
Javlin User Guide

Release 6.1

February 2003

Javlin User Guide

ObjectStore Release 6.1 for all platforms, February 2003

© 2003 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software
Corporation. This manual is also copyrighted and all rights are reserved. This manual may not, in whole
or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation
assumes no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Allegrix, Leadership by Design, Object Design, ObjectStore, Progress, Powered by Progress, Progress Fast
Track, Progress Profiles, Partners in Progress, Partners en Progress, Progress en Partners, Progress in
Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation or one of its subsidiaries or
affiliates in the U.S. and other countries. A Data Center of Your Very Own, Apptivity, AppsAlive,
AppServer, ASPen, ASP-in-a-Box, BPM, Cache-Forward, Empowerment Center, eXcelon, EXLN, Fathom,
Future Proof, Progress for Partners, IntelliStream, Javlin, ObjectStore Browsers, OpenEdge, POSSE,
POSSENET, Progress Dynamics, Progress Software Developers Network, RTEE, Schemadesigner,
SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery,
SmartViewer, SmartWindow, Stylus, Stylus Studio, WebClient, Who Makes Progress, XIS, XIS Lite, and
XPress are trademarks or service marks of Progress Software Corporation or one of its subsidiaries or
affiliates in the U.S. and other countries.

Any other trademarks and service marks contained herein may be the property of their respective owners.

Contents

Preface . vii

Chapter 1 Javlin Overview . 1

Javlin Architecture . 2

Javlin Integration with J2EE Application Servers 3

Basic Javlin Tasks . 4

Key Concepts . 4

Transactional Caching . 4

Javlin Caches . 5

Global and Virtual Transactions . 6

Operation and Global Contexts . 6

Access Mode . 7

Isolation Level. 8

Routing . 8

Scheduling . 9

Cache Storage. 9

Chapter 2 Declarative Configuration . 11

XML-Based Configuration File . 12

The Javlin Document Type Definition (DTD) . 12

External Entities in the Configuration File . 13

Names used by Javlin Deployment Descriptors . 14

Configuring The Cache Pool Manager . 15

XML Syntax . 15

Cache Pool Manager Descriptor Details . 15
Release 6.1 iii

Contents
Example. 16

Configuring Cache Pools . 17

XML Syntax . 17

Cache Pool Descriptor Details. 17

Example. 19

Configuring Cache Storage . 20

XML Syntax . 20

Database Descriptor Details . 21

Root Descriptor Details . 22

Object Descriptor Details . 22

Example. 24

Configuring Deployed Components . 25

XML Syntax . 25

Method Descriptor Details . 26

Example. 27

A Complete Example. 29

Chapter 3 Programmatic Configuration . 33

Setting Up Transactional Caches . 33

Creating Databases . 35

Creating and Retrieving Roots . 35

Controlling Root Object Placement. 36

Working with MVCC Caches . 37

Configuring a Cache Pool Manager for Multiple Caches 38

Restrictions on Routing to an MVCC Cache . 38

Chapter 4 Virtual Transactions . 41

Life Cycle of a Virtual Transaction . 41

Beginning a Transaction . 41

Committing a Transaction . 42

Aborting a Transaction . 42

Example of a Transaction . 43

Retrying a Transaction. 43

Classes to Use. 44
iv Javlin User Guide

Contents
TransactionTry Methods . 44

Using TransactionTryRuntimeExceptionsOnly . 45

Using TransactionTryWrappedExceptions . 45

Extending TransactionTry. 46

Programming Restrictions . 47

Use of ObjectStore Java Classes . 47

Retaining Persistent References Across Transactions. 47

Accessing Data Outside of a Transaction . 48

Thread Synchronization . 49

Tips for Optimizing Transactions . 49

Chapter 5 Routing and Scheduling . 53

Routing Transactions . 53

Initializing a Global Context . 53

Routing to a Cache Pool . 55

Routing to a Cache . 55

Routing to an MVCC Cache . 56

Routing Summary . 57

Scheduling Transactions . 58

Group Open Interval . 59

Commit If Idle. 60

Chapter 6 Configuring Javlin/JMTL . 61

Configuring Javlin/JMTL Using Ant . 61

Core Javlin/JMTL Configuration . 62

Configuring Javlin/JMTL for Level Zero Integration 64

Configuring Javlin/JMTL for Level One Integration 65

Summary of Windows Environment Settings . 66

Summary of UNIX Environment Settings. 67

Building and Deploying Applications . 68

Building and Deploying on WebLogic 6.1 or 7.0 . 69

 . 69

Chapter 7 Using the Javlin Console . 71

Starting the Javlin Console . 71
Release 6.1 v

Contents
Connecting to a Javlin Application . 72

Disabling Javlin Monitoring . 74

Overriding the Default Port Number . 74

Configuring Data Displays . 75

Data Panel . 75

Graph Panel . 80

Alerter Panel . 81

Modifying Preferences . 82

Saving and Reusing Console Settings . 83

Stopping the Console . 83

Index . 85
vi Javlin User Guide

Preface

The Javlin User Guide explains how to use Javlin and the Java Middle-Tier
Library (JMTL) for Java applications that service large numbers of client
requests. Javlin/JMTL can be used with or without application servers. This
book also explains how to use Javlin/JMTL with Enterprise Java Beans (EJB)
application servers.

How This Book is Organized
This book is organized as follows:

• Chapter 1, Javlin Overview, on page 1, provides a conceptual overview of
Javlin and JMTL.

• Chapter 2, Declarative Configuration, on page 11, describes how to use
XML-based deployment descriptors to configure Javlin.

• Chapter 3, Programmatic Configuration, on page 33, describes how to use
the Javlin API to configure Javlin.

• Chapter 4, Virtual Transactions, on page 41, shows how to use the Javlin
API to perform virtual transactions.

• Chapter 5, Routing and Scheduling, on page 53, explains how Javlin does
the following:

- Routes transactions to cache pools and caches.

- Schedules transactions to minimize transaction-processing overhead.

• Chapter 6, Configuring Javlin/JMTL, on page 61, explains how to setup
the Javlin/JMTL environment for building and deploying J2EE
applications.

• Chapter 7, Using the Javlin Console, on page 71, explains how to use the
Javlin Console to monitor transactional activity against Javlin caches.
Release 6.1 vii

Preface
Notation Conventions
This document uses the following conventions:

ObjectStore on the World Wide Web
ObjectStore has its own Web site (www.objectstore.net) that provides a
variety of useful information about products, news and events, special
programs, support, and training opportunities.

Technical
Support

When you purchase technical support, the following services are available to
you:

• You can send questions to support@objectstore.net. Remember to include
your site ID in the body of the electronic mail message.

• You can call the Technical Support organization to get help resolving
problems.

• You can access the Technical Support Web site, which includes

Convention Meaning

Monospace font Monospace font indicates code, syntax, system
output, file names, and the like.

Bold
typewriter

Bold typewriter font is used to emphasize
particular code, such as user input.

Italic
typewriter

Italic monospace font indicates the name of a
variable for which you must supply a value. This
typeface most often appears in a syntax line.

Sans serif Sans serif typeface indicates the names of dialog boxes,
buttons, fields, and so on, that are displayed in the user
interface.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify only
one of the enclosed items. Vertical bars represent OR
separators. For example, you can specify a or b or c.

... Three consecutive periods indicate that you can repeat
the immediately previous item. In examples, they also
indicate omissions.
viii Javlin User Guide

Preface
- A template for submitting a support request. This helps you provide
the necessary details, which speeds response time.

- Frequently asked questions (FAQs) that you can browse and query.

- Online documentation for all ObjectStore products.

- White papers and short articles about using ObjectStore products.

- Sample code and examples.

- The latest versions of ObjectStore products, service packs, and publicly
available patches that you can download.

- Access to an ObjectStore product matrix.

- Support policies.

- Local phone numbers and hours when support personnel can be
reached.

Education
Services

Use the ObjectStore education services site
(www.objectstore.net/services/education) to learn about the standard
course offerings and custom workshops.

If you are in North America, you can call 1-800-477-6473 x4452 to register for
classes. For information on current course offerings or pricing, send e-mail to
classes@progress.com.

Searchable
Documents

In addition to the online documentation that is included with your software
distribution, the full set of product documentation is available on the
ObjectStore Support Web server. The documentation is found at
www.objectstore.net/documentation, and is listed by product. The site
supports the most recent release and the previous supported release of
ObjectStore documentation. Service Pack README files are also included to
provide historical context for specific issues. Be sure to check this site for new
information or documentation clarifications posted between releases.

Your Comments
ObjectStore product development welcomes your comments about its
documentation. Send any product feedback to support@objectstore.net. To
expedite your documentation feedback, begin the subject with Doc:. For
example:

Subject: Doc: Incorrect message on page 76 of reference manual
Release 6.1 ix

Preface
x Javlin User Guide

Chapter 1
Javlin Overview

Javlin is designed for developing highly scalable applications that cache
object data in the middle tier and service large numbers of client requests.
Javlin can be used with any J2EE application server, including Enterprise
Java Beans (EJB) servers/containers. Javlin can also be used without an
application server. It is compatible with all J2EE APIs.

Javlin includes the Java Middle Tier Library (JMTL) which provides
transparent, high-performance storage for Java objects. Javlin performs the
following tasks automatically and transparently to your application:

• Caches persistent data accessed by client-initiated transactions

• Maintains the consistency and recoverability of the data caches

• Maintains each transaction’s required isolation level

• Schedules transactions to optimize throughput

Javlin supports bean-managed persistence, as well as container-managed
and bean-managed transactions.

This chapter covers the following topics:

Javlin Architecture 2

Javlin Integration with J2EE Application Servers 3

Basic Javlin Tasks 4

Key Concepts 4
Release 6.1 1

Javlin Architecture
Javlin Architecture
Javlin includes

• EJB container extensions, which integrate transactional caching with
middleware application servers.

• JMTL (Java Middle-Tier Library), which provides a transactional-caching
API.

• Database server and Java interface, which support cache synchronization,
recoverability, and persistence.

Javlin Enterprise also includes database management support for Javlin
databases, including such administrative facilities as

• Online backup and restore

• Replication

• Archive logging

• Failover

The following diagram illustrates Javlin’s middle-tier role:

JMTL Run Time

Application Server

EJB Container

Cache Storage Servers

Javlin Transactional Caches

Bean Methods

Back-End Data Stores

Cache Storage

End-User Clients
2 Javlin User Guide

Chapter 1: Javlin Overview
Javlin Integration with J2EE Application
Servers

Javlin integrates transactional caching with J2EE-compliant application
servers to support transaction coordination and persistence. Javlin supports
two levels of integration which are described below.

Level Zero
Integration

Level Zero integration can be used with or with out an application server.
Component developers can use the Javlin API directly with any J2EE API
(EJB, Servlets, JSP, etc.) However, Javlin transactions are not coordinated
with the application server's transaction management (JTA) facility. For an
EJB, this is equivalent to the Bean's transaction attribute being specified as
NotSupported.

This is called Level Zero integration because no special support for the
application server is provided by Javlin out of the box. Developers use
Javlin's JMTL API with the stub version of Javlin's application server
integration jar file.

Select Level 0 integration if you are not using any application server, or you
are using an application server, but you do not require any integration of
JMTL transactions with JTA transactions.

Level One
Integration

Level One integration requires an application server supporting the Java
Transaction Architecture (JTA). Component developers use the Javlin API
directly with any J2EE API (EJB, Servlets, JSP, etc.) Javlin transactions are
transparently coordinated by the application server's transaction
management facility. Javlin participates as a resource manager within the
application server's transaction management facility. Thus, Javlin
transactions are integrated with the application server's globally-managed
transaction context corresponding to any enclosing client-managed, bean-
managed, or container-managed transaction.

A specific integration jar file is provided with Javlin for each application
server with level one integration. Additionally, the build files and
instructions for the example J2EE applications provided with Javlin include
customization for application servers with level one integration support.

Javlin currently provides Level One integration with the BEA WebLogic
Server.
Release 6.1 3

Basic Javlin Tasks
Level Two
Integration

In addition to transaction coordination, Level Two integration provides full
container managed persistence (CMP) support for Entity Beans, so
developers do not have to code directly to the Javlin API. The CMP
integration is provided together with the Level One integration support in
the application server specific integration JAR file.

Release 6.1 of Javlin does not currently provide this level of integration with
any application server.

Basic Javlin Tasks
To implement Javlin transactional caching in your application, you perform
the following basic tasks:

• Set up transactional caches

• Create Javlin cache storage (databases)

• Store and retrieve roots

• Perform virtual transactions

You perform these tasks using a combination of XML declarations in a
deployment-descriptor file and Java programming in your application code,
using the Javlin API.

When you use Javlin with Level Zero or Level One integration, you must
perform some tasks programmatically, as described in Chapter 3,
Programmatic Configuration, on page 33 and Chapter 4, Virtual
Transactions, on page 41.

Key Concepts
The following concepts are central to understanding how to develop
applications that use Javlin/JMTL.

Note In the sections that follow, italic font indicates key concepts that are discussed
elsewhere in this chapter.

Transactional Caching
Transactional caching is the underlying concept of Javlin. It refers to the
automatic routing of client requests to separate Javlin caches, allowing in-
4 Javlin User Guide

Chapter 1: Javlin Overview
memory access to cached objects. Javlin ensures data integrity by providing
transactional consistency among the caches, even while servicing multiple,
concurrent transactions against the same data. Each client request is handled
as a separate Java thread executing against cached objects.

Javlin Caches
There are two types of Javlin caches:

• An update cache, which is used by transactions that require either write-
access to data or read-only access to data that is completely up to date.

• An MVCC (Multiversion Concurrency Control) cache, which is used by
read-only transactions that can rely on a recent snapshot of data.

Transactions that use an MVCC cache can perform nonblocking reads that
allow concurrent transactions executing in update caches to read or write to
the same data, without having to wait.

Note PSE Pro does not support MVCC caches.

Cache Pools
A cache pool consists of one or more caches and corresponds to a logical
partitioning of data. Its main purpose is to make your application more
scalable by allowing you to partition cached data into separate pools. If you
have a very large data set, you can configure each pool to process logically
related data. For example, you could configure different Cache Pools to
process data from different geographical regions. Likewise, if your
components perform many operations on the data set, you can configure the
pools operationally, routing (for example) customer operations to one pool
and administrative operations to another.

Configuring Javlin Caches
Configuring Javlin caches—specifying their organization, number, and size
—is determined by a number of factors, including:

• The number, frequency, and duration of anticipated requests

• Whether or not a transaction is read-only (access mode)

• The extent to which a transaction needs to be isolated from concurrent
transactions (isolation level)

• The extent to which data is logically partitioned
Release 6.1 5

Key Concepts
Declarative Configuration
Although you can use the Javlin API to configure Javlin’s caches, the
simplest way to configure them is declaratively, using XML-based
deployment descriptors. The deployment descriptors specify information
about the caches as well as about the component methods that will be
executing transactions against the caches. Javlin processes the deployment
descriptors and uses this information at run time to route transactions to
caches.

The advantage of using deployment descriptors to configure Javlin is that
you don’t have to burden the application with configuration code.
Deployment descriptors also allow you to re-configure or fine-tune Javlin’s
caches at deployment time without having to recompile your application.

The use of deployment descriptors to configure Javlin is described in
Chapter 2, Declarative Configuration, on page 11.

Global and Virtual Transactions
The J2EE transaction model has two kinds of transactions:

• Global transactions. These correspond to JTA transactions managed and
coordinated by a J2EE application server. These are managed by the
javax.transaction APIs.

• Local transactions. These correspond to backend data source transactions.
Local transactions are an implementation detail of either a component or
its corresponding container.

In Javlin, a global transaction has the same meaning as in J2EE, but a local
transaction is replaced by the concept of the virtual transaction. Virtual
transactions are component-level transactions that occur whenever a
component operation accesses persistent data. All access to persistent data
must occur within the scope of a virtual transaction, as described in Chapter
4, Virtual Transactions, on page 41.

Operation and Global Contexts
Javlin uses information in two run-time structures to manage virtual
transactions. These structures are:

• Operation Context, represented by the OperationContext class

• Global Context, represented by the GlobalContext class
6 Javlin User Guide

Chapter 1: Javlin Overview
The Operation Context encapsulates the following information about a
virtual transaction:

• The name of the Cache Pool to which it should be routed

• Its access mode

• Its isolation level

Typically, this information is specified by the deployment descriptor for the
component method. However, it can also be specified programmatically,
using the Javlin API. When a virtual transaction starts to execute, this
information becomes available to Javlin in the Operation Context that is used
to begin the transaction.

When a global or independent transaction begins, Javlin creates a Global
Context and associates it with the set of virtual transactions that are either
controlled by the global transaction or nested in the independent transaction.
(A virtual transaction is independent if it is not controlled by a global
transaction.) Javlin initializes the Global Context based on the Operation
Context of the dominant transaction.

Dominant
transaction

To be dominant, a virtual transaction must meet the following conditions:

• It must be either the first virtual transaction in the global transaction or the
outermost independent virtual transaction.

• It must be specified as dominant. Typically, dominance is specified by the
DominantOperation attribute in the deployment descriptor for the
component method, as described in Method Descriptor Details on
page 26. However, it can also be specified programmatically, using the
Javlin API.

Javlin uses the initialized Global Context to determine the routing of all
virtual transactions in the global transaction or in a nest of independent
transactions. All such virtual transactions must be compatible with the access
mode and isolation level encapsulated in the Global Context. For example, if
the access mode specified by the Global Context is read-only, then all nested
virtual transactions must be read-only. If any nested transaction performs an
update operation, the entire transaction aborts.

Access Mode
All operations on persistent data have an access mode of either read-only or
update. The access mode is specified in the deployment-descriptor file and is
used by Javlin at run time for routing and scheduling virtual transactions.
Release 6.1 7

Key Concepts
Isolation Level
Every transaction that accesses cached data has an isolation level that is
typically specified in a deployment-descriptor file. The isolation level
indicates how immune the transaction is to the effects of concurrent
transactions on the same data. The weaker a transaction’s isolation level, the
more likely that it can execute concurrently with other transactions. Javlin
uses the isolation level to optimize transaction processing when routing and
scheduling.

The following table summarizes the isolation levels. The levels are arranged
in order of increasing strictness, with the weakest level (READ_UNCOMMITTED)
at the top. For more detailed information about isolation levels, see the Javlin
API Reference for the IsolationLevelConstants interface.

Routing
Routing is the process by which Javlin selects a Cache Pool and a cache within
the Cache Pool in which a transaction will execute. Routing to a Cache Pool
is based on the name of the Cache Pool as specified in an Operation Context.
Routing to an update or MVCC cache is based on the transaction’s access

Isolation Level Description

READ_UNCOMMITTED The transaction can commit even if it reads data that
includes currently uncommitted changes made by
other transactions. Read-uncommitted transactions
can be routed to MVCC or update caches.

READ_COMMITTED The transaction can read committed data only.
Read-committed transactions can be routed to
MVCC or update caches.

REPEATABLE_READ The transaction can read committed data only. Also,
the committed data cannot change during the
course of the transaction. However, the reads do not
have to be consistent with each other, as in the case
of a transaction that is reading multiple databases.
Repeatable-read transactions can be routed to
MVCC or update caches.

SERIALIZABLE The transaction can read committed data only. Also,
the committed data cannot change during the
course of the transaction, and the reads must be
consistent with each other. Serializable transactions
are always routed to update caches.
8 Javlin User Guide

Chapter 1: Javlin Overview
mode and isolation level. For example, a transaction with an access mode of
update is always routed to an update cache.

For detailed information about how Javlin routes a transaction to a Cache
Pool and cache, see Routing Transactions on page 53.

Scheduling
Javlin uses scheduling to reduce transaction overhead and interactions with
external data sources. During a 500-ms interval (the default), Javlin
schedules individual virtual transactions that have been routed to a cache to
execute within a single, low-level physical transaction against Cache Storage.
Once all currently scheduled transactions complete executing, Javlin
performs a physical commit. At this point, all updated data is written to
Cache Storage and becomes visible to other caches.

Javlin ensures transactional consistency within a physical transaction by
scheduling only virtual transactions that are compatible with respect to their
isolation level and access mode. For more detailed information about
scheduling, see Scheduling Transactions on page 58.

Cache Storage
Javlin uses persistent Cache Storage to ensure durability for the cached data
and to allow multiple caches to share the same data. Data is stored as objects
within cache storage to reduce the cost of mapping data from a non-object
data model to the object model being cached.

Cache Storage can be used either as the persistent backing store for Javlin’s
transactional caches or as the data source itself.
Release 6.1 9

Key Concepts
10 Javlin User Guide

Chapter 2
Declarative Configuration

This chapter explains how to use XML-based deployment descriptors to
configure Javlin. It covers the following topics:

XML-Based Configuration File 12

Configuring The Cache Pool Manager 15

Configuring Cache Pools 17

Configuring Cache Storage 20

Configuring Deployed Components 25

A Complete Example 29

Note You must load configuration information from the deployment-descriptor
files into an instance of the com.odi.env.JVMEnvironment class at run time,
by calling the deploy() methods on the JVMEnvironment class; see the Javlin
API Reference.
Release 6.1 11

XML-Based Configuration File
XML-Based Configuration File
To configure Javlin declaratively, you specify deployment descriptors in an
XML-based configuration file. This section covers the following topics:

• Identifying Javlin’s Document Type Definition (DTD), which Javlin uses
to validate your configuration file.

• Referencing external entities in the configuration file.

• The names used by the Javlin deployment descriptors.

The Javlin Document Type Definition (DTD)
The Javlin deployment descriptors are specified in an XML-based file that
conforms to Javlin’s DTD. The DTD is specified in the DOCTYPE statement
that must appear in the prologue to the XML file that contains your
deployment descriptors as follows:

<!DOCTYPE JVMEnvironment SYSTEM "URI-specification">

This statement asserts that your XML file is compliant with the Javlin DTD
specified by URI-specification. If the DOCTYPE statement appears in the
prologue of your deployment-descriptor file, the Javlin parser will validate
the file against the DTD; otherwise, the parser will not validate the file.

The Javlin DTD (jmtl-dd.dtd) is located in the JMTL JAR file. You specify
its location in the DOCTYPE statement as follows:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd.dtd">

The prefix JMTL that appears before the colon (:) is an extension to the XML
syntax for the URI. This prefix causes the parser to use the following search
rules for locating com/odi/jmtl/jmtl-dd.dtd:

DTD search
rules

1 Get the ClassLoader for the component and invoke its getResource()
method.

2 Get the ClassLoader for the system and invoke its getResource()
method.

3 Use the java.class.path property.

If the parser cannot find the DTD according to these rules, a fatal error will
occur and the configuration file will not be processed.
12 Javlin User Guide

Chapter 2: Declarative Configuration
External Entities in the Configuration File
You can use XML’s ENTITY statement to insert an external entity in the XML
file that contains your deployment descriptors. For example, instead of
repeating the same deployment-descriptor information in different places in
the XML file, you can do the following:

1 Create a file that contains the external entity.

2 Specify the external-entity file in the ENTITY statement.

3 Reference the external entity wherever you want it inserted in the XML
file.

The ENTITY statement must appear in the DOCTYPE statement of the XML file.
It has the following syntax:

<!ENTITY entity-reference SYSTEM "URI-specification">

The JMTL prefix can be used in URI-specification to cause the parser to use
the same search rules to find the external entity that it uses to find the Javlin
DTD; see The Javlin Document Type Definition (DTD) on page 12.

Use the &entity-reference; syntax to reference the entity in the XML file.

Example Following is part of an example configuration file that illustrates the use of
external entities:

<?xml version="1.0" ?>
<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd.dtd"

[
<!ENTITY dbandroots SYSTEM "tstdbmaps.xml">
<!ENTITY employeepool SYSTEM
"file:/os/dserve/java/mytest/emppool.xml">
<!ENTITY customerspool SYSTEM
"ftp://hodge:testXML@jeffrey.cats.com/custpool.xml">

]>
<JVMEnvironment>

<cache-pool-manager>
<!-- define CachePool configurations for CachePoolManager -->

<cache-pools>

<!-- use external entities for these shared pools -->
&employeepool;
&customerspool;

<!-- define a new cache pool named AccountCachePool -->
<cache-pool name="AccountCachePool">

<NumberOfUpdateCaches>1</NumberOfUpdateCaches>
<NumberOfMvccCaches> 1 </NumberOfMvccCaches>
<AddressSpaceSize>0x8000000</AddressSpaceSize>
<CacheSize> 0x1000000 </CacheSize>
Release 6.1 13

XML-Based Configuration File
</cache-pool>
</cache-pools>

</cache-pool-manager>

<cache-storage>
<!-- use an external entity for the database and root config -->

&dbandroots;
</cache-storage>
.
.
.

Names used by Javlin Deployment Descriptors
The names used by Javlin deployment descriptors correspond to Java
qualified names that denote Javlin run-time structures within a Java Virtual
Machine (JVM). The <cache-pool-manager> element is represented at run
time by an instance of the com.odi.jmtl.CachePoolManager class. You can
call methods on this object to set, retrieve, or modify its values. Likewise, you
can set or modify the values in a deployment-descriptor file.

Using the XML-based deployment descriptors, you can configure each Javlin
element. Descriptors that have attributes require you to specify literal values.
Leading and trailing spaces are ignored. In the following example, the
<OverwriteDebugOutputFile> attribute specifies that Javlin is to overwrite
the debug file that it maintains:

<cache-pool-manager>
. . .
<OverwriteDebugOutputFile> true </OverwriteDebugOutputFile>
. . .

</cache-pool-manager>

Other elements of Javlin are similarly configured, as described in the
following sections.

Note This document uses the term attribute to refer to such names as
OverwriteDebugOutputFile and NumberOfMvccCaches, which are used to
configure the Cache Pool Manager, Cache Pools, etc. Javlin attributes are
unrelated to XML attributes, which are used to provide information about
XML elements.
14 Javlin User Guide

Chapter 2: Declarative Configuration
Configuring The Cache Pool Manager
The Cache Pool Manager manages a set of Cache Pools within the JVM. The
deployment-descriptor file specifies the following configuration information
for the Cache Pool Manager:

• Attributes of the Cache Pool Manager

• The collection of Cache Pools

This information is encapsulated at run time in an instance of the
CachePoolManager class, as described in the Javlin API Reference. There is
only one Cache Pool Manager within a JVM. You can access this instance
with the fully qualified name com.odi.jmtl.CachePoolManager.

XML Syntax
Use the following syntax to configure the Cache Pool Manager in an XML-
based deployment-descriptor file:

<cache-pool-manager>
<DebugLevel> string-value </DebugLevel>
<DebugOutputFile> string-value </DebugOutputFile>
<OverwriteDebugOutputFile>

boolean-value
</OverwriteDebugOutputFile>

<!-- list of Cache Pool descriptors -->
<cache-pools>

. . .
</cache-pools>

</cache-pool-manager>

See Configuring Cache Pools on page 17 for information about the Cache
Pool descriptor.

Cache Pool Manager Descriptor Details
The Cache Pool Manager descriptor provides information about the
management of Javlin’s Cache Pools. Descriptor information must be
enclosed within the <cache-pool-manager> and </cache-pool-manager>
tags. The Cache Pool Manager descriptor has the following optional
attributes:
Release 6.1 15

Configuring The Cache Pool Manager
Attributes <DebugLevel> specifies the level of Javlin’s output messages. If this attribute
is specified, the value must be one of the following string literals:

Note that the levels are accumulative; for example, if you specify VERBOSE,
the output includes messages at the ERROR, WARNING, and VERBOSE levels.

<DebugOutputFile> specifies the path of the file that Javlin uses for writing
output messages. The path must be expressed as a string literal and must be
valid within the host operating system. If this attribute is not specified, Javlin
writes output messages to System.out.

<OverwriteDebugOutputFile> specifies whether the Cache Pool Manager
is to overwrite (true) or append (false) to an existing debug file. The value
must be expressed as a Boolean literal. The default is to append (false).

Example
The following example configures a Cache Pool Manager that will output
messages at level WARNING to debug.out, overwriting any information that
was previously in the file.

<cache-pool-manager>
<DebugLevel> WARNING </DebugLevel>
<DebugOutputFile> debug.out </DebugOutputFile>
<OverwriteDebugOutputFile> true </OverwriteDebugOutputFile>

<!-- list of Cache Pool descriptors -->
<cache-pools>

. . .
</cache-pools>

</cache-pool-manager>

Level Meaning

NONE No output

ERROR Error information (default)

WARNING Warning information, plus all information at the ERROR level

VERBOSE Configuration changes, plus all information at the WARNING
level

DEBUG Routing and scheduling information, plus all information at
the VERBOSE level
16 Javlin User Guide

Chapter 2: Declarative Configuration
Configuring Cache Pools
A Cache Pool comprises one or more caches and determines their number,
type, size, and other characteristics. The deployment-descriptor file specifies
the following configuration information for each Cache Pool:

• Name of the Cache Pool

• Cache Pool attributes

• The number and types of caches within a Cache Pool

This information is encapsulated at run time in an instance of the CachePool
class, as described in the Javlin API Reference. A Cache Pool is denoted by
com.odi.jmtl.CachePoolManager.CachePools.cache-pool-name, where
cache-pool-name is the name you specify with the Cache Pool descriptor.

XML Syntax
Use the following syntax to configure a Cache Pool in an XML-based
deployment-descriptor file:

<cache-pools>
<cache-pool name="cache-pool-name">

<NumberOfUpdateCaches>
integer-value

</NumberOfUpdateCaches>
<NumberOfMvccCaches> integer-value </NumberOfMvccCaches>
<AddressSpaceSize> integer-value </AddressSpaceSize>
<CacheSize> integer-value </CacheSize>
<UserTransactionUsage>string-value</UserTransactionUsage>
<GroupOpenInterval> integer-value </GroupOpenInterval>
<CommitIfIdle> boolean-value </CommitIfIdle>
<GroupOpenIntervalMvcc>

integer-value
</GroupOpenIntervalMvcc>
<CommitIfIdleMvcc> boolean-value </MvccCommitIfIdle>

</cache-pool>
. . .

</cache-pools>

Cache Pool Descriptor Details
The Cache Pool descriptor describes the Cache Pool whose name is cache-
pool-name. A Cache Pool contains a logical set of Javlin caches. Cache Pool
descriptor information must be enclosed within the following nested tags:

<cache-pools>
<cache-pool name="cache-pool-name">
Release 6.1 17

Configuring Cache Pools
. . .
</cache-pool>

</cache-pools>

where cache-pool-name is a string literal that you must specify. This name
is used in the fully qualified name of the Cache Pool,
com.odi.jmtl.CachePoolManager.CachePools.cache-pool-name.

The Cache Pool descriptor has the following attributes:

Attributes <AddressSpaceSize> specifies the number of bytes of persistent address
space allocated for each cache in this Cache Pool. The number must be
expressed as an unsigned integer literal, and must be greater than or equal to
the number specified for <CacheSize>. The total amount of address space
for all caches in the process must be less than or equal to the available
address space on the current platform.

If <AddressSpaceSize> is not specified, Javlin uses no more than one cache,
whose size will be the currently available persistent address space. For more
information, see the OS_AS_SIZE and OS_DEFAULT_AS_PARTITION_SIZE
environment variables in Managing ObjectStore.

<CacheSize> specifies the number of bytes of page caching allocated for
each cache in this Cache Pool. The number must be expressed as an unsigned
integer literal, and must be less than or equal to the number specified for
<AddressSpaceSize>. If <CacheSize> is not specified, the default number
of bytes is 8 MB (0x800000). For more information, see the OS_CACHE_SIZE
environment variable in Managing ObjectStore.

<CommitIfIdle> specifies whether the scheduler for an update cache
commits the physical transaction whenever no transactions are pending
(true), or waits for <GroupOpenInterval> to elapse before committing the
physical transaction (false). The value must be expressed as a Boolean
literal. If this attribute is not unspecified, the default is true.

<CommitIfIdleMvcc> specifies whether the scheduler for an MVCC cache
commits the physical transaction whenever no transactions are pending
(true), or waits for <GroupOpenIntervalMvcc> to elapse before committing
the physical transaction (false). The value must be expressed as a Boolean
literal. If this attribute is not unspecified, the default is false.

<GroupOpenInterval> specifies the time interval in milliseconds during
which the scheduler continues to schedule additional global and virtual
transactions to execute in a physical transaction (transaction group). The
value must be expressed as an unsigned integer literal. If this attribute is not
unspecified, the default is 500.
18 Javlin User Guide

Chapter 2: Declarative Configuration
<GroupOpenIntervalMvcc> specifies the time interval in milliseconds
during which the transaction scheduler for an MVCC cache continues to
schedule additional global and virtual transactions to execute in a physical
transaction (transaction group). The value must be expressed as an unsigned
integer literal. If this attribute is not unspecified, the value of
<GroupOpenInterval> is used.

<LockTimeout> specifies the number of milliseconds for a physical
transaction to wait when attempting to acquire a database lock. If the lock
cannot be acquired within the specified timeout, the phyiscal transaction
aborts. This attribute applies only to update caches. The default is to wait
until the lock becomes available.

<MaxConcurrentTransactions> specifies the maximum number of read-
only transactions that are scheduled to run concurrently in a cache. This
attribute applies to both update and MVCC caches. The default is 20.

<NumberOfMvccCaches> specifies the number of MVCC caches to create in
this Cache Pool. The number must be expressed as an unsigned integer
literal. If this attribute is not unspecified, the default is 0.

<NumberOfUpdateCaches> specifies the number of update caches to create
in this Cache Pool. The value must be expressed as an unsigned integer
literal. If this attribute is not unspecified, the default is 1.

<UserTransactionUsage> asserts usage information about the caches. The
value must be expressed as a string literal and can be one of the following:

• noUserTransactions: asserts that this Cache Pool will never be used by
a client- or component-initiated global transaction. This assertion allows
Javlin to optimize use of the Cache Pool.

• userTransactionsPossible: asserts that this Cache Pool can be used by
a client- or component-initiated global transaction. This assertion disables
certain optimizations. This assertion is the default.

Example
The following example configures a Cache Pool named TradingCachePool.
It will consist of two caches, one update and one MVCC. Each cache will
have 0x8000000 bytes of available address space and 0x1000000 bytes for
paging.

<cache-pools>
<!-- define a Cache Pool named TradingCachePool -->
<cache-pool name="TradingCachePool">
Release 6.1 19

Configuring Cache Storage
<NumberOfUpdateCaches> 1 </NumberOfUpdateCaches>
<NumberOfMvccCaches> 1 </NumberOfMvccCaches>
<AddressSpaceSize> 0x8000000 </AddressSpaceSize>
<CacheSize> 0x1000000 </CacheSize>
<UserTransactionUsage>

noUserTransactions
</UserTransactionUsage>

</cache-pool>
</cache-pools>

Configuring Cache Storage
Cache Storage is implemented as a set of object databases to provide object
durability and distributed sharing of persistent objects. Javlin uses database
roots to access objects in each database. The deployment-descriptor file
configures the names and number of databases and roots.

Cache Storage information is encapsulated at run time in an instance of the
CacheStorage class, as described in the Javlin API Reference. A database is
denoted by the fully qualified name
com.odi.jmtl.CacheStorage.Databases.logical-database-name, and
a root by com.odi.jmtl.CacheStorage.Roots.logical-root-name. You
specify logical-database-name and logical-root-name in the
deployment-descriptor file, using the syntax described in the next section.

XML Syntax
Use the following syntax to configure Cache Storage in an XML-based
deployment-descriptor file:

<cache-storage>
<databases>

<database-descriptor name="logical-database-name">
<PhysicalName> string-value </PhysicalName>

</database-descriptor>
. . .

</databases>

<roots>
<root-descriptor name="logical-root-name">

<StorageName> string-value </StorageName>
<PhysicalName> string-value </PhysicalName>
<root-object-descriptor>

<MethodSignature> string-value </MethodSignature>
<ClassType> string-value </ClassType>
<MethodArguments>
20 Javlin User Guide

Chapter 2: Declarative Configuration
<boolean-value> argument-value </boolean-value>
<byte-value> argument-value </byte-value>
<character-value> argument-value </character-value>
<double-value> argument-value </double-value>
<float-value> argument-value </float-value>
<integer-value> argument-value </integer-value>
<long-value> argument-value </long-value>
<object-value>

object-descriptor-attributes
</object-value>
<short-value> argument-value </short-value>
<string-value> argument-value </string-value>

</MethodArguments>
</root-object-descriptor>

</root-descriptor>
. . .

</roots>
</cache-storage>

See the following sections for information about the descriptors that you use
to configure Cache Storage:

Database Descriptor Details 21

Root Descriptor Details 22

Object Descriptor Details 22

Database Descriptor Details
The database descriptor describes a database used by Javlin’s cache storage.
Descriptor information must be enclosed within the following nested tags:

<databases>
<database-descriptor name="logical-database-name">

. . .
</database-descriptor>

</databases>

where logical-database-name is a string literal that you must specify as
the logical name of the database you are configuring. This name maps to the
actual name that you specify with the <PhysicalName> attribute; see below.
You use the logical name when referring to the database in the deployment-
descriptor file and in application code. The logical name is also used in the
fully qualified name com.odi.jmtl.CacheStorage.Databases.logical-
database-name.

The database descriptor has the following required attribute:

Attribute <PhysicalName> specifies the path name of the database. The path name
must be expressed as a string literal and must be valid within the host
Release 6.1 21

Configuring Cache Storage
operating system. For information about database path names see Specifying
File Database Pathnames in Managing ObjectStore.

Root Descriptor Details
The root descriptor describes a database root used by Javlin to retrieve
objects in cache storage. Descriptor information must be enclosed within the
following nested tags:

<roots>
<root-descriptor name="logical-root-name">

. . .
</root-descriptor>

</roots>

where logical-root-name is a string literal that you must specify as the
logical name of the root you are configuring. This name maps to the actual
name that you specify with the PhysicalName attribute; see below. You use
the logical name when referring to the root in the deployment-descriptor file
and in application code. The logical name is also used in the fully qualified
name com.odi.jmtl.CacheStorage.Roots.logical-root-name.

The root descriptor has the following attributes:

Attributes <PhysicalName> specifies the actual name of the root. The name must be
expressed as a string literal. This attribute is required.

<root-object-descriptor> describes the object used as the database root.
This attribute is optional only if the PhysicalName attribute specifies the
name of an existing root. For information about the attributes for the root
object descriptor, see Object Descriptor Details on page 22.

<StorageName> specifies the logical name of the database that contains the
root. The name must be expressed as a string literal and must be exactly the
same as the name in one of the <logical-database-name> tags nested in the
Cache Storage section of the deployment-descriptor file. This attribute is
required.

Object Descriptor Details
The object descriptor describes how to construct or retrieve an object. It can
be used to describe a database root or the object value of a method argument.
When used as a root object descriptor, descriptor information must be
enclosed within the following tags:

<root-object-descriptor>
. . .
22 Javlin User Guide

Chapter 2: Declarative Configuration
</root-object-descriptor>

When used to describe an object value, descriptor information must be
enclosed within the following tags:

<object-value>
. . .

</object-value>

The object descriptor has the following attributes:

Attributes <ClassType> specifies the qualified name of the java.lang.Class instance
that represents the type of the object. The name must be expressed as a string
literal. This attribute is required.

<MethodSignature> specifies the signature of the constructor or the method
that creates or retrieves the object. This attribute is optional. If this attribute
is not specified, Javlin uses the no-argument constructor. If it is specified, the
signature must be formatted as follows:

fully-qualified-class-name.method-name [argument-list]

where fully-qualified-class-name is the qualified name of the method’s
class type, method-name is the name of the method, and argument-list is
the optional parenthesized argument list, consisting of comma-separated
type names. The type names must be fully qualified for any types other than
primitives. If argument-list is not specified, the method is assumed to have
no arguments. If it is specified, you must also use the following
MethodArguments attribute.

<MethodArguments> specifies the ordered list of the actual values that are
passed to the method. This attribute is required only if the signature includes
an argument list; see the <MethodSignature> attribute above.

With the exception of the object-value attribute, each of the following
attributes specifies a value that must be expressed as a literal. The resulting
value must conform to the Java type represented by the attribute name. The
object-value attribute is an object descriptor that describes how to create
or access an object, as described in this section:

• <boolean-value>

• <byte-value>

• <character-value>

• <double-value>

• <float-value>

• <integer-value>
Release 6.1 23

Configuring Cache Storage
• <object-value>

• <long-value>

• <short-value>

• <string-value>

Example
The following example configures Cache Storage to use one database
(TradingDB) that has two roots (Customers and Stocks). Note that all three
names are logical names. The fully qualified type name of the root objects is
com.odi.util.OSHashMap.

<cache-storage>
<databases>

<database-descriptor name="TradingDB">
<PhysicalName>

${rootPath}/trading/data/trading.odb
</PhysicalName>

</database-descriptor>
</databases>

<roots>

<root-descriptor name="Stocks"> <!-- logical root name -->
<StorageName> TradingDB </StorageName>
<PhysicalName> trading.stocks </PhysicalName>
<root-object-descriptor>

<MethodSignature>
com.odi.util.OSHashMap(int)

</MethodSignature>
<ClassType> com.odi.util.OSHashMap </ClassType>
<MethodArguments>

<integer-value>100</integer-value>
</MethodArguments>

</root-object-descriptor>
</root-descriptor>

<root-descriptor name="Customers">
<StorageName> TradingDB </StorageName>
<PhysicalName> trading.customers </PhysicalName>
<root-object-descriptor>

<ClassType> com.odi.util.OSHashMap </ClassType>
</root-object-descriptor>

</root-descriptor>

<root-descriptor name="Stocks">
<StorageName> TradingDB </StorageName>
<PhysicalName> trading.stocks </PhysicalName>
24 Javlin User Guide

Chapter 2: Declarative Configuration
<root-object-descriptor>
<ClassType> com.odi.util.OSHashMap </ClassType>

</root-object-descriptor>
</root-descriptor>

</roots>
</cache-storage>

Configuring Deployed Components
The component section of the deployment-descriptor file describes each
component that is deployed within a JVM and uses Javlin. This section
includes information about each component method that performs
transactions on cached data.

XML Syntax
Use the following syntax to configure a component in an XML-based
deployment-descriptor file:

<component-descriptor name="fully-qualified-component-name">

<method name="method-signature">
<method-descriptor>

<CachePoolName> string-value </CachePoolName>
<Update> boolean-value </Update>
<IsolationLevel> string-value </IsolationLevel>
<TransactionAttribute>

string-value
</TransactionAttribute>
<DominantOperation> boolean-value </DominantOperation>
<RetryLimit> integer-value </RetryLimit>

</method-descriptor>
</method>
. . .

</component-descriptor>

The <component-descriptor> tag must specify the name attribute, where
fully-qualified-component-name is a string literal that represents the
fully qualified name for the component. The <component-descriptor> tag
can only be used to enclose <method> tags, as well as any tags that they
enclose.

Instead of the <component-descriptor> tag, you can nest tags for each
element of the fully qualified name; see the example at the end of the XML
file in Example on page 27. Note that you must use the nested-tag syntax if
you want to enclose any application data that is not specific to Javlin.
Release 6.1 25

Configuring Deployed Components
Method Descriptor Details
The method descriptor describes a component method that performs
transactions on cached data. Descriptor information must be enclosed within
the nested tags:

<method name="method-signature">
<method-descriptor>
. . .
</method-descriptor>

</method>

Signature
syntax

where method-signature is a string literal that has the following format:

method-name [(argument-list)]

where method-name is the name of the method and argument-list is an
optional list of comma-separated type names. The type names must be fully
qualified for any types other than primitives. If argument-list is not
specified, the method is assumed to have no arguments.

Overloadings
and default
methods

Methods having the same name can share (or overload) the same method
descriptor. You can also define a default method descriptor for all
component methods that are not explicitly defined. To define a default
method, specify the string default for the signature, as in the following:

<method name="default">
. . .

</method>

The method descriptor has the following optional attributes:

Attributes <CachePoolName> specifies the name of the Cache Pool to which the method
should be routed. The name must be expressed as a string literal. This
attribute is optional. If unspecified, Javlin arbitrarily selects a Cache Pool for
the method.

<Update> specifies the access mode of the transaction performed by the
method as either update (true) or read-only (false). The value must be
expressed as a Boolean literal. This attribute is optional. If unspecified, the
access mode is update (true). For more information, see Access Mode on
page 7.

<IsolationLevel> specifies the degree to which the method is immune to
the effects of concurrent transactions on the same data. The value must be
expressed as a string literal and can be one of the following:

• SERIALIZABLE (default)
26 Javlin User Guide

Chapter 2: Declarative Configuration
• REPEATABLE_READ

• READ_COMMITTED

• READ_UNCOMMITTED

For information about these values, see Isolation Level on page 8.

<TransactionAttribute> specifies the global (JTA) transaction
requirements of the method. The value must be expressed as a string literal
and can be one of the following:

• Never

• Mandatory

• NotSupported

• Required

• RequiresNew

• Supports (default)

Javlin does not initiate global transactions. The value specified for
<TransactionAttribute> influences transaction routing. For more
information about the influence of <TransactionAttribute> on routing,
see Initializing a Global Context on page 53.

Note If you are using an EJB application server, the transaction attribute that you
specify in the standard EJB deployment descriptor must be the same as the
transaction attribute that you specify in the Javlin deployment descriptor.

<DominantOperation> specifies whether or not this method can be
dominant. The value must be expressed as a Boolean literal. If this attribute
is not specified, the method is not dominant (false). For more information
about dominant transactions, see Operation and Global Contexts on page 6.

<RetryLimit> specifies the maximum number of times that the transaction
performed by the method will be retried following an abort. This attribute
applies only to transactions initiated by TransactionTry.execute(). The
value must be expressed as an unsigned integer literal. If unspecified, the
default is 4 (TransactionTry.getRetryLimitDefault()).

Example
The following descriptor example configures the deployed component
TraderBean. It defines four methods:

• getCustomers()
Release 6.1 27

Configuring Deployed Components
• getStocks()

• getPrices()

• getPositions()

All four methods perform read-only transactions that are routed to the Cache
Pool named TradingCachePool. They all have an isolation level of READ_
COMMITTED, and their global transaction requirement is Required. None of
the methods have arguments.

All other component methods default to performing update transactions that
are routed to the Cache Pool named TradingCachePool.

<component-descriptor
name="com.odi.examples.trading.TraderBean">

<method name="getCustomers">
<method-descriptor>

<CachePoolName> TradingCachePool </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute>

Supports
</TransactionAttribute>

</method-descriptor>
</method>

<method name="getStocks">
<method-descriptor>

<CachePoolName> TradingCachePool </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute>

Supports
</TransactionAttribute>

</method-descriptor>
</method>

<method name="getPrices">
<method-descriptor>

<CachePoolName> TradingCachePool </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute>

Supports
</TransactionAttribute>

</method-descriptor>
</method>

<method name="getPositions">
<method-descriptor>
28 Javlin User Guide

Chapter 2: Declarative Configuration
<CachePoolName> TradingCachePool </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute>

Supports
</TransactionAttribute>

</method-descriptor>
</method>

<method name="default">
<method-descriptor>

<CachePoolName> TradingCachePool </CachePoolName>
<Update> true </Update>

</method-descriptor>
</method>

</component-descriptor>

A Complete Example
The following is an example of a deployment-descriptor file that configures
Javlin’s caches:

<?xml version="1.0"?>
<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd.dtd">
<JVMEnvironment>
<!-- Configuration for CachePoolManager -->

<cache-pool-manager>
<DebugLevel> WARNING </DebugLevel>
<DebugOutputFile> debug.out </DebugOutputFile>
<OverwriteDebugOutputFile> true </OverwritedebugOutputFile>
<cache-pools>

<cache-pool name="TradingStateful">
<NumberOfUpdateCaches> 1 </NumberOfUpdateCaches>
<NumberOfMvccCaches> 1 </NumberOfMvccCaches>
<AddressSpaceSize> 0x8000000 </AddressSpaceSize>
<CacheSize> 0x1000000 </CacheSize>

</cache-pool>
</cache-pools>

</cache-pool-manager>

<cache-storage>
<databases>

<database-descriptor name="TradingDB">
<PhysicalName>

${rootPath}/trading/data/trading.odb
</PhysicalName>
Release 6.1 29

A Complete Example
</database-descriptor>
</databases>

<roots>
<root-descriptor name="Customers">

<StorageName> TradingDB </StorageName>
<PhysicalName> trading.customers </PhysicalName>
<root-object-descriptor>

<ClassType> com.odi.util.OSHashMap </ClassType>
</root-object-descriptor>

</root-descriptor>

<root-descriptor name="Stocks">
<StorageName> TradingDB </StorageName>
<PhysicalName> trading.stocks </PhysicalName>
<root-object-descriptor>

<ClassType> com.odi.util.OSHashMap </ClassType>
</root-object-descriptor>

</root-descriptor>
</roots>

</cache-storage>

<component-descriptor name="com.odi.examples.trading.TraderBean">
<method name="getCustomers">

<method-descriptor>
<CachePoolName> TradingStateful </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute> Supports </TransactionAttribute>

</method-descriptor>
</method>

<method name="getStocks">
<method-descriptor>

<CachePoolName> TradingStateful </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute> Supports </TransactionAttribute>

</method-descriptor>
</method>

<method name="getPrices">
<method-descriptor>

<CachePoolName> TradingStateful </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute> Supports </TransactionAttribute>

</method-descriptor>
</method>
30 Javlin User Guide

Chapter 2: Declarative Configuration
<method name="getPositions">
<method-descriptor>

<CachePoolName> TradingStateful </CachePoolName>
<Update> false </Update>
<IsolationLevel> READ_COMMITTED </IsolationLevel>
<TransactionAttribute> Supports </TransactionAttribute>

</method-descriptor>
</method>

<!-- The following represents the fully qualified default method name -->
<!-- "com.odi.examples.trading.TraderBean.default" -->

<method name="default">
<method-descriptor>

<CachePoolName> TradingStateful </CachePoolName>
<Update> true </Update>

</method-descriptor>
</method>

</component-descriptor>

<!-- The following are application-defined names used by the component. -->
<StockPrices>

<WEBL> 10.0 </WEBL>
<INTL> 15.0 </INTL>

</StockPrices>
<tradeLimit> 500 </tradeLimit>
<customers> ${rootPath}/trading/data/customers.txt </customers>
<stocks> ${rootPath}/trading/data/stocks.txt </stocks>
<database> TradingDB </database>

</JVMEnvironment>
Release 6.1 31

A Complete Example
32 Javlin User Guide

Chapter 3
Programmatic
Configuration

This chapter explains how to use the API to configure Javlin. It covers the
following topics:

Setting Up Transactional Caches 33

Creating Databases 35

Creating and Retrieving Roots 35

Working with MVCC Caches

Note For information about the Javlin API for using virtual transactions, see
Chapter 4, Virtual Transactions, on page 41.

Setting Up Transactional Caches
The simplest way to set up transactional caches is in an XML-based
deployment-descriptor file. For more information about using deployment
descriptors to configure transactional caches, see Chapter 2, Declarative
Configuration, on page 11. If your application requires you to set up caches
programmatically, you can use the Javlin API. Configuring Javlin
programmatically is more difficult to implement, makes your application
harder to maintain, and should be used only if you cannot use deployment
descriptors.
Release 6.1 33

Setting Up Transactional Caches
To set up a single Cache, you create a CachePoolManager containing a single
CachePool. Follow these steps:

1 Create a CachePoolConfiguration with a class constructor, passing a
String, the name you want to give to the CachePool.

2 Create a Map with an entry for each database that the cache will use. Each
entry maps a logical database name to a database path.

3 For each database root your application uses, create a RootMapping,
which encapsulates a logical database name, a physical root name, and the
name of a class.

4 Create a Map with an entry for each root. Each entry maps a logical root
name to an instance of RootMapping.

5 Create a CachePoolManagerConfiguration with the class constructor,
passing the CachePoolConfiguration and the Maps created in the
previous steps.

6 Create a CachePoolManager with new and the class constructor, passing
the CachePoolManagerConfiguration created in the previous step.

The following example sets up Javlin caches:

// Create a Cache Pool configuration object
CachePoolConfiguration cpConfig =

new CachePoolConfiguration("cachePool1");

// Create dbNameMap for Cache Pool Manager configuration
Map dbNameMap = new HashMap();
dbNameMap.put("TraderDB", "/foo/bar/trading/db1.odb");

// Create a root mapping
RootMapping rootMapping =

new RootMapping(
"TraderDB", "root1", "com.odi.util.OSHashMap");

// Create a logical root map
Map rootMap = new HashMap();
rootMap.put("TraderRoot", rootMapping);

// Create a Cache Pool Manager configuration object
CachePoolManagerConfiguration cpmConfig =

new CachePoolManagerConfiguration(
cpConfig,
null, // partitions
dbNameMap,
rootMap,
null // attribute map

);
34 Javlin User Guide

Chapter 3: Programmatic Configuration
// Create cache pool manager
cachePoolManager = new CachePoolManager(cpmConfig);

Creating Databases
To use Javlin to store and retrieve persistent data, you must create one or
more Javlin databases or use existing ObjectStore or PSE Pro databases. In
addition, you must create at least one database root in each database.

To create a database with Javlin, follow these steps:

1 Use CachePoolManager.getCachePool() to retrieve a CachePool that
will use the database, passing in the name of the CachePool that you want
to retrieve.

2 Use CachePool.createDatabase() to create a database, passing the
logical name of the database you want to create and the new database’s
access mode. Make sure that the name you pass is already defined in the
CachePoolManager’s map of logical database names.

The following example creates a database:

cachePoolManager.getCachePool("cachePool1").createDatabase(
"TraderDB",
ObjectStore.ALL_READ | ObjectStore.ALL_WRITE

);

By specifying a logical database name as shown in this example, you ensure
that the code will remain stable even if the database’s path changes. If you
move a database, you only have to change an entry in the
CachePoolManager’s database-name Map. Use
CachePoolManager.setDBMapping().

Creating and Retrieving Roots
To create or retrieve a database root, you must be within a virtual
transaction; see Chapter 4, Virtual Transactions, on page 41.

To create a database root, do the following:

1 Use the static method Cache.getCurrent() to retrieve the cache in which
the current transaction is executing.
Release 6.1 35

Creating and Retrieving Roots
2 Use Cache.getRootValue() to create or retrieve the object associated
with a given logical root name. Make sure that the name is already defined
in the cache pool manager’s map of logical root names.

The following example creates and retrieves a root:

Map traderRootMap =
(Map) Cache.getCurrent().getRootValue("foo");

The first time you call getRootValue() on a given root name, the method
creates an instance of the initialization class specified in the root’s
RootMapping. It uses the class’s no-argument constructor and then returns
the new object. Subsequent calls to getRootValue() retrieve the object and
return it. The root object and all objects reachable from it are stored in the
database specified by the root’s RootMapping.

Databases and roots are discussed in detail in the ObjectStore
documentation. See, for example, the ObjectStore Java Tutorial.

Controlling Root Object Placement
By default, Javlin places all root objects, and all objects reachable from them,
in the default database segment and cluster. You can improve the
performance of your application by grouping together objects that are used
together, and conversely separating objects that are never used together.

To control the database placement of root objects, you can provide a custom
root object constructor or factory class. For example, the following factory
class creates a new cluster in the default segment and allocates the root object
in that cluster:

public class OSTreeSetFactory {

public static OSTreeSet create(String logicalDBName) {
Cache cache = Cache.getCurrent();
Database db = cache.getDatabase(logicalDBName);

// Create new cluster in the default segment
Cluster cluster = db.getDefaultSegment().createCluster();

// Place new root object in the new cluster
OSTreeSet treeset = new OSTreeSet(cluster);
return treeset;

}
}

36 Javlin User Guide

Chapter 3: Programmatic Configuration
In order for Javlin to invoke this factory method when constructing the root
object, you must specify the method name and argument values in the
<root-object-descriptor> as shown in the following example:

<root-descriptor name=”CustomerRoot”>
<StorageName> BankDB </StorageName>
<PhysicalName> CustomerBean.root </PhysicalName>
<root-object-descriptor>

<MethodSignature>
com.acme.util.OSTreeFactory.create(java.lang.String)

</MethodSignature>
<ClassType> com.odi.util.OSTreeSet </ClassType>
<MethodArguments>

<string-value> BankDB <string-value>
</MethodArguments>

</root-object-descriptor>
</root-descriptor>

The first time you call Cache.getRootValue(“CustomerRoot”), Javlin calls
the specified method to construct the root object. The new OSTreeSet is
allocated in the newly created cluster, and all objects subsequently added to
the OSTreeSet will be allocated in the same cluster by default.

For more information about using database segments and clusters, see
Grouping Objects in Multiple Segments and Clusters in the ObjectStore Java
API User Guide.

Working with MVCC Caches
For read-only operations that do not require a completely up-to-date view of
persistent data, you can increase throughput by using an MVCC cache. For
information about MVCC caches, see Javlin Caches on page 5.

To use an MVCC cache, you must do the following:

• Include an MVCC cache in a CachePool when configuring the
CachePoolManager. See the next section, Configuring a Cache Pool
Manager for Multiple Caches.

• Use Operation Context to indicate whether a given transaction should be
routed to an MVCC cache. See Restrictions on Routing to an MVCC Cache
on page 38.
Release 6.1 37

Working with MVCC Caches
Configuring a Cache Pool Manager for Multiple Caches
To include an MVCC cache in a CachePool, pass an attribute map to the
CachePoolConfiguration constructor. Each of the map’s entries maps a
String (an attribute name) to a String (the attribute’s value). Include an
entry that specifies the number of MVCC caches you want in the Cache Pool
(the NumberOfMvccCaches attribute), as well as an entry that specifies the
number of non-MVCC caches (the NumberOfUpdateCaches attribute).

Here is an example of how to configure the Cache Pool Manager to have one
Cache Pool that contains one MVCC cache and one update cache:

// Create attribute map for Cache Pool configuration
Map cachePoolAttributes = new HashMap();

// Set attribute values
cachePoolAttributes.put("NumberOfUpdateCaches", "1");
cachePoolAttributes.put("NumberOfMvccCaches", "1");

// Create a Cache Pool configuration object
CachePoolConfiguration cpConfig =

new CachePoolConfiguration(
"cachePool1",
cachePoolAttributes

);

After you have configured for multiple caches, configuring the Cache Pool
Manager is the same as when configuring for a single cache. See steps 2 - 6
and the example in Setting Up Transactional Caches on page 33.

Restrictions on Routing to an MVCC Cache
A virtual transaction is normally routed to an MVCC cache if its Operation
Context specifies both of the following conditions:

• The transaction is read-only.

• The transaction has an isolation level of REPEATABLE_READ or weaker; see
Isolation Level on page 8 for a table that lists and describes the isolation
levels. As the table shows, an isolation level of SERIALIZABLE is stronger
than REPEATABLE_READ, and therefore a transaction with an isolation level
of SERIALIZABLE is not routed to an MVCC cache.

Note If a virtual transaction is controlled by a global transaction or is nested in an
virtual transaction, it may be routed to an update cache, depending on the
context. For detailed information about routing, see Chapter 5, Routing and
Scheduling, on page 53.
38 Javlin User Guide

Chapter 3: Programmatic Configuration
Release 6.1 39

Working with MVCC Caches
40 Javlin User Guide

Chapter 4
Virtual Transactions

This chapter shows how to use the Javlin API to perform virtual transactions.
It includes the following sections:

Life Cycle of a Virtual Transaction 41

Retrying a Transaction 43

Programming Restrictions 47

Tips for Optimizing Transactions 49

Life Cycle of a Virtual Transaction
A component method cannot access cached, persistent data outside the
dynamic boundaries of a virtual transaction. The following sections explain
how to use the Javlin API to define a virtual transaction.

Note Starting a middleware global transaction does not start a virtual transaction.
A global transaction serves to group together virtual transactions that
participate in a single, top-level request.

Also, a virtual transaction has a single thread associated with it for its entire
duration. Other threads cannot join the virtual transaction.

Beginning a Transaction
To begin a virtual transaction, you call VirtualTransaction.begin(). This
method returns a newly initiated virtual transaction.

VirtualTransaction.begin() takes an OperationContext object as an
argument. As explained in Operation and Global Contexts on page 6, Javlin
Release 6.1 41

Life Cycle of a Virtual Transaction
uses information encapsulated in an OperationContext object to route and
schedule the new transaction. To create the object, call
BasicOperationContext.create(), passing the bean’s class and the
signature of the method that performs the virtual transaction. Here is an
example:

OperationContext operationContext =
BasicOperationContext.create(

Order.class, "getCreditCardInfo");

Committing a Transaction
A transaction completes successfully when it commits its changes to cached
data, making them permanent and visible to other transactions. To commit a
transaction, call commit().

When you call commit() on a virtual transaction that is controlled by a global
transaction or nested in another virtual transaction, the virtual transaction’s
changes do not immediately become permanent in Cache Storage and
therefore are not visible to other caches and transactions. Instead, its changes
become permanent and visible when either the controlling global transaction
or the top-level virtual transaction commits.

When you call commit() on a virtual transaction that is neither controlled by
a global transaction nor contained within another virtual transaction, the
virtual transaction’s changes become permanent and visible to other
transactions upon completion of the commit().

Note When a transaction commits, you can no longer access cached data without
starting another transaction.

Aborting a Transaction
A transaction terminates unsuccessfully when it aborts. When a transaction
aborts, all changes to cached data are undone and do not become permanent
and visible in the database. Persistent data is rolled back to its state prior to
the beginning of the virtual transaction.

To abort a transaction, call VirtualTransaction.abort().

When a virtual transaction aborts:

• If the aborting transaction is controlled by a global transaction, then the
global transaction also aborts.

• If the aborting transaction is routed to an update cache, then all virtual
transactions that are grouped with it in the same physical transaction also
42 Javlin User Guide

Chapter 4: Virtual Transactions
abort. If the aborting transaction is routed to an MVCC cache, any virtual
transactions in the same physical transaction do not abort. For
information about physical transactions, see Scheduling Transactions on
page 58.

When you handle exceptions thrown during a virtual transaction, you can
determine if the transaction is active with
VirtualTransaction.isActive(), and abort it if necessary.

Example of a Transaction
Following is an example of a virtual transaction:

// Create an OperationContext
OperationContext operationContext =

BasicOperationContext.create(
Performance.class, "viewSeats");

try {
// Start a virtual transaction
transaction = VirtualTransaction.begin(operationContext);

// Perform the operation
availableSeatsGraphic = performance.viewSeats(

theaterName, performanceData);

// Commit the virtual transaction
transaction.commit();

} catch (Exception e) {
throw new ProcessingErrorException("txn error: " + e);

}
finally {

// If the transaction is still active, abort it
if (transaction != null && transaction.isActive()) {

transaction.abort();
}

}

Retrying a Transaction
When a virtual transaction aborts, Javlin signals
VirtualTransaction.RetryException or
GlobalTransaction.AbortAndRetryException. The exception can be
thrown at any time during the virtual transaction.
Release 6.1 43

Retrying a Transaction
Your code should handle these exceptions and retry the aborted virtual
transaction. One way to do this is to define a class with an abstract method
for performing a transaction’s business logic, and a nonabstract method for
executing and retrying the transaction.

Classes to Use
The Javlin API provides the following classes for retrying a transaction:

• TransactionTry. The base class of all TransactionTry extensions.
Extend this class to define a customized retry class. Typically, this is done
to account for particular checked exceptions declared by a component
method.

• TransactionTryRuntimeExceptionsOnly. This class derives from
TransactionTry. Use this class for transactions whose business logic
cannot throw checked exceptions (that is, exceptions that must be listed in
the throw clause of methods that signal them).

• TransactionTryWrappedExceptions. This class also derives from
TransactionTry. Use this class for transactions whose business logic can
throw checked exceptions.

TransactionTry Methods
Use the following methods to retry a transaction. They are defined in the
base class TransactionTry:

• execute(): This method tries a virtual transaction and continues to retry
it (up to a retry limit) if necessary. Within a retry loop, this method starts
a virtual transaction by using the specified context, calls action(), and
commits the virtual transaction. It returns the object returned by
action() for the successful try. This method takes an OperationContext
argument.

• action(): This method is an abstract method that is implemented by the
anonymous inner class that extends one of the default TransactionTry
classes. The action() method performs the behavior to be tried and
retried, if necessary. This method is called by execute(). The action()
method does not include virtual transaction demarcation; execute()
starts and ends a virtual transaction for each try. This method returns a
result Object.

The following procedure explains how to use these methods to try (and
automatically retry, if necessary) a virtual transaction. You can use them
44 Javlin User Guide

Chapter 4: Virtual Transactions
with either TransactionTryRuntimeExceptionsOnly or
TransactionTryWrappedExceptions:

1 Instantiate the class by doing the following:

a Use new and a constructor.

b Implement action().

2 Call execute() on the instance, passing the OperationContext object
you want.

Using TransactionTryRuntimeExceptionsOnly
Use this class for transactions whose business logic throws only unchecked
run-time exceptions. Calling execute() on an instance of this class tries to
execute a virtual transaction, and automatically retries it if necessary. Run-
time exceptions signaled by the virtual transaction’s business logic are
rethrown by execute().

Here is an example:

TransactionTryRuntimeExceptionsOnly transactionTry
= new TransactionTryRuntimeExceptionsOnly() {

public Object action() { /* business logic */ }
}

OperationContext operationContext =
BasicOperationContext.create(/* class and method-name */);

transactionTry.execute(operationContext);

Using TransactionTryWrappedExceptions
Use this class for transactions whose business logic can throw checked
exceptions. As with TransactionTryRuntimeExceptionsOnly, calling
execute() on an instance of this class tries to execute a virtual transaction,
and automatically retries it if necessary. However, with this class, exceptions
signaled by the virtual transaction’s business logic are wrapped by
TransactionTryException, which is signaled by execute().

Here is an example that uses TransactionTryWrappedExceptions to
handle the user-defined exception XE:

TransactionTryWrappedExceptions transactionTry
= new TransactionTryWrappedExceptions() {

public Object action() throws XE {
/* business logic */; throw new XE() }

}
OperationContext operationContext =

BasicOperationContext.create(/* qualified method name */);
Release 6.1 45

Retrying a Transaction
try {
transactionTry.execute(operationContext);

} catch (TransactionTryException tte) {
/* Handle wrapped exception. */ }

Extending TransactionTry
Here is an example of a class that allows direct handling of a checked
exception, CustomException:

/*
The class TransactionTryRemoteExceptions is used to simplify
the use of virtual transaction using actions declared to
throw RemoteExceptions.

*/
public abstract class TransactionTryRemoteExceptions

extends TransactionTry {
// Public Construction:
/*

Construct a TransactionTryRemoteExceptions object suitable
to execute a virtual transaction using actions declared to
throw RemoteExceptions with the default number of retries.

*/
public TransactionTryRemoteExceptions ()
{

super();
}
// Protected Actions:
// action() to be executed within a virtual transaction;
// Object is the result of the action.
protected abstract Object action ()

throws RemoteException;

// execute() will execute a virtual transaction within a retry
// loop, passing it an instance of OperationContext
public Object execute(OperationContext operationContext)

throws RemoteException
{

Object result = null;
try {

result = super.execute(operationContext);
} catch (RuntimeException runtimeException) {

throw runtimeException;
} catch (RemoteException remoteException) {

throw remoteException;
} catch (Exception exception) {

// Cannot happen given overriding definition of action()
Assert.conditionWithExplanation(

false, "Unexpected exception: " + exception);
}
// Return the result of this execution.
46 Javlin User Guide

Chapter 4: Virtual Transactions
return result;
}

}

Programming Restrictions
This section describes programming restrictions applying to applications
using Javlin virtual transactions.

Use of ObjectStore Java Classes
Javlin layers on top of the ObjectStore Java Interface (OSJI). The OSJI classes
com.odi.Session and com.odi.Transaction should not be used in a
Javlin application. Higher-level classes, including com.odi.jmtl.Cache
and com.odi.jmtl.VirtualTransaction are used in their place.

Javlin applications can and should use all of the other OSJI classes, such as
the persistence-capable versions of the Java 2 collections (com.odi.util)
and the query facility (com.odi.util.query.Query). For additional
information on using the OSJI classes, see the ObjectStore Java API User Guide.

Retaining Persistent References Across Transactions
Javlin uses the transaction retain mode of ObjectStore.RETAIN_HOLLOW,
allowing applications to retain references to persistent objects across virtual
transactions. In order to use this feature, the application needs to keep track
of which cache a reference is associated with, since a method may not always
route to the same cache instance. If a method references a persistent object in
a cache other than the one in which it was initially retrieved,
com.odi.WrongSessionException is thrown.

To avoid the WrongSessionException exception, the application can create
a transient table (java.util.Map, for example) of references to persistent

OSJI Interface Javlin Equivalent

com.odi.Session com.odi.jmtl.Cache

com.odi.Transaction com.odi.jmtl.VirtualTransaction
com.odi.jmtl.util.TransactionTry
Release 6.1 47

Programming Restrictions
objects keyed by cache name. Alternatively, the application can access a root
object in the current cache and then re-navigate to the desired object.

Note All ObjectStore applications need to be careful about retaining references to
non-exported objects across transactions, as these objects can be deleted or
moved by intervening transactions. References to root objects, and other
exported objects, are 'delete safe' and thus it is always safe to use them across
transactions.

For additional information see the following sections in Chapter 6 of the Java
API User Guide:

• Making Persistent Objects Hollow

• Caution About Retaining Unexported Objects

Accessing Data Outside of a Transaction
Threads in Javlin applications can only access persistent objects when
associated with a virtual transaction. When a thread is not in a virtual
transaction, Javlin disassociates the calling thread from the cache (and the
underlying ObjectStore session). If the thread references a persistent object
outside of a transaction, the exception com.odi.NoSessionException is
thrown.

If the application needs access to persistent data outside a virtual transaction,
the application must make a transient copy of the required data. The
com.odi.jmtl.util.TransactionTry classes will automatically make a
transient copy of objects returned from the TransactionTry.action()
method. A transient copy is made if two conditions are met:

• The returned object is persistent.

• The returned object is serializable.

When these conditions are met, the TransactionTry classes call
ObjectStore.deepFetch() on the returned object, and then serialize and
de-serialize the resulting tree of objects to produce a transient copy. The
transient copy is then returned to your application by
TransactionTry.execute().

Using TransactionTry classes to automatically make transient copies of
data can result in returning more data than is needed by the application.
Alternatively, the application can create its own transient copies in the
TransactionTry.action() method and return just the data that is needed.
48 Javlin User Guide

Chapter 4: Virtual Transactions
Thread Synchronization
As recommended for EJB applications, Javlin applications should not use
application-controlled thread synchronization (synchronized methods or
objects). If an application uses thread synchronization, thread deadlocking
can result. For example, thread deadlocking results from the following
scenario:

• "ThreadA" calls a method that routes to "Cache1" and is scheduled to run
in a transaction group

• "ThreadB" calls a synchronized method that routes to "Cache1", but it
arrives after GroupOpenInterval elapses so it blocks, waiting for the next
transaction group

• "ThreadA" attempts to call the same synchronized method as "ThreadB",
causing "ThreadA" to block and preventing "Cache1" from committing
and starting a new transaction group

ThreadA and ThreadB are deadlocked since each is locking a resource that
the other thread needs. ObjectStore cannot detect such a deadlock since it
involves transient Java resources. Thread deadlocking can be avoided if
application-controlled thread synchronization is used only when Javlin is
not active in the application, for example, before the CachePoolManager is
initialized or after it is shutdown.

Tips for Optimizing Transactions
One of the design principles of Javlin is to minimize the effects of transaction
processing on performance. Javlin’s transactional caching architecture
realizes this goal in the following ways:

• By routing virtual transactions to execute within separate caches, Javlin
promotes concurrent execution of the transactions.

• By scheduling multiple virtual transactions that have been routed to a
cache to execute within a single, low-level physical transaction, Javlin
reduces the commit overhead of writing data to Cache Storage.

• By providing separate caches for update transactions and MVCC read-
only transactions, Javlin minimizes the blocking effects that update
transactions can have on other transactions.
Release 6.1 49

Tips for Optimizing Transactions
When coding virtual transactions in your applications, you can use the
following techniques to take full advantage of Javlin's transactional caching
architecture:

• Reduce the time spent in update transactions.

Update transactions are more costly in terms of performance than MVCC
read-only transactions because they block concurrent transactions on the
same data. And the longer they take to execute, the more costly they are.
By splitting a long update transaction into several transactions, you open
up intervals for the concurrent execution of other transactions, thus
increasing throughput.

• Route long-running transactions that execute frequently to a separate
cache from short-running transactions.

As explained in Scheduling on page 9, Javlin routes multiple virtual
transactions to a cache and then schedules them to execute in a single
physical transaction every 500 ms. After the interval expires and all the
scheduled virtual transactions commit, the physical transaction commits.
However, if a virtual transaction takes longer than the 500-ms interval to
execute, no other virtual transactions can be scheduled in this physical
transaction. In effect, they are blocked for at least as long as it takes for the
long-running transaction to commit.

However, if you route long-running transactions to a separate cache, you
allow Javlin to schedule more short-running transactions to execute
within the same physical transaction, without being blocked by long-
running transactions.

• If your application has several related, consecutively executing update
transactions that operate on the same data, nest them in a global or
independent transaction.

As explained in Scheduling Transactions on page 58, a top-level update
transaction must wait for the commit of the physical transaction before it
can commit. (A top-level transaction is a virtual transaction that is neither
controlled by a global transaction nor nested in another virtual
transaction.) By nesting the update transactions in a top-level transaction,
you allow them to commit their changes without having to wait for the
physical transaction to commit. This technique allows multiple update
transactions to be scheduled in a single physical transaction, thus
reducing the overhead of committing a physical transaction.

For information about the relationship between virtual and physical
transactions, see Scheduling on page 9.
50 Javlin User Guide

Chapter 4: Virtual Transactions
• Route read-only transactions to an MVCC read-only cache.

An MVCC read-only cache is essentially a non-blocking read-only cache.
Requests that are routed to an MVCC cache are allowed to read a snapshot
of data that may be getting updated concurrently in a different update
cache. MVCC requests do not require read locks on data that would block
other requests from simultaneously updating the data. MVCC thus allows
much higher overall throughput in the presence of updates. An MVCC
cache's “snapshot” of data is constantly kept up to date by Javlin, which
regularly commits the underlying physical transaction in the MVCC
cache.

• Use as few caches as necessary.

Do not add caches if your application’s workload does not warrant it.
Adding more caches increases the overhead of transaction processing.
Two virtual transactions can execute faster if routed to a single cache and
scheduled in a single physical transaction than if routed to separate caches
and scheduled in two physical transactions.

• Use only one update cache per logical data partition.

When multiple update caches access the same data, lock contention and
deadlocks can occur. Deadlocks result in costly transaction aborts and
retries, affecting all transactions currently scheduled in an update cache.
To avoid deadlocks, use only one update cache per Cache Pool, and do not
access the same data in more than one Cache Pool having an update cache.

Note that none of these techniques for optimizing transactions will
compromise the consistency of Javlin’s transactional caches.
Release 6.1 51

Tips for Optimizing Transactions
52 Javlin User Guide

Chapter 5
Routing and Scheduling

When application code begins a virtual transaction, Javlin routes the
transaction, first to a Cache Pool, and then to a cache within the Cache Pool.
After routing, Javlin schedules the transaction to execute with other,
compatible virtual transactions in a physical transaction.

The following sections explain how Javlin routes and schedules transactions.

Routing Transactions
Javlin manages every virtual transaction by executing it within a cache.
Given that you can configure multiple Cache Pools and multiple caches
within each Cache Pool, it is important to understand how Javlin selects a
cache for a virtual transaction, especially when you want to optimize
transaction performance by routing to an MVCC cache.

The following sections explain how Javlin uses Global Context to route a
virtual transaction to a Cache Pool and, once inside a Cache Pool, to a cache.

Initializing a Global Context
As explained in Operation and Global Contexts on page 6, every virtual
transaction is associated with both an Operation Context and a Global
Context. The Operation Context is specific to the transaction, and the Global
Context is associated with a group of one or more virtual transactions that
are either in a global transaction or nested inside an independent transaction.
Javlin uses information encapsulated in the Global Context to route each
virtual transaction in the group.
Release 6.1 53

Routing Transactions
The following sections describe how Javlin creates and initializes a Global
Context for the following:

• A global transaction

• An independent virtual transaction and any virtual transactions nested
within it. (An independent virtual transaction is not controlled by a global
transaction.)

Global
transaction

When the first virtual transaction participates in a global transaction, Javlin
creates an instance of GlobalContext. It uses the first virtual transaction’s
OperationContext to initialize the GlobalContext if any one of the
following conditions is true:

• This virtual transaction is also dominant. For information about using the
DominantOperation attribute to specify that a virtual transaction can be
dominant, see Method Descriptor Details on page 26.

• The OperationContext specifies that this virtual transaction’s
TransactionAttribute is set to RequiresNew or NotSupported. For
information about the TransactionAttribute attribute, see Method
Descriptor Details on page 26.

• The OperationContext specifies a Cache Pool that has its
UserTransactionUsage attribute set to noUserTransactions. For
information about the UserTransactionUsage attribute, see Cache Pool
Descriptor Details on page 17.

If none of these conditions is true, Javlin initializes the instance of
GlobalContext with an isolation level of SERIALIZABLE and an access mode
of Update.

After initializing GlobalContext, Javlin associates it with each virtual
transaction that participates in the global transaction.

Independent
transaction

If a virtual transaction does not participate in a global transaction and is
outermost (that is, is not nested in another independent transaction), Javlin
uses its OperationContext to initialize the GlobalContext. After
initializing GlobalContext, Javlin associates it with the outermost
transaction and any nested transactions it contains.

Note It is the user’s responsibility to ensure that GlobalContext settings will not
result in incorrect behavior. For example, if the GlobalContext is set to an
access mode of read-only and isolation level of REPEATABLE_READ, all
subsequent virtual transactions controlled by the same global transaction
must have compatible access modes and isolation levels. Javlin throws the
54 Javlin User Guide

Chapter 5: Routing and Scheduling
exception GlobalTransaction.IncompatibleContextException when an
OperationContext is incompatible with the current GlobalContext.

Routing to a Cache Pool
Javlin routes a virtual transaction to the Cache Pool that is named in the
transaction’s Operation Context if either of the following mutually exclusive
conditions is true:

• Javlin used this transaction’s Operation Context to initialize the Global
Context; that is, this transaction is either dominant in a global transaction
or is the outermost independent transaction. For information about the
Global Context and how it is initialized, see Initializing a Global Context
on page 53.

• Javlin did not use this transaction’s Operation Context to initialize the
Global Context, but the Global Context that is associated with this
transaction specifies an access mode of read-only and an isolation level of
READ_COMMITTED or READ_UNCOMMITTED.

In either of these cases, Javlin routes the transaction to the Cache Pool named
in the transaction’s Operation Context. If a Cache Pool with the specified
name does not exist, Javlin throws an exception. If the Operation Context
does not specify a Cache Pool name, Javlin arbitrarily selects a Cache Pool.

In all other cases, Javlin ignores the Cache Pool name specified in the
Operation Context for this transaction and routes it to the Cache Pool that
was selected for the previous transaction associated with the same Global
Context. Note that virtual transactions that are either controlled by a Global
or nested in another virtual transaction are always routed to the same Cache
Pool (and cache instance) if the isolation level specified in the Global Context
is REPEATABLE_READ or stricter.

Routing to a Cache
Once Javlin has routed a transaction to a Cache Pool, it routes the transaction
to a cache within the Cache Pool as follows:

• If this transaction’s Operation Context initialized the Global Context, then
Javlin selects a cache according to the access mode and isolation level in
the Operation Context, as follows:

- If the access mode is update or the isolation level is SERIALIZABLE, the
transaction is routed to an update cache.
Release 6.1 55

Routing Transactions
- If the access mode is read-only and the isolation level is REPEATABLE_
READ or weaker, the transaction is routed to an MVCC cache.

• If Javlin did not use this transaction’s Operation Context to initialize the
Global Context and the Global Context that is associated with this
transaction specifies an access mode of read-only and an isolation level of
READ_COMMITTED or READ_UNCOMMITTED, then the transaction is routed as
follows:

- If the transaction’s Operation Context specifies the name of a Cache
Pool that was previously selected for a transaction that is associated
with the same Global Context, the transaction is routed to the same
cache within the Cache Pool.

- If the transaction’s Operation Context specifies the name of a different
Cache Pool, the transaction is routed to an MVCC cache within that
Cache Pool.

In all other cases, Javlin ignores the Operation Context for this transaction
and routes it to the cache that was selected for the previous transaction
associated with the same Global Context.

For more information about a transaction’s access mode and isolation level,
see Access Mode on page 7 and Isolation Level on page 8. Both are typically
specified in the deployment descriptor for the component method, as
described in Configuring Deployed Components on page 25.

Routing to an MVCC Cache
You can ensure that a read-only virtual transaction is always routed to an
MVCC cache by doing the following:

1 Set its isolation level to a value less strict than SERIALIZABLE. For
information about isolation levels, see Isolation Level on page 8. For
information about using the IsolationLevel attribute, see Method
Descriptor Details on page 26.

2 Make sure that the Cache Pool specified for this transaction has its
NumberOfMvccCaches attribute set to at least 1. For more information
about this attribute, see Cache Pool Descriptor Details on page 17.

3 Make sure that this transaction’s OperationContext is used to initialize
the GlobalContext. For more information, see Initializing a Global
Context on page 53.
56 Javlin User Guide

Chapter 5: Routing and Scheduling
Routing Summary
For transactions that are not controlled by a global transaction, and
transactions that are dominant, the routing rules are summarized as follows:

For transactions that are controlled by a global transaction, or are nested in
an outermost independent transaction, the routing rules are summarized as
follows:

Independent or dominant
virtual transactions

Route to Cache Pool
specified in:

Route to Cache
type:

Update SERIALIZABLE Operation Context Update

Read-only SERIALIZABLE Operation Context Update

REPEATABLE_READ Operation Context MVCC

READ_COMMITTED Operation Context MVCC

READ_UNCOMMITTED Operation Context MVCC

Dependent virtual
transaction

Routes to Cache
Pool specified in:

Routes to Cache
type:

Update SERIALIZABLE Global Context Update

Read-only SERIALIZABLE Global Context Update

REPEATABLE_READ Global Context Update or MVCC
depending on the
Global Context

READ_COMMITTED Operation Context Latest cache used,
or MVCC cache if
routed to a different
Cache Pool

READ_UNCOMMITTED Operation Context Latest cache used,
or MVCC cache if
routed to a different
Cache Pool
Release 6.1 57

Scheduling Transactions
Scheduling Transactions
Once a virtual transaction is routed to a cache, Javlin schedules it to execute
with other virtual transactions in a single, low-level physical transaction
against Cache Storage. To ensure that concurrent execution does not result in
conflicting behavior among the virtual transactions in the same physical
transaction, the transactions must all be compatible with respect to their
isolation level and access mode. For example, a read-only transaction can
never conflict with another read-only transaction, and Javlin can always
schedule read-only transactions to execute concurrently—up to the
maximum allowable number.

On the other hand, update transactions can never execute concurrently with
any other virtual transaction—regardless of its access mode. Read-only
transactions can execute concurrently with other read-only transactions only
if their isolation levels are compatible; see Isolation Level on page 8

A virtual transaction commit will return control to the calling program
before the commit of the physical transaction in which it is scheduled if any
of the following conditions are true:

• The virtual transaction is contained in a global transaction or is nested in
another virtual transaction.

• The virtual transaction is read-only, has an isolation level that is more
strict than READ_UNCOMMITTED, and no update transaction has run in the
cache.

• The virtual transaction is read-only and has an isolation level of READ_
UNCOMMITTED.

Run concurrently with other
transactions

Top-level transactions
return to caller before the
physical commit

Update SERIALIZABLE No No

Read-only SERIALIZABLE Yes If no update has run

REPEATABLE_READ Yes If no update has run

READ_COMMITTED Yes If no update has run

READ_UNCOMMITTED Yes Yes
58 Javlin User Guide

Chapter 5: Routing and Scheduling
The commit of a virtual transaction must wait for the commit of its physical
transaction if both of the following conditions are true:

• The virtual transaction is not controlled by a global transaction and is not
nested in another virtual transaction.

• The virtual transaction is either an update transaction or is a read-only
transaction with an isolation level that is more strict than READ_
UNCOMMITTED and runs in a cache where an update transaction has run.

Group Open Interval
Javlin continues to schedule virtual transactions to execute in the same
physical transaction until the time interval defined by either
GroupOpenInterval or GroupOpenIntervalMvcc elapses.
GroupOpenInterval is a Cache Pool attribute that defaults to 500
milliseconds and applies to update caches. GroupOpenIntervalMvcc is a
Cache Pool attribute that defaults to 500 milliseconds and applies to MVCC
caches.

After GroupOpenInterval (or GroupOpenIntervalMvcc) elapses, Javlin
waits until all currently scheduled virtual and global transactions request a
commit, and then performs the physical transaction commit. At this point, all
updated data is written to Cache Storage and becomes visible to other caches.

Long running virtual or global transactions can delay the physical
transaction commit, and can result in a queue of transactions waiting to be
scheduled. To prevent long running transactions from monopolizing a
cache, use your application server’s transaction timeout facility to
automatically abort long running global transactions.

There is generally no penalty to setting GroupOpenIntervalMvcc to a larger
value, since read-only transactions routed to an MVCC cache return to the
caller before the physical transaction commit. However, setting
GroupOpenInterval to a larger value can increase the duration of top-level
update transactions, since these transactions must wait for the physical
transaction commit before returning to the caller.

Use caution when setting GroupOpenInterval to a smaller value as this can
reduce overall system performance since each virtual transaction may then
incur the overhead of a physical transaction commit. Instead, consider
setting the CommitIfIdle attribute to true.
Release 6.1 59

Scheduling Transactions
For information about using the GroupOpenInterval and
GroupOpenIntervalMvcc attributes to control the duration of a physical
transaction, see Cache Pool Descriptor Details on page 17.

Commit If Idle
Javlin will commit the physical transaction before GroupOpenInterval
elapses if all of the following conditions are met:

• All currently scheduled transactions have requested a commit.

• There are no transactions routed to this cache and waiting to be scheduled.

• The cache is an update cache and CommitIfIdle is set to true, or the cache
is an MVCC cache and CommitIfIdleMvcc is set to true.

CommitIfIdle is a Cache Pool attribute that defaults to true. This setting
allows transactions executing in an update cache to return to the calling
program faster when the cache is idle. However, a setting of true can reduce
the overall system performance since each virtual transaction may then incur
the overhead of a physical transaction commit.

CommitIfIdleMvcc is a Cache Pool attribute that defaults to false. Since
transactions routed to an MVCC cache always return to the calling program
before the physical commit, there is no benefit to committing the physical
transaction early.

For information about using the CommitIfIdle and CommitIfIdleMvcc
attributes to control the duration of a physical transaction, see Cache Pool
Descriptor Details on page 17.
60 Javlin User Guide

Chapter 6
Configuring Javlin/JMTL

This chapter describes the steps required to configure your environment for
building and deploying Javlin/JMTL applications for both UNIX and
Windows.

This chapter covers the following topics:

Configuring Javlin/JMTL Using Ant on page 61

Configuring Javlin/JMTL for Level Zero Integration on page 64

Configuring Javlin/JMTL for Level One Integration on page 65

Summary of Windows Environment Settings on page 66

Summary of UNIX Environment Settings on page 67

Building and Deploying Applications on page 68

Configuring Javlin/JMTL Using Ant
The Javlin examples use Apache Ant build files to automate the configuration,
deployment, building and running of Javlin applications. Ant is a portable,
Java-based build tool, similar to make.

You can use the example Ant build files to configure, build, deploy and run
your own Javlin applications by customizing settings in the Ant build files.
The Ant build files include extensions for many popular application servers.
For more information on using the Ant build files see the README file in the
Javlin examples directory.
Release 6.1 61

Core Javlin/JMTL Configuration
If you choose not to use Ant, then follow the instructions in this chapter to
manually configure your Javlin build and runtime environments.

Core Javlin/JMTL Configuration
Follow these steps to configure your environment to Javlin with or without
an application server.

1 Set the JMTL, OSJI and OS_ROOTDIR environment variables to specify the
installation root directories for the Javlin, OSJI and ObjectStore,
respectively. For example:

On Windows:

set JMTL=c:\odi\javlin
set OSJI=c:\odi\osji
set OS_ROOTDIR=c:\odi\ostore

On Unix:

setenv JMTL /opt/ODI/javlin
setenv OSJI /opt/ODI/osji
setenv OS_ROOTDIR /opt/ODI/ostore

Note: The JMTL and OSJI variables names are not required names, they
are merely used as shorthand when setting CLASSPATH and PATH in
subsequent steps. The OS_ROOTDIR variable name is required by the core
ObjectStore product.

2 If you are using Javlin on a UNIX platform, add the following directories
to your shared library environment variable (LD_LIBRARY_PATH,
LIBPATH, or SHLIB_PATH):

These are the ObjectStore and OSJI shared libraries on UNIX.

UNIX Shared Library Path Additions

$OS_ROOTDIR/lib
$OSJI/lib
62 Javlin User Guide

Chapter 6: Configuring Javlin/JMTL
3 Add the following directories to your PATH environment variable:

Note: Your PATH variable must also contain the standard entries for Java
development (that is, settings so that standard tools like javac and rmic can
be executed).

4 Add the following JAR files to your CLASSPATH environment variable:

5 On HP-UX 32 bit platforms and on Solaris, you need to specify the
environment variable LD_PRELOAD to ensure that the C++ delete operators
are loaded in the correct order.

On Solaris:

set LD_PRELOAD=libosopdel.so

On HP-UX:

set LD_PRELOAD=libos.sl:libosth.sl

PATH Additions

Windows %JMTL%\bin
%OS_ROOTDIR%\bin
%OSJI%\bin

UNIX $JMTL/bin
$OS_ROOTDIR/bin
$OSJI/bin

CLASSPATH Additions

Windows %JTML%\xerces.jar
%JMTL%\jmtl.jar
%OSJI%\osji.jar
%OSJI%\tools.jar

UNIX $JMTL/xerces.jar
$JMTL/jmtl.jar
$OSJI/osji.jar
$OSJI/tools.jar
Release 6.1 63

Configuring Javlin/JMTL for Level Zero Integration
Configuring Javlin/JMTL for Level Zero
Integration

Javlin’s Level Zero integration provides no special support for the
application server. For more information on Level Zero integration, see
Javlin Integration with J2EE Application Servers3.

To configure your environment for Level Zero integration:

1 Set you environment as described in Core Javlin/JMTL Configuration on
page 62.

2 Add the stub version of Javlin's application server integration jar file to
your CLASSPATH environment variable:

CLASSPATH Addition

Windows %JMTL%\jmtlnoappserver.jar

UNIX $JMTL/jmtlnoappserver.jar
64 Javlin User Guide

Chapter 6: Configuring Javlin/JMTL
Configuring Javlin/JMTL for Level One
Integration

Javlin’s Level One integration provides integration of Javlin transactions
with the application server's JTA transactions. For more information on
Level One integration, see Javlin Integration with J2EE Application Servers
on page 3.

To configure your environment for Level One integration:

1 Set your environment as described in Core Javlin/JMTL Configuration on
page 62.

2 Add one of the following Javlin application server integration jar files to
your CLASSPATH environment variable. Select the jar file corresponding to
the application server you are using:

The JAR files are located in the Javlin installation directory (%JMTL% on
Windows or $JMTL on UNIX). Select one of these JAR files and add it to
your CLASSPATH, in addition to the core JAR files.

Application Server CLASSPATH addition

BEA WebLogic 6.1 jmtlwl61.jar

BEA WebLogic 7.0 jmtlwl70.jar
Release 6.1 65

Summary of Windows Environment Settings
Summary of Windows Environment
Settings

Environment
Variable

Description and Setting

OS_ROOTDIR Required by ObjectStore. Set to the ObjectStore
installation directory.

OSJI Shorthand for the ObjectStore Java installation
directory.

JMTL Shorthand for the Javlin installation directory.

PATH Required to locate tools and shared libraries. Setting
must include:

%JMTL%\bin
%OS_ROOTDIR%\bin
%OSJI%\bin

CLASSPATH Required to locate ObjectStore and Javlin classes.
Setting must include:

%JMTL%\xerces.jar
%JMTL%\jmtl.jar
%OSJI%\osji.jar
%OSJI%\tools.jar

For Level Zero integration, or when not using any
application server, add the following:

%JMTL%\jmtlnoappserver.jar

For Level One integration, add one of the following,
depending on the application server you use:

%JMTL%\jmtlwl61.jar
%JMTL%\jmtlwl70.jar
66 Javlin User Guide

Chapter 6: Configuring Javlin/JMTL
Summary of UNIX Environment Settings

Environment
Variable

Description and Setting

OS_ROOTDIR Required by ObjectStore. Set to the ObjectStore
installation directory.

OSJI Shorthand for the ObjectStore Java installation
directory.

JMTL Shorthand for the Javlin installation directory.

PATH Required to locate tools. Setting must include:

$JMTL/bin
$OS_ROOTDIR/bin
$OSJI/bin

CLASSPATH Required to locate ObjectStore and Javlin classes.
Setting must include:

$JMTL/xerces.jar
$JMTL/jmtl.jar
$OSJI/osji.jar
$OSJI/tools.jar

For Level Zero integration, or when not using any
application server, add the following:

$JTML/jmtlnoappserver.jar

For Level One integration add one of the following,
depending on the application server you use:

$JMTL/jmtlwl61.jar
$JMTL/jmtlwl70.jar
Release 6.1 67

Building and Deploying Applications
Building and Deploying Applications
This section describes how to build and deploy Enterprise Java Beans in
supported J2EE application servers. When using Javlin, you follow the same
procedure you would use with the application server alone, except that you
also perform the steps outlined in this section.

Regardless of which application server you use, you must do the following:

• Code and compile your data-model classes, bean classes, and home and
remote interfaces.

• Run OSJCFP on any classes that are to be stored in Javlin databases,
making them persistence capable. Some classes are not persistence-
capable but can access persistence-capable classes. Such classes should be
made persistence-aware. For more information, see the ObjectStore Java
API User Guide, Chapter 8.

LD_LIBRARY_PATH Required to locate ObjectStore shared libraries on
Solaris. Setting must include:

$OS_ROOTDIR/lib
$OSJI/lib

LD_PRELOAD On HP-UX 32 bit platforms and on Solaris, you need
to specify the environment variable LD_PRELOAD to
ensure that the C++ delete operators are loaded in
the correct order.

On Solaris:

set LD_PRELOAD=libosopdel.so

On HP-UX:

set LD_PRELOAD=libos.sl:libosth.sl

Environment
Variable

Description and Setting
68 Javlin User Guide

Chapter 6: Configuring Javlin/JMTL
After you have completed these steps, refer to the following section for
server-specific procedures:

• Building and Deploying on WebLogic 6.1 or 7.0 on page 69

Note Javlin applications use Javlin’s ObjectStore server. See Managing ObjectStore
in the ObjectStore documentation set for information on starting ObjectStore
servers.

Building and Deploying on WebLogic 6.1 or 7.0
If you are using the WebLogic 6.1 or 7.0 Application Server, do the following:

1 Write the beans' deployment descriptors, including the following:

- The standard EJB descriptor (ejb-jar.xml)

- The WebLogic-specific descriptor (weblogic-ejb-jar.xml)

- The Javlin-specific deployment descriptor in XML format (jmtl-
dd.xml)

2 Generate the implementations for the home and remote interfaces by
running the WebLogic EJBC tool on the JAR file created in the previous
step. The output of EJBC is a JAR file that contains the deployable bean.

3 Create a manifest file to include with the JAR file.

4 Package the .class files and the deployment descriptors into a JAR file.
The deployment descriptors must be under the META-INF subdirectory of
the packaged JAR file.

5 Deploy the beans in the application server as you would for any EJB
application that uses the WebLogic Server. That is, copy the bean to the
/config/domain_name/applications directory of the WebLogic
Administration server, where domain_name is the name of the WebLogic
Server domain in which you are deploying the application.

Alternatively, you can deploy the beans with the WebLogic
Administration Console.

6 Start the WebLogic server.
Release 6.1 69

Building and Deploying Applications
70 Javlin User Guide

Chapter 7
Using the Javlin Console

The Javlin Console is used to monitor transactional activity against caches
running in a Javlin application.

Contents This chapter explains how to use the Javlin Console. It covers the following
topics:

Starting the Javlin Console 71

Configuring Data Displays 75

Modifying Preferences 82

Saving and Reusing Console Settings 83

Stopping the Console 83

Starting the Javlin Console
To start the Javlin Console, the console.jar file must be included in your
CLASSPATH environment variable. Define the CLASSPATH as follows:

On Windows:

set CLASSPATH=%JMTL%\console.jar;%CLASSPATH%

On UNIX:

setenv CLASSPATH $JMTL/console.jar:$CLASSPATH

where the JMTL environment variable is set to the Javlin installation
directory.
Release 6.1 71

Starting the Javlin Console
To start the Javlin Console, type the following command at the Windows or
UNIX command prompt:

java com.odi.jmtl.tools.Console

Alternatively, the Javlin Console can be started by using the .jar file as the
command line argument as follows:

On Windows:

java -jar %JMTL%\console.jar

On UNIX:

java -jar $JMTL/console.jar

The Javlin Console is a standalone tool that does not require any of the other
Javlin classes. The tool can be run from any system with a supported Java
runtime environment.

Connecting to a Javlin Application
The Javlin Console communicates with your Javlin application through a
socket on a specified port number. By default, every Javlin application opens
port 10001 to listen for requests from the Javlin Console. If that port is
already in use, the Javlin application will select another port. At startup, your
Javlin application will display the port number on standard output in the
following manner:

> java <your-application-name>
Console ServerSocket started on port: 10001
...

When the Javlin Console starts up, connect to your Javlin application by
selecting the File | Connect menu option. This displays a dialog box with the
default values for the host and port number. Type in the correct host and port
number of the Javlin application you wish to monitor.
72 Javlin User Guide

Chapter 7: Using the Javlin Console
The Javlin Console will then display the CachePool Manager for the Javlin
application on the specified host and port.
Release 6.1 73

Starting the Javlin Console
The transactional activity can be summarized at multiple levels:

• CachePool Manager (all caches)

• CachePool (all caches in a CachePool)
• MVCCs (all MVCC caches in a CachePool)
• Updaters (all update caches in a CachePool)
• Cache (one cache instance)

To select a summarization level, click CachePool Manager, CachePool, MVCCs,
Updaters, or Cache in the left pane.

Disabling Javlin Monitoring
You can disable the collection of monitoring information in your Javlin
application by setting the com.odi.jmtl.console property to false. Add
the property to the command line of your Javlin application as follows:

java -Dcom.odi.jmtl.console=false <your-application-name>

Overriding the Default Port Number
You can override the default port number when you start your Javlin
application by setting the com.odi.jmtl.console property. Replace the
<port-number> with the desired port number using the following
command:

java -Dcom.odi.jmtl.console=<port-number> <application-name>

Type the same port number in the Javlin Console to connect to your
application.
74 Javlin User Guide

Chapter 7: Using the Javlin Console
Configuring Data Displays
The Javlin Console presents the information in three different formats. You
can choose to view the information on three types of panels:

• Data

• Graph

• Alerter
Click on the appropriate tab to select a panel. The panels and data presented
are described in the following sections.

Data Panel
The Data panel displays data elements, or transaction counters, for three types
of transactions executing against caches:

• Virtual
• Global
• ObjectStore
The dependencies between these three types of transactions are described in
Global and Virtual Transactions on page 6 and Scheduling Transactions on
page 58.
Release 6.1 75

Configuring Data Displays
To view selected transaction counters on the Data panel:

1 Click on the Data tab in the right pane.

2 Click on next to CachePool Manager, CachePool, MVCCs, Updaters or
Cache in the left pane to select a summarization level.

3 Click on next to Virtual, Global or ObjectStore in the right pane to select
the transaction counters.
76 Javlin User Guide

Chapter 7: Using the Javlin Console
Virtual
Transaction
Counters

The virtual transaction (VT) section of the Data panel displays several data
elements, or counters, containing information about virtual transactions that
have executed or are executing in the selected cache(s). These counters can
be used to analyze the performance of a Javlin application. For example, the
Average VT per OT counter provides a measure of the amount of transaction
batching occurring in the application.

The virtual transaction counters are described in the following table.

Virtual Transaction
Counter

Description

Committed VTs Number of committed virtual transactions

Aborted VTs Number of aborted virtual transactions

Top Level Committed
VTs

Number of committed virtual transactions that were
not controlled by a higher-level virtual or global
transaction

Read VTs Total number of read virtual transactions

Update VTs Total number of update virtual transactions

Concurrent VT Count Number of virtual transactions executing
concurrently

Peak Concurrent VTs Highest number of concurrent virtual transactions

VT Throughput Average number of virtual transactions (x1000) per
second

Average VT per GT Average number of virtual transactions controlled
by a global transaction

Average VT per OT Average number of virtual transactions scheduled
together in a single ObjectStore transaction

Average Time per VT Average time where a virtual transaction was active

Idle VT Time Total time where no virtual transaction was active

Percent Idle VT Time Percent of total time where no virtual transaction
was active
Release 6.1 77

Configuring Data Displays
Global
Transaction
Counters

The global transaction (GT) section of the Data panel displays several data
elements, or counters, containing information about the global transactions
that have executed or are executing in the selected cache(s).

Global transactions (as displayed in the Javlin Console) includes both JTA
transactions and top-level virtual transactions. JTA transactions are initiated by
a J2EE application server or bean using the javax.jta.UserTransaction
interface, while a top-level virtual transaction is initiated by a Javlin bean
using the com.odi.jmtl.VirtualTransaction interface. Virtual
transactions are considered top-level virtual transactions when they are not
controlled by a global transaction or a higher-level virtual transaction.

The global transaction counters are described in the following table.:

Global Transaction
Counter

Description

Committed GTs Number of all committed JTA transactions and
committed top-level virtual transactions

Aborted GTs Number of all aborted JTA transactions and aborted
top-level virtual transactions

Quick Committed GTs Number of JTA transactions and top-level virtual
transactions that can be safely committed before the
ObjectStore transaction is committed

Read GTs Number of read-only JTA transactions and read-
only top-level virtual transactions

Average GT Per OT Average number of JTA transactions and top-level
virtual transactions per ObjectStore transaction

Update GTs Total number of update JTA transactions and
update top-level virtual transactions

Pending GTs Current number of pending JTA transactions and
pending top-level virtual transactions
78 Javlin User Guide

Chapter 7: Using the Javlin Console
ObjectStore
Transaction
Counters

The ObjectStore transaction (OT) section of the Data panel contains
information about the physical transaction. The ObjectStore transaction
counters are described in the following table:

ObjectStore
Transaction
Counter

Description

Committed OTs Number of all committed ObjectStore transactions

Aborted OTs Number of all aborted ObjectStore transactions

Percent OT Time Percentage of time an ObjectStore transaction is
active

Checkpointed OTs Number of all checkpoint ObjectStore transactions

OT Time Total time of all the committed and checkpoint
ObjectStore transactions

OT Throughput Average number of ObjectStore transactions (x1000)
per second
Release 6.1 79

Configuring Data Displays
Graph Panel
The Graph panel allows you to select a particular set of data to be graphed
against elapsed time. To select the data you wish to graph:

1 Click Graph to display the panel.

2 Click add (Add/remove counter) at the bottom of the Graph panel. The
Listeners dialog displays.

Available Counters lists counters that you can select for display on the Graph
panel. Existing Counters lists counters that are currently selected for display
on the Graph panel.

3 To add a counter to Existing Counters, first select a color by clicking on the
Color pull down menu. Next, click on a counter in the Available Counters
list and then click add . The selected counter displays in the
Existing Counters list.

4 To remove a counter from Existing Counters, select the counter from the list
and then click remove .

5 Click OK when you are satisfied with the contents of the Existing Counter
list.
80 Javlin User Guide

Chapter 7: Using the Javlin Console
6 On the Graph panel, click (Start recording data) to activate the display
of counters.

Alerter Panel
The Alerter panel allows you to select transaction counters and specify
thresholds for those counters. When a counter level reaches a specified level,
a warning is displayed on the Alerter panel.

To select the data you wish to be alerted on:

1 Click on Alerter to display the panel.

2 Click add (Add/remove counter) at the bottom of the Alerter panel. The
Listeners dialog displays.

Available Counters lists counters that you can select for display on the Alerter
panel. Existing Counters lists counters that are currently selected for display
on the Alerter panel.
Release 6.1 81

Modifying Preferences
3 To add a counter to Existing Counters, first select a color by clicking on the
Color pull down menu. Next, type a value for Threshold and select a value
for Interval. Finally, click on a counter in the Available Counters list and then
click add . The selected counter and color display in the Existing
Counters list.

4 To remove a counter from Existing Counters, select the counter from the list
and then click remove .

5 Click OK when you are satisfied with the contents of the Existing Counter
list.

Logging
Counters

The Log counter option allows you to log transaction counter alerts to a file.
When you add a counter to the Existing Counters list, you enable logging by
checking Log counter and then typing in a log file pathname before you click

 to add the counter.

Modifying Preferences
The Javlin Console allows you to modify default settings that control the
frequency of data updates and the synchronization of the different display
panels. Select Options | Preferences on the menu to modify these settings

Preference Description

Default table update rate Frequency of data panel update. Default is
every 2.5 seconds.

Default graph update rate Frequency of graph panel update. Default is
every 2.5 seconds.

Default graph tick count Number of intervals displayed on graph panel.
Default is 30 intervals.

Default alerter/logger
update rate

Frequency of alerter/logger update. Default is
every 2.5 seconds.

Default alerter/logger
threshold

Counter value threshold for alterer/logger.
Default is 10.

Default synchronization
graph rate

Frequency of graph synchronization. Default is
every 2.5 seconds.

Default synchronization
graph & table rate

Frequency of graph and data synchronization.
Default is every 2.5 seconds.
82 Javlin User Guide

Chapter 7: Using the Javlin Console
Saving and Reusing Console Settings
Once you have setup display and logging settings, you can save these
settings for reuse in a subsequent console session. To save console settings,
go the menu bar and select File | Save. In the Save dialog, type a filename to
save the console settings.

To reuse console settings in a subsequent console session, go to the menu bar
and select File | Open. In the Open dialog box, type the filename for the console
settings you wish to load.

Stopping the Console
To stop the Javlin Console, go to the menu bar and select File | Exit.

Default synchronization
graph & alerter rate

Frequency of graph and alerter
synchronization. Default is every 2.5 seconds.

Number of concurrent
thread requests

Number of concurrently executed thread
requests from data, graph and alterter panels.
Default is 4.

Preference Description
Release 6.1 83

Stopping the Console
84 Javlin User Guide

Release 6.1
Index
A
access mode

defined 7
routing 55
specifying 26

AddressSpaceSize attribute 18
applications, building and deploying with

Javlin 68
architecture, Javlin 2
attributes

AddressSpaceSize 18
boolean-value 23
byte-value 23
CachePoolName 26
CacheSize 18
character-value 23
ClassType 23
CommitIfIdle 18
CommitIfIdleMvcc 18
DebugLevel 16
DominantOperation 27
double-value 23
float-value 23
GroupOpenInterval 18, 19
integer-value 23
IsolationLevel 26
LockTimeout 19
long-value 24

MaxConcurrentTransactions 19
MethodArguments 23
MethodSignature (object

descriptor) 23
NumberOfMvccCaches 19, 38
NumberOfUpdateCaches 19, 38
object-value 24
PhysicalName (database descriptor) 21
PhysicalName (root descriptor) 22
RetryLimit 27
RootObjectDescriptor 22
root-object-descriptor (root

descriptor) 22
short-value 24
StorageName 22
string-value 24
TransactionAttribute 27
Update 26
UserTransactionUsage 19

B
boolean-value attribute 23
building Javlin applications 68
byte-value attribute 23

C
Cache class

getCurrent() 35
85

February 2003
getRootValue() 36
Cache Pool Manager

configuring 15
descriptor 15
example configuration 16

Cache Pools
configuring 17
defined 5
descriptor 17
example configuration 19
monitoring 71
naming with method descriptor 26
NumberOfMvccCaches attribute 38
NumberOfUpdateCaches attribute 38

Cache Storage
configuring 20
example configuration 24

CachePool attribute 38
CachePool class

createDatabase() 35
CachePoolConfiguration class 34
CachePoolManager class 34

getCachePool() 35
setDBMapping() 35

CachePoolManagerConfiguration
class 34

CachePoolName attribute 26
caches

defined 5
monitoring 71
multicache configuration 38
MVCC, defined 5
MVCC, working with 37
routing 55
single-cache configuration 34
update 5

CacheSize attribute 18
character-value attribute 23
CLASSPATH

level one integration 65
level zero integration 64

UNIX 67
Windows 66

ClassType attribute 23
CommitIfIdle attribute 18
CommitIfIdleMvcc attribute 18, 60
committing virtual transactions 42
component methods, configuring 26
component-descriptor tag 25
configuration file

deployment-descriptor names 14
external entities 13
validating 12
XML format 12

configuring
Cache Pool 17
Cache Pool Manager 15
Cache Storage 20
component methods 26
deployed components 25
Javlin 11
loading at run time 11

console
configuring displays 75
defined 71
preferences 82
saving settings 83
starting 71
stopping 83

D
database roots

creating 35
descriptor 22, 36
logical name 34
retrieving 35

databases
creating 35
descriptor 21
logical name 34
path change 35

DebugLevel attribute 16
86 Javlin User Guide

Index
default method descriptor 26
deployed components

configuring 25
example configuration 27

deploying Javlin applications 68
descriptors

Cache Pool 17
Cache Pool Manager 15
database 21
default method 26
loading at run time 11
method 26
object 22
root 22, 36

DOCTYPE statement 12
dominant transaction 7
DominantOperation attribute 27
double-value attribute 23
DTD location 12

E
entity reference 13
ENTITY statement 13
environment variables

CLASSPATH 64, 65
JMTL 62
OS_ROOTDIR 62
OSJI 62
shared library path 62
UNIX 67
Windows 66

example deployment descriptors
Cache Pool 19
Cache Pool Manager 16
Cache Storage 24
deployed components 27
Javlin configuration 29

external entities 13

F
float-value attribute 23

G
global transactions

defined 6
GlobalTransaction class

AbortAndRetryException 43
RetryException 43

GroupOpenInterval attribute 18, 19
GroupOpenIntervalMvcc attribute 59

I
initializing configuration information 11
integer-value attribute 23
isolation levels

defined 8
listed 8
routing 55
scheduling 58
specifying 26

IsolationLevel attribute 26

J
Javlin

basic tasks 4
building and deploying applications 68
declarative configuration 11
example configuration 29
overview 1, 71
process architecture 2
programmatic configuration 33

L
level one integration

CLASSPATH 65
defined 3

level two integration
Release 6.1 87

February 2003
defined 4
level zero integration

CLASSPATH 64
defined 3

levels, isolation
defined 8
listed 8
routing 55
scheduling 58
specifying 26

loading configuration information 11
local transactions 6
location of DTD 12
LockTimeout attribute 19
logical database name 34
logical root name 34
long-value attribute 24

M
MaxConcurrentTransactions attribute 19
method descriptor 26
MethodArguments attribute 23
MethodSignature attribute

object descriptor 23
monitoring

caches 71
disabling 74

MVCC caches
defined 5
routing 56
routing restrictions 38
using 37

N
noUserTransactions value 19
NumberOfMvccCaches attribute 19, 38
NumberOfUpdateCaches attribute 19, 38

O
object descriptor 22
object-value attribute 24
Operation Context

creating 41
optimizing transactions 49
OSJCFP 68

P
performance

improving 49
monitoring 71

persistence
creating databases 35
making classes persistence capable 68

PhysicalName attribute
database descriptor 21
root descriptor 22

post-processing 68
process architecture, Javlin 2
programming restrictions

accessing persistent data 48
retaining persistent references 47
thread synchronization 49
use of OSJI classes 47

R
retry limit, setting 27
RetryLimit attribute 27
RootMapping 34
RootObjectDescriptor attribute 22
root-object-descriptor attribute

root descriptor 22
roots, database

creating 35
descriptor 22, 36
logical name 34
retrieving 35

routing
88 Javlin User Guide

Index
caches 55
defined 8
isolation levels 57
restrictions 38

S
scheduling 58

CommitIfIdleMvcc 60
GroupOpenIntervalMvcc 59
transactions 58
virtual transaction concurrency 58

short-value attribute 24
specifying DTD location 12
StorageName attribute 22
string-value attribute 24

T
tasks, basic Javlin 4
threads

synchronization restrictions 49
transactional caching 4
TransactionAttribute attribute 27
transactions

aborting 42
attribute, setting 27
beginning 41
committing 42
dominant 7
example 43
global 6
local 6
optimizing 49
retrying 43
virtual 6

TransactionTry 44

U
Update attribute 26
update caches 5

userTransactionsPossible value 19
UserTransactionUsage attribute 19

V
validating configuration file 12
virtual transactions

aborting 42
accessing persistent data 48
beginning 41
committing 42
concurrency 58
exception handling 43
retaining persistent references 47
retrying 43
use of OSJI classes 47

VirtualTransaction class
abort() 42
begin() 41
commit() 42
isActive() 43
RetryException 43

X
XML statements

DOCTYPE 12
ENTITY 13
Release 6.1 89

February 2003
90 Javlin User Guide

	Javlin User Guide
	Preface
	Javlin Overview
	Javlin Architecture
	Javlin Integration with J2EE Application Servers
	Basic Javlin Tasks
	Key Concepts
	Transactional Caching
	Javlin Caches
	Global and Virtual Transactions
	Operation and Global Contexts
	Access Mode
	Isolation Level
	Routing
	Scheduling
	Cache Storage

	Declarative Configuration
	XML-Based Configuration File
	The Javlin Document Type Definition (DTD)
	External Entities in the Configuration File
	Names used by Javlin Deployment Descriptors

	Configuring The Cache Pool Manager
	XML Syntax
	Cache Pool Manager Descriptor Details
	Example

	Configuring Cache Pools
	XML Syntax
	Cache Pool Descriptor Details
	Example

	Configuring Cache Storage
	XML Syntax
	Database Descriptor Details
	Root Descriptor Details
	Object Descriptor Details
	Example

	Configuring Deployed Components
	XML Syntax
	Method Descriptor Details
	Example

	A Complete Example

	Programmatic Configuration
	Setting Up Transactional Caches
	Creating Databases
	Creating and Retrieving Roots
	Controlling Root Object Placement

	Working with MVCC Caches
	Configuring a Cache Pool Manager for Multiple Caches
	Restrictions on Routing to an MVCC Cache

	Virtual Transactions
	Life Cycle of a Virtual Transaction
	Beginning a Transaction
	Committing a Transaction
	Aborting a Transaction
	Example of a Transaction

	Retrying a Transaction
	Classes to Use
	TransactionTry Methods
	Using TransactionTryRuntimeExceptionsOnly
	Using TransactionTryWrappedExceptions
	Extending TransactionTry

	Programming Restrictions
	Use of ObjectStore Java Classes
	Retaining Persistent References Across Transactions
	Accessing Data Outside of a Transaction
	Thread Synchronization

	Tips for Optimizing Transactions

	Routing and Scheduling
	Routing Transactions
	Initializing a Global Context
	Routing to a Cache Pool
	Routing to a Cache
	Routing to an MVCC Cache
	Routing Summary

	Scheduling Transactions
	Group Open Interval
	Commit If Idle

	Configuring Javlin/JMTL
	Configuring Javlin/JMTL Using Ant
	Core Javlin/JMTL Configuration
	Configuring Javlin/JMTL for Level Zero Integration
	Configuring Javlin/JMTL for Level One Integration
	Summary of Windows Environment Settings
	Summary of UNIX Environment Settings
	Building and Deploying Applications
	Building and Deploying on WebLogic 6.1 or 7.0

	Using the Javlin Console
	Starting the Javlin Console
	Connecting to a Javlin Application
	Disabling Javlin Monitoring
	Overriding the Default Port Number

	Configuring Data Displays
	Data Panel
	Graph Panel
	Alerter Panel

	Modifying Preferences
	Saving and Reusing Console Settings
	Stopping the Console

	Index

