and 
programming tools like compilers, interpreters, debuggers, etc. are used to generate the 
code. Different high level programming languages such as C, C++, Pascal, Java and 
PHP are used for coding. The programming language is chosen with respect to the type 
of software being developed. 

Stage 5: Testing the Product 

This stage is usually a subset of all the stages as in the modern SDLC models, the testing 
activities are mostly involved in all the stages of SDLC. However, this stage refers to the 
testing only stage of the product where product defects are reported, tracked, fixed and 
retested, until the product reaches the quality standards defined in the SRS. 

Stage 6: Deployment in the Market and Maintenance 

Once the product is tested and ready to be deployed it is released formally in the 
appropriate market. Sometimes product deployment happens in stages as per the 
business strategy of that organization. The product may first be released in a limited 
segment and tested in the real business environment (UAT- User acceptance testing). 

Then based on the feedback, the product may be released as it is or with suggested 
enhancements in the targeting market segment. After the product is released in the 
market, its maintenance is done for the existing customer base. 



4 
 

SDLC Models 
There are various software development life cycle models defined and designed which 
are followed during the software development process. These models are also referred 
as Software Development Process Models". Each process model follows a Series of 
steps unique to its type to ensure success in the process of software development. 

Following are the most important and popular SDLC models followed in the industry − 

• Waterfall Model 
• Iterative Model 
• Spiral Model 
• V-Model 
• Big Bang Model 

Other related methodologies are Agile Model, RAD Model, Rapid Application 
Development and Prototyping Models. 

SDLC - Waterfall Model 
The Waterfall Model was the first Process Model to be introduced. It is also referred to 
as a linear-sequential life cycle model. It is very simple to understand and use. In a 
waterfall model, each phase must be completed before the next phase can begin and 
there is no overlapping in the phases. 

The Waterfall model is the earliest SDLC approach that was used for software 
development. 

The waterfall Model illustrates the software development process in a linear sequential 
flow. This means that any phase in the development process begins only if the previous 
phase is complete. In this waterfall model, the phases do not overlap. 

Waterfall Model - Design 
Waterfall approach was first SDLC Model to be used widely in Software Engineering to 
ensure success of the project. In "The Waterfall" approach, the whole process of 
software development is divided into separate phases. In this Waterfall model, typically, 
the outcome of one phase acts as the input for the next phase sequentially. 

The following illustration is a representation of the different phases of the Waterfall 
Model. 



5 
 

 
The sequential phases in Waterfall model are − 

• Requirement Gathering and analysis − All possible requirements of the system to be 
developed are captured in this phase and documented in a requirement specification 
document. 

• System Design − The requirement specifications from first phase are studied in this phase 
and the system design is prepared. This system design helps in specifying hardware and 
system requirements and helps in defining the overall system architecture. 

• Implementation − With inputs from the system design, the system is first developed in small 
programs called units, which are integrated in the next phase. Each unit is developed and 
tested for its functionality, which is referred to as Unit Testing. 

• Integration and Testing − All the units developed in the implementation phase are integrated 
into a system after testing of each unit. Post integration the entire system is tested for any 
faults and failures. 

• Deployment of system − Once the functional and non-functional testing is done; the product 
is deployed in the customer environment or released into the market. 

• Maintenance − There are some issues which come up in the client environment. To fix those 
issues, patches are released. Also to enhance the product some better versions are released. 
Maintenance is done to deliver these changes in the customer environment. 

All these phases are cascaded to each other in which progress is seen as flowing steadily 
downwards (like a waterfall) through the phases. The next phase is started only after the 
defined set of goals are achieved for previous phase and it is signed off, so the name 
"Waterfall Model". In this model, phases do not overlap. 



6 
 

Waterfall Model - Application 
Every software developed is different and requires a suitable SDLC approach to be 
followed based on the internal and external factors. Some situations where the use of 
Waterfall model is most appropriate are − 

• Requirements are very well documented, clear and fixed. 

• Product definition is stable. 

• Technology is understood and is not dynamic. 

• There are no ambiguous requirements. 

• Ample resources with required expertise are available to support the product. 

• The project is short. 

Waterfall Model - Advantages 
The advantages of waterfall development are that it allows for departmentalization and 
control. A schedule can be set with deadlines for each stage of development and a 
product can proceed through the development process model phases one by one. 

Development moves from concept, through design, implementation, testing, installation, 
troubleshooting, and ends up at operation and maintenance. Each phase of development 
proceeds in strict order. 

Some of the major advantages of the Waterfall Model are as follows − 
• Simple and easy to understand and use 

• Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a 
review process. 

• Phases are processed and completed one at a time. 

• Works well for smaller projects where requirements are very well understood. 

• Clearly defined stages. 

• Well understood milestones. 

• Easy to arrange tasks. 

• Process and results are well documented. 

Waterfall Model - Disadvantages 
The disadvantage of waterfall development is that it does not allow much reflection or 
revision. Once an application is in the testing stage, it is very difficult to go back and 
change something that was not well-documented or thought upon in the concept stage. 

The major disadvantages of the Waterfall Model are as follows − 



7 
 

• No working software is produced until late during the life cycle. 

• High amounts of risk and uncertainty. 

• Not a good model for complex and object-oriented projects. 

• Poor model for long and ongoing projects. 

• Not suitable for the projects where requirements are at a moderate to high risk of changing. 
So, risk and uncertainty is high with this process model. 

• It is difficult to measure progress within stages. 

• Cannot accommodate changing requirements. 

• Adjusting scope during the life cycle can end a project. 

• Integration is done as a "big-bang. at the very end, which doesn't allow identifying any 
technological or business bottleneck or challenges early. 

SDLC - Iterative Model 
In the Iterative model, iterative process starts with a simple implementation of a small 
set of the software requirements and iteratively enhances the evolving versions until the 
complete system is implemented and ready to be deployed. 

An iterative life cycle model does not attempt to start with a full specification of 
requirements. Instead, development begins by specifying and implementing just part of 
the software, which is then reviewed to identify further requirements. This process is then 
repeated, producing a new version of the software at the end of each iteration of the 
model. 

Iterative Model - Design 
Iterative process starts with a simple implementation of a subset of the software 
requirements and iteratively enhances the evolving versions until the full system is 
implemented. At each iteration, design modifications are made and new functional 
capabilities are added. The basic idea behind this method is to develop a system through 
repeated cycles (iterative) and in smaller portions at a time (incremental). 

The following illustration is a representation of the Iterative and Incremental model − 



8 
 

 
Iterative and Incremental development is a combination of both iterative design or 
iterative method and incremental build model for development. "During software 
development, more than one iteration of the software development cycle may be in 
progress at the same time." This process may be described as an "evolutionary 
acquisition" or "incremental build" approach." 

In this incremental model, the whole requirement is divided into various builds. During 
each iteration, the development module goes through the requirements, design, 
implementation and testing phases. Each subsequent release of the module adds 
function to the previous release. The process continues till the complete system is ready 
as per the requirement. 

The key to a successful use of an iterative software development lifecycle is rigorous 
validation of requirements, and verification & testing of each version of the software 
against those requirements within each cycle of the model. As the software evolves 
through successive cycles, tests must be repeated and extended to verify each version 
of the software. 

Iterative Model - Application 
Like other SDLC models, Iterative and incremental development has some specific 
applications in the software industry. This model is most often used in the following 
scenarios − 

• Requirements of the complete system are clearly defined and understood. 

• Major requirements must be defined; however, some functionalities or requested 
enhancements may evolve with time. 

• There is a time to the market constraint. 

• A new technology is being used and is being learnt by the development team while working 
on the project. 

• Resources with needed skill sets are not available and are planned to be used on contract 
basis for specific iterations. 



9 
 

• There are some high-risk features and goals which may change in the future. 

Iterative Model - Pros and Cons 
The advantage of this model is that there is a working model of the system at a very 
early stage of development, which makes it easier to find functional or design flaws. 
Finding issues at an early stage of development enables to take corrective measures in 
a limited budget. 

The disadvantage with this SDLC model is that it is applicable only to large and bulky 
software development projects. This is because it is hard to break a small software 
system into further small serviceable increments/modules. 

The advantages of the Iterative and Incremental SDLC Model are as follows − 
• Some working functionality can be developed quickly and early in the life cycle. 

• Results are obtained early and periodically. 

• Parallel development can be planned. 

• Progress can be measured. 

• Less costly to change the scope/requirements. 

• Testing and debugging during smaller iteration is easy. 

• Risks are identified and resolved during iteration; and each iteration is an easily managed 
milestone. 

• Easier to manage risk - High risk part is done first. 

• With every increment, operational product is delivered. 

• Issues, challenges and risks identified from each increment can be utilized/applied to the next 
increment. 

• Risk analysis is better. 

• It supports changing requirements. 

• Initial Operating time is less. 

• Better suited for large and mission-critical projects. 

• During the life cycle, software is produced early which facilitates customer evaluation and 
feedback. 

The disadvantages of the Iterative and Incremental SDLC Model are as follows − 
• More resources may be required. 

• Although cost of change is lesser, but it is not very suitable for changing requirements. 

• More management attention is required. 

• System architecture or design issues may arise because not all requirements are gathered in 
the beginning of the entire life cycle. 

• Defining increments may require definition of the complete system. 



10 
 

• Not suitable for smaller projects. 

• Management complexity is more. 

• End of project may not be known which is a risk. 

• Highly skilled resources are required for risk analysis. 

• Projects progress is highly dependent upon the risk analysis phase. 

SDLC - Spiral Model 
The spiral model combines the idea of iterative development with the systematic, 
controlled aspects of the waterfall model. This Spiral model is a combination of iterative 
development process model and sequential linear development model i.e. the waterfall 
model with a very high emphasis on risk analysis. It allows incremental releases of the 
product or incremental refinement through each iteration around the spiral. 

Spiral Model - Design 
The spiral model has four phases. A software project repeatedly passes through these 
phases in iterations called Spirals. 

Identification 

This phase starts with gathering the business requirements in the baseline spiral. In the 
subsequent spirals as the product matures, identification of system requirements, 
subsystem requirements and unit requirements are all done in this phase. 

This phase also includes understanding the system requirements by continuous 
communication between the customer and the system analyst. At the end of the spiral, 
the product is deployed in the identified market. 

Design 

The Design phase starts with the conceptual design in the baseline spiral and involves 
architectural design, logical design of modules, physical product design and the final 
design in the subsequent spirals. 

Construct or Build 

The Construct phase refers to production of the actual software product at every spiral. 
In the baseline spiral, when the product is just thought of and the design is being 
developed a POC (Proof of Concept) is developed in this phase to get customer 
feedback. 

Then in the subsequent spirals with higher clarity on requirements and design details a 
working model of the software called build is produced with a version number. These 
builds are sent to the customer for feedback. 



11 
 

Evaluation and Risk Analysis 

Risk Analysis includes identifying, estimating and monitoring the technical feasibility and 
management risks, such as schedule slippage and cost overrun. After testing the build, 
at the end of first iteration, the customer evaluates the software and provides feedback. 

The following illustration is a representation of the Spiral Model, listing the activities in 
each phase. 

 
Based on the customer evaluation, the software development process enters the next 
iteration and subsequently follows the linear approach to implement the feedback 
suggested by the customer. The process of iterations along the spiral continues 
throughout the life of the software. 

Spiral Model Application 
The Spiral Model is widely used in the software industry as it is in sync with the natural 
development process of any product, i.e. learning with maturity which involves minimum 
risk for the customer as well as the development firms. 

The following pointers explain the typical uses of a Spiral Model − 
• When there is a budget constraint and risk evaluation is important. 



12 
 

• For medium to high-risk projects. 

• Long-term project commitment because of potential changes to economic priorities as the 
requirements change with time. 

• Customer is not sure of their requirements which is usually the case. 

• Requirements are complex and need evaluation to get clarity. 

• New product line which should be released in phases to get enough customer feedback. 

• Significant changes are expected in the product during the development cycle. 

Spiral Model - Pros and Cons 
The advantage of spiral lifecycle model is that it allows elements of the product to be 
added in, when they become available or known. This assures that there is no conflict 
with previous requirements and design. 

This method is consistent with approaches that have multiple software builds and 
releases which allows making an orderly transition to a maintenance activity. Another 
positive aspect of this method is that the spiral model forces an early user involvement 
in the system development effort. 

On the other side, it takes a very strict management to complete such products and there 
is a risk of running the spiral in an indefinite loop. So, the discipline of change and the 
extent of taking change requests is very important to develop and deploy the product 
successfully. 

The advantages of the Spiral SDLC Model are as follows − 
• Changing requirements can be accommodated. 

• Allows extensive use of prototypes. 

• Requirements can be captured more accurately. 

• Users see the system early. 

• Development can be divided into smaller parts and the risky parts can be developed earlier 
which helps in better risk management. 

The disadvantages of the Spiral SDLC Model are as follows − 
• Management is more complex. 

• End of the project may not be known early. 

• Not suitable for small or low risk projects and could be expensive for small projects. 

• Process is complex 

• Spiral may go on indefinitely. 

• Large number of intermediate stages requires excessive documentation. 

SDLC - V-Model 



13 
 

The V-model is an SDLC model where execution of processes happens in a sequential 
manner in a V-shape. It is also known as Verification and Validation model. 
The V-Model is an extension of the waterfall model and is based on the association of a 
testing phase for each corresponding development stage. This means that for every 
single phase in the development cycle, there is a directly associated testing phase. This 
is a highly-disciplined model and the next phase starts only after completion of the 
previous phase. 

V-Model - Design 
Under the V-Model, the corresponding testing phase of the development phase is 
planned in parallel. So, there are Verification phases on one side of the ‘V’ and Validation 
phases on the other side. The Coding Phase joins the two sides of the V-Model. 

The following illustration depicts the different phases in a V-Model of the SDLC. 

 

V-Model - Verification Phases 



14 
 

There are several Verification phases in the V-Model, each of these are explained in 
detail below. 

Business Requirement Analysis 

This is the first phase in the development cycle where the product requirements are 
understood from the customer’s perspective. This phase involves detailed 
communication with the customer to understand his expectations and exact requirement. 
This is a very important activity and needs to be managed well, as most of the customers 
are not sure about what exactly they need. The acceptance test design planning is 
done at this stage as business requirements can be used as an input for acceptance 
testing. 

System Design 

Once you have the clear and detailed product requirements, it is time to design the 
complete system. The system design will have the understanding and detailing the 
complete hardware and communication setup for the product under development. The 
system test plan is developed based on the system design. Doing this at an earlier stage 
leaves more time for the actual test execution later. 

Architectural Design 

Architectural specifications are understood and designed in this phase. Usually more 
than one technical approach is proposed and based on the technical and financial 
feasibility the final decision is taken. The system design is broken down further into 
modules taking up different functionality. This is also referred to as High Level Design 
(HLD). 
The data transfer and communication between the internal modules and with the outside 
world (other systems) is clearly understood and defined in this stage. With this 
information, integration tests can be designed and documented during this stage. 

Module Design 

In this phase, the detailed internal design for all the system modules is specified, referred 
to as Low Level Design (LLD). It is important that the design is compatible with the 
other modules in the system architecture and the other external systems. The unit tests 
are an essential part of any development process and helps eliminate the maximum 
faults and errors at a very early stage. These unit tests can be designed at this stage 
based on the internal module designs. 

Coding Phase 



15 
 

The actual coding of the system modules designed in the design phase is taken up in 
the Coding phase. The best suitable programming language is decided based on the 
system and architectural requirements. 

The coding is performed based on the coding guidelines and standards. The code goes 
through numerous code reviews and is optimized for best performance before the final 
build is checked into the repository. 

Validation Phases 
The different Validation Phases in a V-Model are explained in detail below. 

Unit Testing 

Unit tests designed in the module design phase are executed on the code during this 
validation phase. Unit testing is the testing at code level and helps eliminate bugs at an 
early stage, though all defects cannot be uncovered by unit testing. 

Integration Testing 

Integration testing is associated with the architectural design phase. Integration tests are 
performed to test the coexistence and communication of the internal modules within the 
system. 

System Testing 

System testing is directly associated with the system design phase. System tests check 
the entire system functionality and the communication of the system under development 
with external systems. Most of the software and hardware compatibility issues can be 
uncovered during this system test execution. 

Acceptance Testing 

Acceptance testing is associated with the business requirement analysis phase and 
involves testing the product in user environment. Acceptance tests uncover the 
compatibility issues with the other systems available in the user environment. It also 
discovers the non-functional issues such as load and performance defects in the actual 
user environment. 

V- Model ─ Application 
V- Model application is almost the same as the waterfall model, as both the models are 
of sequential type. Requirements have to be very clear before the project starts, because 
it is usually expensive to go back and make changes. This model is used in the medical 
development field, as it is strictly a disciplined domain. 



16 
 

The following pointers are some of the most suitable scenarios to use the V-Model 
application. 

• Requirements are well defined, clearly documented and fixed. 

• Product definition is stable. 

• Technology is not dynamic and is well understood by the project team. 

• There are no ambiguous or undefined requirements. 

• The project is short. 

V-Model - Pros and Cons 
The advantage of the V-Model method is that it is very easy to understand and apply. 
The simplicity of this model also makes it easier to manage. The disadvantage is that 
the model is not flexible to changes and just in case there is a requirement change, which 
is very common in today’s dynamic world, it becomes very expensive to make the 
change. 

The advantages of the V-Model method are as follows − 
• This is a highly-disciplined model and Phases are completed one at a time. 

• Works well for smaller projects where requirements are very well understood. 

• Simple and easy to understand and use. 

• Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a 
review process. 

The disadvantages of the V-Model method are as follows − 
• High risk and uncertainty. 

• Not a good model for complex and object-oriented projects. 

• Poor model for long and ongoing projects. 

• Not suitable for the projects where requirements are at a moderate to high risk of changing. 

• Once an application is in the testing stage, it is difficult to go back and change a functionality. 

• No working software is produced until late during the life cycle. 

SDLC - Big Bang Model 
The Big Bang model is an SDLC model where we do not follow any specific process. 
The development just starts with the required money and efforts as the input, and the 
output is the software developed which may or may not be as per customer requirement. 
This Big Bang Model does not follow a process/procedure and there is a very little 
planning required. Even the customer is not sure about what exactly he wants and the 
requirements are implemented on the fly without much analysis. 

Usually this model is followed for small projects where the development teams are very 
small. 



17 
 

Big Bang Model ─ Design and Application 
The Big Bang Model comprises of focusing all the possible resources in the software 
development and coding, with very little or no planning. The requirements are 
understood and implemented as they come. Any changes required may or may not need 
to revamp the complete software. 

This model is ideal for small projects with one or two developers working together and is 
also useful for academic or practice projects. It is an ideal model for the product where 
requirements are not well understood and the final release date is not given. 

Big Bang Model - Pros and Cons 
The advantage of this Big Bang Model is that it is very simple and requires very little or 
no planning. Easy to manage and no formal procedure are required. 

However, the Big Bang Model is a very high risk model and changes in the requirements 
or misunderstood requirements may even lead to complete reversal or scraping of the 
project. It is ideal for repetitive or small projects with minimum risks. 

The advantages of the Big Bang Model are as follows − 
• This is a very simple model 

• Little or no planning required 

• Easy to manage 

• Very few resources required 

• Gives flexibility to developers 

• It is a good learning aid for new comers or students. 

The disadvantages of the Big Bang Model are as follows − 
• Very High risk and uncertainty. 

• Not a good model for complex and object-oriented projects. 

• Poor model for long and ongoing projects. 

• Can turn out to be very expensive if requirements are misunderstood. 

SDLC - Agile Model 
Agile SDLC model is a combination of iterative and incremental process models with 
focus on process adaptability and customer satisfaction by rapid delivery of working 
software product. Agile Methods break the product into small incremental builds. These 
builds are provided in iterations. Each iteration typically lasts from about one to three 
weeks. Every iteration involves cross functional teams working simultaneously on 
various areas like − 

• Planning 



18 
 

• Requirements Analysis 
• Design 
• Coding 
• Unit Testing and 
• Acceptance Testing. 

At the end of the iteration, a working product is displayed to the customer and important 
stakeholders. 

What is Agile? 
Agile model believes that every project needs to be handled differently and the existing 
methods need to be tailored to best suit the project requirements. In Agile, the tasks are 
divided to time boxes (small time frames) to deliver specific features for a release. 

Iterative approach is taken and working software build is delivered after each iteration. 
Each build is incremental in terms of features; the final build holds all the features 
required by the customer. 

Here is a graphical illustration of the Agile Model − 

 
The Agile thought process had started early in the software development and started 
becoming popular with time due to its flexibility and adaptability. 



19 
 

The most popular Agile methods include Rational Unified Process (1994), Scrum (1995), 
Crystal Clear, Extreme Programming (1996), Adaptive Software Development, Feature 
Driven Development, and Dynamic Systems Development Method (DSDM) (1995). 
These are now collectively referred to as Agile Methodologies, after the Agile Manifesto 
was published in 2001. 

Following are the Agile Manifesto principles − 
• Individuals and interactions − In Agile development, self-organization and motivation are 

important, as are interactions like co-location and pair programming. 

• Working software − Demo working software is considered the best means of communication 
with the customers to understand their requirements, instead of just depending on 
documentation. 

• Customer collaboration − As the requirements cannot be gathered completely in the 
beginning of the project due to various factors, continuous customer interaction is very 
important to get proper product requirements. 

• Responding to change − Agile Development is focused on quick responses to change and 
continuous development. 

Agile Vs Traditional SDLC Models 
Agile is based on the adaptive software development methods, whereas the 
traditional SDLC models like the waterfall model is based on a predictive approach. 
Predictive teams in the traditional SDLC models usually work with detailed planning and 
have a complete forecast of the exact tasks and features to be delivered in the next few 
months or during the product life cycle. 

Predictive methods entirely depend on the requirement analysis and planning done 
in the beginning of cycle. Any changes to be incorporated go through a strict change 
control management and prioritization. 

Agile uses an adaptive approach where there is no detailed planning and there is clarity 
on future tasks only in respect of what features need to be developed. There is feature 
driven development and the team adapts to the changing product requirements 
dynamically. The product is tested very frequently, through the release iterations, 
minimizing the risk of any major failures in future. 

Customer Interaction is the backbone of this Agile methodology, and open 
communication with minimum documentation are the typical features of Agile 
development environment. The agile teams work in close collaboration with each other 
and are most often located in the same geographical location. 

Agile Model - Pros and Cons 
Agile methods are being widely accepted in the software world recently. However, this 
method may not always be suitable for all products. Here are some pros and cons of the 
Agile model. 



20 
 

The advantages of the Agile Model are as follows − 
• Is a very realistic approach to software development. 

• Promotes teamwork and cross training. 

• Functionality can be developed rapidly and demonstrated. 

• Resource requirements are minimum. 

• Suitable for fixed or changing requirements 

• Delivers early partial working solutions. 

• Good model for environments that change steadily. 

• Minimal rules, documentation easily employed. 

• Enables concurrent development and delivery within an overall planned context. 

• Little or no planning required. 

• Easy to manage. 

• Gives flexibility to developers. 

The disadvantages of the Agile Model are as follows − 
• Not suitable for handling complex dependencies. 

• More risk of sustainability, maintainability and extensibility. 

• An overall plan, an agile leader and agile PM practice is a must without which it will not work. 

• Strict delivery management dictates the scope, functionality to be delivered, and adjustments 
to meet the deadlines. 

• Depends heavily on customer interaction, so if customer is not clear, team can be driven in 
the wrong direction. 

• There is a very high individual dependency, since there is minimum documentation generated. 

• Transfer of technology to new team members may be quite challenging due to lack of 
documentation. 

SDLC - RAD Model 
The RAD (Rapid Application Development) model is based on prototyping and 
iterative development with no specific planning involved. The process of writing the 
software itself involves the planning required for developing the product. 

Rapid Application Development focuses on gathering customer requirements through 
workshops or focus groups, early testing of the prototypes by the customer using iterative 
concept, reuse of the existing prototypes (components), continuous integration and rapid 
delivery. 

What is RAD? 



21 
 

Rapid application development is a software development methodology that uses 
minimal planning in favor of rapid prototyping. A prototype is a working model that is 
functionally equivalent to a component of the product. 

In the RAD model, the functional modules are developed in parallel as prototypes and 
are integrated to make the complete product for faster product delivery. Since there is 
no detailed preplanning, it makes it easier to incorporate the changes within the 
development process. 

RAD projects follow iterative and incremental model and have small teams comprising 
of developers, domain experts, customer representatives and other IT resources working 
progressively on their component or prototype. 

The most important aspect for this model to be successful is to make sure that the 
prototypes developed are reusable. 

RAD Model Design 
RAD model distributes the analysis, design, build and test phases into a series of short, 
iterative development cycles. 

Following are the various phases of the RAD Model − 

Business Modeling 

The business model for the product under development is designed in terms of flow of 
information and the distribution of information between various business channels. A 
complete business analysis is performed to find the vital information for business, how it 
can be obtained, how and when is the information processed and what are the factors 
driving successful flow of information. 

Data Modeling 

The information gathered in the Business Modeling phase is reviewed and analyzed to 
form sets of data objects vital for the business. The attributes of all data sets is identified 
and defined. The relation between these data objects are established and defined in 
detail in relevance to the business model. 

Process Modeling 

The data object sets defined in the Data Modeling phase are converted to establish the 
business information flow needed to achieve specific business objectives as per the 
business model. The process model for any changes or enhancements to the data object 
sets is defined in this phase. Process descriptions for adding, deleting, retrieving or 
modifying a data object are given. 

Application Generation 



22 
 

The actual system is built and coding is done by using automation tools to convert 
process and data models into actual prototypes. 

Testing and Turnover 

The overall testing time is reduced in the RAD model as the prototypes are independently 
tested during every iteration. However, the data flow and the interfaces between all the 
components need to be thoroughly tested with complete test coverage. Since most of 
the programming components have already been tested, it reduces the risk of any major 
issues. 

The following illustration describes the RAD Model in detail. 

 

RAD Model Vs Traditional SDLC 
The traditional SDLC follows a rigid process models with high emphasis on requirement 
analysis and gathering before the coding starts. It puts pressure on the customer to sign 
off the requirements before the project starts and the customer doesn’t get the feel of 
the product as there is no working build available for a long time. 

The customer may need some changes after he gets to see the software. However, the 
change process is quite rigid and it may not be feasible to incorporate major changes in 
the product in the traditional SDLC. 

The RAD model focuses on iterative and incremental delivery of working models to the 
customer. This results in rapid delivery to the customer and customer involvement during 



23 
 

the complete development cycle of product reducing the risk of non-conformance with 
the actual user requirements. 

RAD Model - Application 
RAD model can be applied successfully to the projects in which clear modularization is 
possible. If the project cannot be broken into modules, RAD may fail. 

The following pointers describe the typical scenarios where RAD can be used − 
• RAD should be used only when a system can be modularized to be delivered in an incremental 

manner. 

• It should be used if there is a high availability of designers for modeling. 

• It should be used only if the budget permits use of automated code generating tools. 

• RAD SDLC model should be chosen only if domain experts are available with relevant 
business knowledge. 

• Should be used where the requirements change during the project and working prototypes 
are to be presented to customer in small iterations of 2-3 months. 

RAD Model - Pros and Cons 
RAD model enables rapid delivery as it reduces the overall development time due to the 
reusability of the components and parallel development. RAD works well only if high 
skilled engineers are available and the customer is also committed to achieve the 
targeted prototype in the given time frame. If there is commitment lacking on either side 
the model may fail. 

The advantages of the RAD Model are as follows − 
• Changing requirements can be accommodated. 

• Progress can be measured. 

• Iteration time can be short with use of powerful RAD tools. 

• Productivity with fewer people in a short time. 

• Reduced development time. 

• Increases reusability of components. 

• Quick initial reviews occur. 

• Encourages customer feedback. 

• Integration from very beginning solves a lot of integration issues. 

The disadvantages of the RAD Model are as follows − 
• Dependency on technically strong team members for identifying business requirements. 

• Only system that can be modularized can be built using RAD. 



24 
 

• Requires highly skilled developers/designers. 

• High dependency on modeling skills. 

• Inapplicable to cheaper projects as cost of modeling and automated code generation is very 
high. 

• Management complexity is more. 

• Suitable for systems that are component based and scalable. 

• Requires user involvement throughout the life cycle. 

• Suitable for project requiring shorter development times. 

SDLC - Software Prototype Model 
The Software Prototyping refers to building software application prototypes which 
displays the functionality of the product under development, but may not actually hold 
the exact logic of the original software. 

Software prototyping is becoming very popular as a software development model, as it 
enables to understand customer requirements at an early stage of development. It helps 
get valuable feedback from the customer and helps software designers and developers 
understand about what exactly is expected from the product under development. 

What is Software Prototyping? 
Prototype is a working model of software with some limited functionality. The prototype 
does not always hold the exact logic used in the actual software application and is an 
extra effort to be considered under effort estimation. 

Prototyping is used to allow the users evaluate developer proposals and try them out 
before implementation. It also helps understand the requirements which are user specific 
and may not have been considered by the developer during product design. 

Following is a stepwise approach explained to design a software prototype. 

Basic Requirement Identification 

This step involves understanding the very basics product requirements especially in 
terms of user interface. The more intricate details of the internal design and external 
aspects like performance and security can be ignored at this stage. 

Developing the initial Prototype 

The initial Prototype is developed in this stage, where the very basic requirements are 
showcased and user interfaces are provided. These features may not exactly work in 
the same manner internally in the actual software developed. While, the workarounds 
are used to give the same look and feel to the customer in the prototype developed. 



25 
 

Review of the Prototype 

The prototype developed is then presented to the customer and the other important 
stakeholders in the project. The feedback is collected in an organized manner and used 
for further enhancements in the product under development. 

Revise and Enhance the Prototype 

The feedback and the review comments are discussed during this stage and some 
negotiations happen with the customer based on factors like – time and budget 
constraints and technical feasibility of the actual implementation. The changes accepted 
are again incorporated in the new Prototype developed and the cycle repeats until the 
customer expectations are met. 

Prototypes can have horizontal or vertical dimensions. A Horizontal prototype displays 
the user interface for the product and gives a broader view of the entire system, without 
concentrating on internal functions. A Vertical prototype on the other side is a detailed 
elaboration of a specific function or a sub system in the product. 

The purpose of both horizontal and vertical prototype is different. Horizontal prototypes 
are used to get more information on the user interface level and the business 
requirements. It can even be presented in the sales demos to get business in the market. 
Vertical prototypes are technical in nature and are used to get details of the exact 
functioning of the sub systems. For example, database requirements, interaction and 
data processing loads in a given sub system. 

Software Prototyping - Types 
There are different types of software prototypes used in the industry. Following are the 
major software prototyping types used widely − 

Throwaway/Rapid Prototyping 

Throwaway prototyping is also called as rapid or close ended prototyping. This type of 
prototyping uses very little efforts with minimum requirement analysis to build a 
prototype. Once the actual requirements are understood, the prototype is discarded and 
the actual system is developed with a much clear understanding of user requirements. 

Evolutionary Prototyping 

Evolutionary prototyping also called as breadboard prototyping is based on building 
actual functional prototypes with minimal functionality in the beginning. The prototype 
developed forms the heart of the future prototypes on top of which the entire system is 
built. By using evolutionary prototyping, the well-understood requirements are included 
in the prototype and the requirements are added as and when they are understood. 



26 
 

Incremental Prototyping 

Incremental prototyping refers to building multiple functional prototypes of the various 
sub-systems and then integrating all the available prototypes to form a complete system. 

Extreme Prototyping 

Extreme prototyping is used in the web development domain. It consists of three 
sequential phases. First, a basic prototype with all the existing pages is presented in the 
HTML format. Then the data processing is simulated using a prototype services layer. 
Finally, the services are implemented and integrated to the final prototype. This process 
is called Extreme Prototyping used to draw attention to the second phase of the process, 
where a fully functional UI is developed with very little regard to the actual services. 

Software Prototyping - Application 
Software Prototyping is most useful in development of systems having high level of user 
interactions such as online systems. Systems which need users to fill out forms or go 
through various screens before data is processed can use prototyping very effectively to 
give the exact look and feel even before the actual software is developed. 

Software that involves too much of data processing and most of the functionality is 
internal with very little user interface does not usually benefit from prototyping. Prototype 
development could be an extra overhead in such projects and may need lot of extra 
efforts. 

Software Prototyping - Pros and Cons 
Software prototyping is used in typical cases and the decision should be taken very 
carefully so that the efforts spent in building the prototype add considerable value to the 
final software developed. The model has its own pros and cons discussed as follows. 

The advantages of the Prototyping Model are as follows − 
• Increased user involvement in the product even before its implementation. 

• Since a working model of the system is displayed, the users get a better understanding of the 
system being developed. 

• Reduces time and cost as the defects can be detected much earlier. 

• Quicker user feedback is available leading to better solutions. 

• Missing functionality can be identified easily. 

• Confusing or difficult functions can be identified. 

The Disadvantages of the Prototyping Model are as follows − 
• Risk of insufficient requirement analysis owing to too much dependency on the prototype. 



27 
 

• Users may get confused in the prototypes and actual systems. 

• Practically, this methodology may increase the complexity of the system as scope of the 
system may expand beyond original plans. 

• Developers may try to reuse the existing prototypes to build the actual system, even when it 
is not technically feasible. 

• The effort invested in building prototypes may be too much if it is not monitored properly. 

 

 

 

 

 


	SDLC - Overview
	What is SDLC?
	Stage 1: Planning and Requirement Analysis
	Stage 2: Defining Requirements
	Stage 3: Designing the Product Architecture
	Stage 4: Building or Developing the Product
	Stage 5: Testing the Product
	Stage 6: Deployment in the Market and Maintenance

	SDLC Models

	SDLC - Waterfall Model
	Waterfall Model - Design
	Waterfall Model - Application
	Waterfall Model - Advantages
	Waterfall Model - Disadvantages

	SDLC - Iterative Model
	Iterative Model - Design
	Iterative Model - Application
	Iterative Model - Pros and Cons

	SDLC - Spiral Model
	Spiral Model - Design
	Identification
	Design
	Construct or Build
	Evaluation and Risk Analysis

	Spiral Model Application
	Spiral Model - Pros and Cons

	SDLC - V-Model
	V-Model - Design
	V-Model - Verification Phases
	Business Requirement Analysis
	System Design
	Architectural Design
	Module Design

	Coding Phase
	Validation Phases
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	V- Model ─ Application
	V-Model - Pros and Cons

	SDLC - Big Bang Model
	Big Bang Model ─ Design and Application
	Big Bang Model - Pros and Cons

	SDLC - Agile Model
	What is Agile?
	Agile Vs Traditional SDLC Models
	Agile Model - Pros and Cons

	SDLC - RAD Model
	What is RAD?
	RAD Model Design
	Business Modeling
	Data Modeling
	Process Modeling
	Application Generation
	Testing and Turnover

	RAD Model Vs Traditional SDLC
	RAD Model - Application
	RAD Model - Pros and Cons

	SDLC - Software Prototype Model
	What is Software Prototyping?
	Basic Requirement Identification
	Developing the initial Prototype
	Review of the Prototype
	Revise and Enhance the Prototype

	Software Prototyping - Types
	Throwaway/Rapid Prototyping
	Evolutionary Prototyping
	Incremental Prototyping
	Extreme Prototyping

	Software Prototyping - Application
	Software Prototyping - Pros and Cons


