
SWEN FL2020

Comparison of different life cycle models
Classical Waterfall Model: The Classical Waterfall model can be considered as the basic model
and all other life cycle models are based on this model. It is an ideal model. However, the
Classical Waterfall model cannot be used in practical project development, since this model does
not support any mechanism to correct the errors that are committed during any of the phases but
detected at a later phase. This problem is overcome by the Iterative Waterfall model through the
inclusion of feedback paths.

Iterative Waterfall Model: The Iterative Waterfall model is probably the most used software
development model. This model is simple to use and understand. But this model is suitable only
for well-understood problems and is not suitable for the development of very large projects and
projects that suffer from a large number of risks.

Prototyping Model: The Prototyping model is suitable for projects, which either the customer
requirements or the technical solutions are not well understood. This risks must be identified
before the project starts. This model is especially popular for the development of the user
interface part of the project.

Evolutionary Model: The Evolutionary model is suitable for large projects which can be
decomposed into a set of modules for incremental development and delivery. This model is
widely used in object-oriented development projects. This model is only used if incremental
delivery of the system is acceptable to the customer.

Spiral Model: The Spiral model is considered as a meta-model as it includes all other life cycle
models. Flexibility and risk handling are the main characteristics of this model. The spiral model
is suitable for the development of technically challenging and large software that is prone to
various risks that are difficult to anticipate at the start of the project. But this model is more
complex than the other models.

Agile Model: The Agile model was designed to incorporate change requests quickly. In this
model, requirements are decomposed into small parts that can be incrementally developed. But
the main principle of the Agile model is to deliver an increment to the customer after each Time-
box. The end date of an iteration is fixed, it can’t be extended. This agility is achieved by
removing unnecessary activities that waste time and effort.

Selection of appropriate life cycle model for a project: Selection of proper lifecycle model to
complete a project is the most important task. It can be selected by keeping the advantages and
disadvantages of various models in mind. The different issues that are analyzed before selecting
a suitable life cycle model are given below:

• Characteristics of the software to be developed: The choice of the life cycle model largely
depends on the type of the software that is being developed. For small services projects, the
agile model is favored. On the other hand, for product and embedded development, the
Iterative Waterfall model can be preferred. The evolutionary model is suitable to develop an
object-oriented project. User interface part of the project is mainly developed through
prototyping model.

• Characteristics of the development team: Team member’s skill level is an important factor to
deciding the life cycle model to use. If the development team is experienced in developing
similar software, then even an embedded software can be developed using the Iterative
Waterfall model. If the development team is entirely novice, then even a simple data processing
application may require a prototyping model.

• Risk associated with the project: If the risks are few and can be anticipated at the start of the
project, then prototyping model is useful. If the risks are difficult to determine at the beginning of
the project but are likely to increase as the development proceeds, then the spiral model is the best
model to use.

• Characteristics of the customer: If the customer is not quite familiar with computers, then the
requirements are likely to change frequently as it would be difficult to form complete, consistent
and unambiguous requirements. Thus, a prototyping model may be necessary to reduce later
change requests from the customers. Initially, the customer’s confidence is high on the
development team. During the lengthy development process, customer confidence normally drops
off as no working software is yet visible. So, the evolutionary model is useful as the customer can
experience a partially working software much earlier than whole complete software. Another
advantage of the evolutionary model is that it reduces the customer’s trauma of getting used to an
entirely new system.

	Comparison of different life cycle models

