
ObjectStore Release Notes

Release 6.1
February 2003

Copyright

ObjectStore Release Notes

ObjectStore Release 6.1 for all platforms, February 2003

© 2003 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. This manual is also copyrighted and all rights are reserved. This
manual may not, in whole or in part, be copied, photocopied, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from
Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software
Corporation assumes no responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Allegrix, Leadership by Design, Object Design, ObjectStore, Progress, Powered by Progress,
Progress Fast Track, Progress Profiles, Partners in Progress, Partners en Progress, Progress
en Partners, Progress in Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed,
SmartBeans, SpeedScript, and WebSpeed are registered trademarks of Progress Software
Corporation or one of its subsidiaries or affiliates in the U.S. and other countries. A Data
Center of Your Very Own, Apptivity, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BPM,
Cache-Forward, Empowerment Center, eXcelon, EXLN, Fathom, Future Proof, Progress for
Partners, IntelliStream, Javlin, ObjectStore Browsers, OpenEdge, POSSE, POSSENET,
Progress Dynamics, Progress Software Developers Network, RTEE, Schemadesigner,
SectorAlliance, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel,
SmartQuery, SmartViewer, SmartWindow, Stylus, Stylus Studio, WebClient, Who Makes
Progress, XIS, XIS Lite, and XPress are trademarks or service marks of Progress Software
Corporation or one of its subsidiaries or affiliates in the U.S. and other countries.

Any other trademarks and service marks contained herein may be the property of their
respective owners.

Contents

Preface . v

Release Information . 1

New and Changed Features . 1

ossg’s Default Front-End Parser . 1

Improved Support for Failover . 2

Replication API . 2

Defragmenting ObjectStore Databases . 2

Support for the Sun Clusters 3.0 . 3

Architecture Sets for Release 6.1 . 3

Neutralizing Virtual Base Classes . 4

Changing the Windows Registration Location . 5

Preventing Excessive Page Faulting . 6

Changes to Dump and Load . 6

New Macro for Functions Used in Queries . 8

Optimizing Collections . 9

Compiling Single-Threaded Applications on Solaris. 9

objectstore::export() Renamed. 9

Changes to the ObjectStore Java Interface (OSJI) 10

Changes to Javlin/JMTL. 10

Changes to the Documentation . 12

Summary of Changes . 12

Restrictions, Limitations, and Known Problems . 16

Incompatibilities Between Visual C++ 6 and 7 . 16

Red Hat Linux 8 Address Space Limitation . 17
Release 6.1 iii

Contents
Multi-process Dump and Load . 18

Address-Space Release Facility . 18

Generating Schema for Empty Abstract Classes. 18

Least-Space Allocation Strategy . 18

Vector Header Restrictions . 19

Allocator Framework Restrictions . 19

CMTL Restrictions . 19

DDML Restrictions . 20

Java Components of ObjectStore . 20

Using the Documentation with Netscape Browsers 27

Platform and Release Compatibility . 27

Compiler Compatibility . 27

Platform Configuration: Solaris 32-bit (SOL2C5) . 27

Platform Configuration: Solaris 64-bit (SOL64) . 28

Platform Configuration: Windows 32-bit VC6 (WINVC6). 30

Platform Configuration: Windows 32 bit VC7 (WINVC7) 30

Platform Configuration: Linux (LINX3) . 30

Index . 31
iv ObjectStore Release Notes

Preface

ObjectStore® is an object-oriented database management system suited for
rapid application development and deployment in multitiered
environments. It combines the data query and management capabilities of a
traditional database with the flexibility and power of C++ and Java
interfaces.

Purpose This document describes changes to ObjectStore for Release 6.1.

Audience This document is for administrators or developers responsible for the
installation and maintenance of ObjectStore. It is assumed that you are
familiar with the ObjectStore host platform and comfortable using the
operating system.

Installing this
release

For information about installing Release 6.1, see one of the following:

• ObjectStore Installation for Windows

• ObjectStore Installation for UNIX
Release 6.1 v

Preface
Notation Conventions
This document uses the following conventions:

Obtaining Support
To obtain information about purchasing technical support, contact your local
sales office listed at www.objectstore.net/contact (worldwide) or call 1-800-
962-9620 (in the United States).

Technical
Support

When you purchase technical support, the following services are available to
you:

• You can send questions to support@objectstore.net. Remember to include
your site ID in the body of the email message.

• You can call the Technical Support organization to get help resolving
problems. If you are in North America, call 781-280-4005. If you are
outside North America, refer to the Technical Support Web site.

Convention Meaning

Courier Courier font indicates code, syntax, file names, API
names, system output, and the like.

Bold Courier Bold Courier font is used to emphasize particular
code.

Italic Courier Italic Courier font indicates the name of an
argument or variable for which you must supply a
value.

Sans serif Sans serif typeface indicates the names of user interface
elements such as dialog boxes, buttons, and fields.

Italic serif In text, italic serif typeface indicates the first use of an
important term.

[] Brackets enclose optional arguments.

{ a | b | c } Braces enclose two or more items. You can specify
only one of the enclosed items. Vertical bars represent
OR separators. For example, you can specify a or b or
c.

... Three consecutive periods indicate that you can
repeat the immediately previous item. In examples,
they also indicate omissions.
vi ObjectStore Release Notes

Preface
• You can file a report or question with Technical Support by going to
www.objectstore.net/support.

• You can access the Technical Support Web site, which includes

- A template for submitting a support request. This helps you provide
the necessary details, speeding up response time.

- Frequently asked questions (FAQs) that you can browse and query.

- Online documentation for all ObjectStore products.

- White papers and short articles about using ObjectStore products.

- Sample code and examples.

- The latest versions of ObjectStore products, service packs, and publicly
available patches for downloading.

- Access to a support matrix that lists platform configurations supported
by this release; see www.objectstore.net/support/matrix.

- Support policies.

- Local phone numbers and hours when support personnel can be
reached.

Education
Services

Use the ObjectStore education services site
(www.objectstore.net/services/education) to learn about the standard
course offerings and custom workshops.

If you are in North America, you can call 1-800-477-6473 x4452 to register for
classes; if you are outside North America, refer to the Technical Support Web
site. For information on current course offerings or pricing, send e-mail to
classes@progress.com.

Web-Accessible Documentation
The www.objectstore.net/documentation Web site provides access to a full
set of product documentation for the current and one previous supported
release. To navigate to the documentation page, click Support for the support
page, and then click Documentation. A search utility enables you to search
the documents for specific information. READMEs for every Service Pack
release to the present time are also available from this location. On occasion,
you are likely to find additional information or documentation clarification
posted between releases.
Release 6.1 vii

Preface
Your Comments
ObjectStore product development welcomes your comments about its
documentation. Send any product feedback to support@objectstore.net. To
expedite your documentation feedback, begin the subject with Doc:. For
example:

Subject: Doc: Incorrect message on page 76 of reference manual
viii ObjectStore Release Notes

Release Information

This release document describes Release 6.1 of ObjectStore. It includes the
following sections:

• New and Changed Features on page 1

• Restrictions, Limitations, and Known Problems on page 16

• Platform and Release Compatibility on page 27

New and Changed Features
The following sections describes features of ObjectStore that were added or
changed for Release 6.1. The last section, Summary of Changes on page 12,
summarizes all user-visible for this release.

ossg’s Default Front-End Parser
Previous to Release 6.1, the ObjectStore schema generation utility (ossg)
required you to use the -edgfe option to enable an improved front-end
parser that provides improved language support, including better support
for nested classes and templates. Starting with Release 6.1, this parser is the
default, and the -edgfe option is no longer recognized. If you wish to use the
pre-Release 6.1 front-end parser, you must invoke ossg with the -auditor
option. Note, however, that the pre-6.0 parser and the -auditor option will
no longer be supported at the next major release of ObjectStore.

The new default front-end parser requires you to use the OS_MARK_SCHEMA_
TYPE and OS_MARK_SCHEMA_TYPESPEC macros, as documented in the
ObjectStore C++ A P I Reference, Chapter 4 (“System-Supplied Macros”), and
in Building ObjectStore C++ Applications, Chapter 2 (“Working with Source
Release 6.1 1

Release Information
Files”). For a detailed description of the ossg utility, see “ossg: Generating
Schemas” in Managing ObjectStore, Chapter 4 (“Utilities”).

Note If your makefile invokes ossg with the -edgfe option, you must edit the
makefile to remove this option.

Improved Support for Failover
Release 6.1 provides improved support for failover, as follows:

• If you are using failover that is built into ObjectStore, you can configure
failover so that the primary server and the secondary (or standby) server
share the load during normal ObjectStore operations. In the event of
failover, the secondary server assumes the full load.

• If you are using ObjectStore on the Sun Clusters 3.0 operating system (see
Support for the Sun Clusters 3.0 on page 3), you can configure ObjectStore
to use the support for failover provided by the operating system as an
alternative to ObjectStore-managed failover.

For detailed information about failover, see Managing ObjectStore, Chapter 6
(“High Availability of Data”).

ObjectStore’s support for failover also allows you to perform rolling
upgrades when installing a new release of ObjectStore. A rolling upgrade
allows you to install a new release of ObjectStore without interrupting
service to clients. For more information, see “osconfig: Configuring
ObjectStore” in Managing ObjectStore, Chapter 4 (“Utilities”).

Replication API
Release 6.1 introduces the following classes for managing database
replication within an application:

• os_replicator

• os_replicator_options

• os_replicator_statistic_info

For more information about these classes, see os_replicator in C++ A P I
Reference, Chapter 2 (“Class Library”).

Defragmenting ObjectStore Databases
Release 6.1 provides support for defragmenting ObjectStore databases. This
support includes:
2 ObjectStore Release Notes

Release Information
• The os_database::get_fragmentation() function, which returns
statistics on database fragmentation.

• The new -f option to the ossize utility. This option causes ossize to call
the os_database::get_fragmentation() function.

• New server parameters that can be used to prevent fragmentation:

- Cluster Growth Policy

- Database File Growth Policy

- RAWFS Partition Growth Policy

• New functions that can also be used to prevent fragmentation:

- os_cluster::set_size()

- os_database::set_size()

- os_database::set_size_in_sectors()

• You can access these functions from the command-line with the
osdbcontrol utility, using two new options: -cluster_size and -size

For information about defragmenting ObjectStore databases, see “Managing
Database Fragmentation” in Chapter 1 (“Overview of Managing
ObjectStore”) of Managing ObjectStore.

Support for the Sun Clusters 3.0
Release 6.1 supports Sun Clusters 3.0. This support enables ObjectStore to
use the failover support that is built into the Sun Clusters operating system.
For more information, see Improved Support for Failover on page 2.

Architecture Sets for Release 6.1
Release 6.1 supports the following categories of architecture sets for use with
the ossg -arch option when neutralizing schema:

• Standard architecture sets

• Versioned architecture sets

• User-defined architecture sets

In addition to the above architecture sets, Release 6.1 supports two other sets
for use when neutralizing schema that includes virtual base classes; see
Neutralizing Virtual Base Classes on page 4.

Note also that ossg has a new option, -showsets, which lists all architecture
sets and their contents.
Release 6.1 3

Release Information
Standard Architecture Sets
The standard architecture sets meet the needs of most applications that
require neutralization. These sets are:

• all32

• all64

Note that the all set is no longer supported. Support for this set has been
removed because ossg no longer supports neutralization across all 32-bit
and 64-bit platforms for applications that use the collections facility. If you
use the all set in a makefile or any other scripts, you must remove it and
substitute either all32 or all64.

Versioned Architecture Sets
Starting with Release 6.1, you can use a versioned architecture set. A
versioned architecture set contains only those platforms that are supported
on a particular release of ObjectStore. For example, all32_610 contains only
those 32-bit platforms that are supported on Release 6.1. Unlike the contents
of standard architecture sets, the contents of versioned architecture sets do
not change from release to release.

For more information, see “Versioned Architecture Sets” in Building
ObjectStore C++ Applications, Chapter 5 (“Building Applications for Multiple
Platforms”). You can list all architecture sets and their contents by invoking
ossg with the -showsets option, as described in “ossg: Generating
Schemas” in Managing ObjectStore, Chapter 4 (“Utilities”).

User-Defined Architecture Sets
Release 6.1 allows you to define your own architecture sets, which can be
specified as arguments to ossg‘s -arch option. To define an architecture set,
use the OS_USER_ARCH_SET environment variable, as described in Managing
ObjectStore, Chapter 3 (“Environment Variables”).

Neutralizing Virtual Base Classes
If you are neutralizing schema against all 32-bit platforms, and the schema
contains virtual base classes that use other virtual base classes, the ossg
schema generator for Release 6.1 will prompt you to replace the virtual base
classes with forced-order base classes. Replacing virtual base classes with
forced-order classes ensures that the allocation order for the virtual base
classes is the same across all 32-bit platforms.
4 ObjectStore Release Notes

Release Information
Forced-order base classes are needed because of differences in the way
different platforms allocate the virtual base classes. On linux3 (gcc3)
platforms, virtual base classes are allocated in inheritance order. Currently,
all other 32-bit platforms use post-traversal order. This difference results in
a different layout order that requires neutralization.

If you are neutralizing against all 32-bit platforms except linux3, and your
schema contains virtual base classes that use virtual base classes, you can
specify the all32vbtrav architecture set to prevent the need for forced-order
classes during neutralization. (The use of forced-order classes can increase
code size.) For more information, see “Neutralizing the Allocation Order of
Virtual Base Classes” in Building ObjectStore C++ Applications, Chapter 5
(“Building Applications for Multiple Platforms”). For more information
about architecture sets, see Architecture Sets for Release 6.1 on page 3.

Changing the Windows Registration Location
Release 6.1 enables you to change the Windows registry location that is used
by ObjectStore. Changing the registry location is especially useful when you
have embedded ObjectStore in an application. By changing the registry
location, you can prevent another application that also uses ObjectStore from
overwriting information in the registry location that your application uses.

You can use the following to change the registry location:

• os_authentication class — For more information about this new class,
see the description of the class in Chapter 2 (“Class Library”) of the C++
A P I Reference.

• osserver -r — For more information about the new -r option to
osserver, see “osserver: Starting the Server” in Chapter 4 (“Utilities”) of
Managing ObjectStore. Note that the oscmgr6 utility for starting the cache
manager now has the same new -r option.

• OS_REMOTE_AUTH_REGISTRY_LOCATION — For more information about
this new environment variable, see “osserver: Starting the Server” in
Chapter 3 (“Environment Variables”) of Managing ObjectStore.

For information about changing the registry location on NT machines, see
“Setting the Registry Location for ObjectStore (Windows Only)” in Managing
ObjectStore, Chapter 8.
Release 6.1 5

Release Information
Preventing Excessive Page Faulting
Release 6.1 provides the following functions of the objectstore class that
enable you to prevent excessive page faults by disabling address markers:

• objectstore::get_asmarkers_useless()

• objectstore::set_asmarkers_useless()

You can also use a new environment variable, OS_ASMARKERS_USELESS, to
disable address markers. For information about the environment variable,
see the description in Chapter 3 (“Environment Variables”) of Managing
ObjectStore. The functions are described in Chapter 2 (“Class Library”) of the
C++ A P I Reference.

Changes to Dump and Load
Release 6.1 includes enhanced versions of the ObjectStore osdump and
osload utilities. Changes to these utilities include:

• Support for multiple processors in both osdump and osload. The option to
specify the use of multiprocessors is -pr.

• Support for the ability to restart the osload process.

• The mechanism for generating the source code for loader applications is
moved from osdump to osload. This option to specify this operation
remains -emit.

• Elimination of the -ds option to dump the database schema. The database
schema is always dumped in Release 6.1.

For more information, see osdump and osload in Chapter 4 (“Utilities”) of
Managing ObjectStore.

Using Dump and Load to Migrate Databases
If you plan to use osdump and osload to migrate databases from Release 5.1
or release 6.0, you should always check the ObjectStore Technical Support
Web site (www.objectstore.net/support) for the most recent version of
each of these utilities.

The dump and load subsystem has undergone considerable revision since
the last release. Data files dumped with prior releases of osdump are not
compatible with current and future releases of osload. The databases from
which those files were generated will need to be re-dumped with an updated
version of osdump.
6 ObjectStore Release Notes

Release Information
Updated versions of osdump for ObjectStore 5.1 and ObjectStore 6.0 can be
obtained by contacting ObjectStore Technical Support. If you need to run
osdump or osload with more than one process under any version of
Microsoft Windows, you need to obtain updated versions from support as
well. If you need to upgrade an OSJI database on any platform you must
obtain updated libraries as well.

Applications built or linked with libosdump or libosload will at the very
least need to be recompiled and relinked to take advantage of recent bug
fixes. The following APIs have changed as well and may require code
changes for some applications:

• os_Database_table has changed to allocate at the cluster level rather
than the segment so any function calls which used to take an os_Segment
as an argument will now take an os_Cluster.

• os_Database_table::insert() has been replaced with explicitly named
function calls. This eliminates the confusion of 12 different overloadings
of the insert() function.

• os_Loader::load() has been changed to os_Loader::start_load().

New osload Features
New features of osload in 6.1 include

• resumption of work in the event of failure

• an easier process to generate a schema specific osload

• fewer required command line arguments.

Resumption of osload
In the event of failure during load, do not remove any temporary databases
and simply re-start osload. The osload application will look for a current
work database and attempt to resume based on the state of the found work
database. In general this is only useful if the failure is due to hardware or
user failures , such as out of disk space, network failure, or user
interruptions.

Easier schema generation

The updated process to generate a schema specific osload:

1 Generate a 6.1 application schema; for example, my_new_schema.adb

2 Emit the osload specializations required for that schema; for example:

osload -emit my_new_schema.adb
Release 6.1 7

Release Information
3 Compile the new osload with the files generated in step 2. You will need
to update the makefile with your application specific libraries and
headers.

Simplified osload usage

The usage of osload has changed and it no longer requires you to input the
dumped file names. By default osload will look for a file named db_
table.dmp in the current directory and, using that master file, it builds the
work file list. If the files are located in a directory other than the current
directory the -dir switch must be used.

Performance Improvements
New features of osdump and osload in ObjectStore 6.1 and post-ObjectStore
5.1.5 include performance and scalability improvements. General
performance improvements require no additional steps, while scalablity
improvemnts are acheived by running osdump or osload with more than one
process. To do so use the -pr switch and provide the number of process to
do the work (for example. -pr 2).

Note on Multi-process osdump and osload
There is a fair amount of overhead necessary to manage the child processes
in the 6.1 release so it may at times be slower than running osload with a
single process. (It is expected that this overhead will be reduced in the
future). The dump and load work is partitioned among child processes by
the segments in a supplied database. In general, if the segments to be
dumped or loaded are large (i.e., greater than 100 MB) and you have more
than one in a given database, you should use multi-process osdump or
osload. On the other hand, if you have a database with 2000 segments of
approximately 5 MB each or a database with one segment approximately
2GB in size, you should use osdump or osload with a single process.

New Macro for Functions Used in Queries
Release 6.1 provides a new macro, OS_MARK_QUERY_FUNCTION_WITH_
NAMESPACE(), for use in schema source files to include a query function in
the schema. Use this macro instead of the OS_MARK_QUERY_FUNCTION()
macro when the function is a member of a class that is declared in a
namespace. For more information about the OS_MARK_QUERY_FUNCTION_
WITH_NAMESPACE() macro, see the C++ Collections Guide and Reference,
Chapter 9.
8 ObjectStore Release Notes

Release Information
Optimizing Collections
Previous to Release 6.1, you could optimize the creation of transient sets,
lists, and cursors by manually adding an optimization flag to the constructor.
The flag would instruct ObjectStore to use hard pointers instead of soft
pointers for the constructed type.

Release 6.1 introduces the following changes for optimizing transient sets,
lists, and cursors:

• The os_cursor::optimized flag is no longer needed to construct an
optimized transient cursor. By default, all transient cursors use hard
pointers.

• Two new defines have been added for the release: _OS_COLL_LIST_
OPTIMIZE and _OS_COLL_SET_OPTIMIZE. By setting these defines in your
application or on the compile line, users can globally change their
applications to use transient lists and sets that are based on hard pointers,
without having to specify the optimization flags in the constructors.

For more information about these optimizations, see “Compiling for
Collections Optimization” in C++ Collections Guide and Reference, Chapter 2.

Compiling Single-Threaded Applications on Solaris
When using the Solaris compiler to compile single-threaded applications, it
is no longer necessary to use the -mt option. You must use this option when
compiling a Release 6.1 application only if your application uses multiple
threads. Refer to the Solaris documentation for more detailed information
about the -mt option.

Note that, if you want a Release 6.1 application to use a Release 6.0 cache
manager, you must compile the application with the -mt option, even if it is
single-threaded. In this situation, however, the performance of the
client/cache interface will be the same as for a 6.0 application that uses a 6.0
cache manager — not as fast as for a 6.1 application that uses a new 6.1 cache
manager. For best performance and to avoid the overhead of linking with the
ObjectStore thread-safe library (libosth), 6.1 single-threaded applications
should use the 6.1 cache manager.

objectstore::export() Renamed
The objectstore::export() function has been renamed
objectstore::export_object() to reflect its purpose more clearly — to
export persistent, top-level objects. For more information about the function,
Release 6.1 9

Release Information
see its description in Chapter 2 (“Class Library”) of the C++ A P I Reference. If
you wish to continue using the old name, you must define OS_EXPORT_API
at the top of your source file, before the ObjectStore header files are included.

Changes to the ObjectStore Java Interface (OSJI)
Release 6.1 of the ObjectStore Java Interface (OSJI) now supports both JDK
1.3 and 1.4. Support for JDK 1.2 and earlier is no longer maintained.

Changes to Javlin/JMTL
In Release 6.1, Javlin and the Java Middle Tier Library (JMTL) have been
incorporated into the ObjectStore product and use the same release
numbering.

com.odi.jmtl.env.JVMEnviroment Class Renamed
The com.odi.jmtl.env.JVMEnviroment class has been renamed to
com.odi.env.JVMEnviroment. Java applications that use the
JVMEnvironment class need to be modified and recompiled.

com.odi.jmtl.env.JVMEnviroment.initialize() Method
Renamed
The com.odi.jmtl.env.JVMEnviroment.initialize() method is
replaced by com.odi.env.JVMEnviroment.deploy(). Any Java classes
using this method need to be modified and recompiled.

New Javlin/JMTL Deployment Descriptor Format
With Release 6.1, Javlin/JTML has a new deployment descriptor format. The
new deployment descriptor format requires the following XML
modifications:

Release 1.2 Element Release 6.1 Element

CachePoolManager cache-pool-manager

CachePools cache-pools

CachePool cache-pool

CacheStorage cache-storage

Databases databases

DatabaseDescriptor database-descriptor

Roots roots

RootDescriptor root-descriptor
10 ObjectStore Release Notes

Release Information
The new deployment descriptor format is defined by the DTD file
jmtl-dd.dtd located in jmtl.jar. To use the new format, change the
DOCTYPE entry from:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/xml/EnvConfig.dtd">

to:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd.dtd">

Release 6.1 includes a DTD file jmtl-dd-compat.dtd that you can use to
make existing Javlin/JMTL 1.2 XML deployment descriptor files compatible
with Release 6.1. To use this file, change the DOCTYPE entry from:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/xml/EnvConfig.dtd">

to:

<!DOCTYPE JVMEnvironment SYSTEM "JMTL:com/odi/jmtl/jmtl-dd-compat.dtd">

New Cache Pool Attributes
Release 6.1 includes new cache pool attributes that influence cache
performance. The new attributes are:

• CommitIfIdle

• CommitIfIdleMvcc

• GroupOpenInterval

• GroupOpenIntervalMvcc

• LockTimeout

• MaxConcurrentTransactions

For more information on these attributes, see “Declarative Configuration” in
the Javlin User Guide.

Integration with WebLogic Server 7.0
Release 6.1 includes a new application server specific jar file that provides
level one integration with BEA WebLogic Server 7.0.

RootObjectDescriptor root-object-descriptor

Component component-descriptor

Method method

MethodDescriptor method-descriptor

ExtentDescriptor unsupported

FinderDescriptor unsupported

Release 1.2 Element Release 6.1 Element
Release 6.1 11

Release Information
Updated Examples Using Ant Build Files
The Javlin/JMTL examples have been updated to use Apache Ant to
simplify configuration, building, and deployment. For additional
information on using Ant, see the README.html file in the examples
directory.

Changes to the Documentation
The following changes have been made to the documentation for Release 6.1:

• The ObjectStore online documentation has been reorganized into two
bookshelves:

- C++ bookshelf

- Java bookshelf

• The online documentation is delivered through WebHelp, which
provides full-text search capability.

• All of the documentation has been consolidated into the doc directory.
This directory is directly under the installation directory for ObjectStore
and contains the documentation for all installable components of this
release, regardless of whether or not you decide to install them all.

• The following features of ObjectStore were previously released but never
documented until this release:

- os_schema_evolution::set_explanation_level(): See the
description in Chapter 2 (“Class Library”) of the C++ A P I Reference.

- os_schema_evolution::set_resolve_ambiguous_void_

pointers(): See the description in Chapter 2 (“Class Library”) of the
C++ A P I Reference.

- osconfig: See the description in Chapter 4 (“Utilities”) of Managing
ObjectStore.

• The Javlin User Guide contains a new chapter titled “Chapter 7: Using the
Javlin Console”

Summary of Changes
The following sections summarize all user-visible changes to ObjectStore for
Release 6.1, including changes that have been more fully described in the
preceding sections. The information in these sections is provided as a
migration aid for users who might want to know at a glance how Release 6.1
will impact their applications and scripts. Each section also includes
12 ObjectStore Release Notes

Release Information
references to the relevant parts of the ObjectStore documentation for more
detailed information about the changes.

New C++ Classes and Functions
The following classes and functions have been added to the ObjectStore API
for Release 6.1:

• objectstore::get_asmarkers_useless()

• objectstore::set_asmarkers_useless()

• os_authentication

• os_cluster::set_size()

• os_database::get_fragmentation()

• os_database::set_size()

• os_database::set_size_in_sectors()

• os_dbutil::install_backrest_control_c_handler()

• os_dbutil::start_backrest_logging()

• os_dbutil::stop_backrest_logging()

• os_dbutil::svr_machine()

• os_replicator

• os_replicator_options

• os_replicator_statistic_info

• os_schema_evolution::set_explanation_level()

• os_schema_evolution::set_resolve_ambiguous_void_pointers()

Some of these functions are described in other sections of this document. For
detailed information about all of the new classes and functions, see the
descriptions in Chapter 2 (“Class Library”) of the C++ A P I Reference.
Release 6.1 13

Release Information
New Environment Variables
The following environment variables are new for Release 6.1:

• OS_16K_PAGE

• OS_32K_PAGE

• OS_64K_PAGE

• OS_8K_PAGE

• OS_ASMARKERS_USELESS

• OS_CORE_DIR

• OS_NETWORK_SERVICE

• OS_PREALLOCATE_CACHE_FILES

• OS_REMOTE_AUTH_REGISTRY_LOCATION

• OS_USER_ARCH_SET

Some of these environment variables are described in other sections of this
document. For detailed information about all of the new environment
variables, see their descriptions in Chapter 3 (“Environment Variables”) of
Managing ObjectStore.

New Server Parameters
The following server parameters are new for Release 6.1:

• Cluster Growth Policy

• Database File Growth Policy

• Failover Heartbeat File

• Failover Script

• Identical Pathnames on Failover Server

• RAWFS Partition Growth Policy

• RPC Timeout

Some of these server parameters are described in other sections of this
document. For detailed information about all of the new server parameters,
see their descriptions in Chapter 2 (“Server Parameters”) of Managing
ObjectStore.

New Options for ObjectStore Utilities
New options have been added to the following ObjectStore utilities:

• osarchiv -P -T
14 ObjectStore Release Notes

Release Information
• osbackup -P -r -T

• oscopy rawfs_dir

• osdbcontrol -cluster_size -size

• osdump -dir -pr -v

• osload -dir -pr -v

• osrecovr -s -T

• osreplic -c -C -P -R -s -T

• osrestore -s -T

• osserver -con -hostname -M -server_name -upgradeRAWFS

• ossg -auditor -showsets -ignore_vbo

Note that the -auditor option is provided as a migration tool and is not
described in Managing ObjectStore. For information about this option, see
ossg’s Default Front-End Parser on page 1.

• ossize -f

• ossvrstat -databases

• osverifydb -all -tag

For information about the new options refer to the descriptions of the utilities
in Chapter 4 (“Utilities”) of Managing ObjectStore.

Unsupported C++ Functions
The objectstore::export() function is not supported and has been
replaced by the objectstore::export_object() function. For more
information, see objectstore::export() Renamed on page 9.

Unsupported Java Methods
The JVMEnvironment.initialize() method is not supported and has been
replaced by the JVMEnvironment.deploy() method. For more information,
see com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed on
page 10.

Unsupported Options for ObjectStore Utilities
The following options to the ossg utility are no longer supported:

• The -edgfe option; for more information, see ossg’s Default Front-End
Parser on page 1.
Release 6.1 15

Release Information
• The -store_function_parameters (-sfp) option. Specifying the
-store_member_functions (-smf) option provides the same
functionality; see the description of the ossg utility in Chapter 4
(“Utilities”) of Managing ObjectStore.

Restrictions, Limitations, and Known
Problems

The following sections describe restrictions, limitations, and known
problems when using Release 6.1. Where possible, they also describe
workarounds for the problems.

For more up-to-date information about Release 6.1, see the Support Matrix
on the Technical Support web site
(www.objectstore.net/support/matrix).

Incompatibilities Between Visual C++ 6 and 7
Because of changes in Microsoft’s Visual C++ compiler from version 6 (vc6)
to version 7 (vc7), users who upgrade their applications from vc6 to vc7, or
who wish to use both versions, may see schema incompatibilities that affect
schema generation. The following sections discuss these incompatibilities
and their workarounds.

Differing Support for #pragma pack(pop,N)
Support for #pragma pack(pop,N), where N is some alignment, differs
between vc6 and vc7. In particular, the following set of pragmas results in
different alignments between vc6 and vc7:

#pragma pack(push,l1,2)
#pragma pack(push,l2,4)
#pragma pack(pop,1)

On vc6, these pragmas result in a two-byte alignment; whereas on vc7 they
result in a one-byte alignment. The workaround for this incompatibility is to
replace the last pragma with either of two sets of pragmas. The first set
ensures one-byte alignment that is compatible with vc7:

#pragma pack(pop)
#pragma pack(1)
16 ObjectStore Release Notes

Release Information
The next set ensures two-byte alignment that is compatible with vc6:

#pragma pack(pop)
#pragma pack(2)

Differing Support for Integral Extension Types
On vc6, the integral extension types are distinct types. On vc7, they are
treated as typedefs for regular C++ types. Thus, the following code behaves
differently on vc6 and vc7:

template<class T> class printer {
public:

static void print(const char* source_name) {
const type_info& ti = typeid(T);
printf("in source %s, actual %s\n",ti.name());

}
};
printer<__int16>::print("__int16");
printer<unsigned __int32>::print("unsigned __int32");

On vc6, the output is:

in source __int16, actual __int16
in source unsigned __int32, actual unsigned __int32

On vc7, the output is:

in source __int16, actual short
in source unsigned __int32, actual unsigned int

Furthermore, the symbol for print (or for the virtual function table, if there
was one) is different. On vc6, the template argument for __int16 would be
_F; on vc7, it would be F.

If you wish to share code or databases between vc6 and vc7 applications, you
cannot use integral extension types in any context that appears in the
schema, including template instantiations and virtual function table
pointers. If you are not sharing code between vc6 and vc7 applications, you
can continue to use the integral types and the “mangling” will follow the
rules for the compiler version you are using.

Red Hat Linux 8 Address Space Limitation
On Red Hat Linux 8, the default setting for the vm.max_map_count kernel
parameter (65536) limits the address space to 256 MB. This can create a
potential address space limitation. You can change the value of this
parameter with the following command line:

sysctl -w vm.max_map_count= value
Release 6.1 17

Release Information
To display all kernel parameters, use the following command line:

sysctl -a

You can also work around the address space limitation by setting the
ObjectStore environment variable OS_8K_PAGE or OS_16K_PAGE. Setting
either of these variables has the effect of increasing the page size read by
ObjectStore to 8 KB or 16 KB. In some cases, increasing the page size might
result in additional lock conflicts because ObjectStore creates locks on a per-
page basis. A page size of 8 KB or 16 KB can have greater chances of lock
conflicts than a page size of 4 KB.

Multi-process Dump and Load
Release 6.1 does not support the use of multi-process dump and load on
Windows platforms.

Address-Space Release Facility
The ObjectStore address-space release facility is not thread safe. As a result,
there is the risk that one thread will release address space that is being used
by another, leading to unpredictable behavior and potential database
corruption. To protect against this risk, this release of CMTL disables the
address-space release in software with which it is linked. It is possible that
this protective measure can impose address-space limitations that might
prevent a 32-bit CMTL application from being successfully deployed. A
more general solution to the problem will be implemented in a future release
of CMTL.

Generating Schema for Empty Abstract Classes
The schema generator (ossg) cannot generate schema for code that contains
empty abstract classes used as virtual base classes on Solaris platforms. As a
workaround, ossg will emit instructions to add a padding member.

Least-Space Allocation Strategy
You should not use the least-space allocation strategy until contacting
ObjectStore Technical Support for a patch. Note that the least-space
allocation strategy is not the default. The default is the least-wait allocation
strategy, which you can continue to use.

For information about allocation strategies and how to set them see
objectstore::set_allocation_strategy() in Chapter 2 (“Class
Library”) of the C++ A P I Reference.
18 ObjectStore Release Notes

Release Information
Vector Header Restrictions
Under the following conditions, corrupted vector headers can result:

• A vector was created on Solaris SPARC 2.8 (64-bit) without using the
normal form of the ObjectStore overloaded ::operator new. The normal
form is the ::operator new followed by constructor syntax, as in the
following example:

void *p = new(db, foo::get_os_typespec(), N) foo[N];

When this normal form is used, there is no problem. Problems occur with
forms such as:

void *p = ::operator new(
sizeof(foo)*N, db, foo::get_os_typespec(), N);

• A vector was hetero-relocated from a different platform to Solaris SPARC
2.8 (64-bit) or Linux GPP, and the page containing the vector was
committed.

To detect and correct vector header problems, use the osfixvh utility.

Allocator Framework Restrictions
The allocator framework for Release 6.1 does not support the following:

• Sessions

• Threads

• Multiple context matching, as described in “Rule Matching” of the
Advanced C++ A P I User Guide, Chapter 10 (“Allocator Framework”).

Support for these features will be provided at a future release of ObjectStore.

CMTL Restrictions
The following sections describe restrictions when using the Release 6.1
version of CMTL.

Configuring CMTL from XML on Linux Platforms
On Linux platforms, if your application configures CMTL from an XML-
based configuration stream, you must specify the ios::in flag when
creating the ifstream object that is passed as an argument to
os_cache_pool_manager_configuration::create from_xml_stream().
Release 6.1 19

Release Information
On Linux platforms, ifstream is not opened for reading by default. The
workaround is to explicitly pass an argument to the ifstream constructor
telling it to open the stream for reading, as in the following example:

ifstream xml_file(config_info, ios::in);

The ios::in flag tells the constructor to open the stream for reading. Note
that adding this flag to the constructor is required only on Linux platforms.

Setting the commit_if_idle attribute
The CMTL cache pool attribute commit_if_idle value default is true for
read-only caches (true is also the value for update caches). Setting the
commit_if_idle attribute value to false will result in a shutdown timing
problem in the CMTL virtual transaction manager thread. If you have
explicitly set the commit_if_idle value to false in your cache pool
configuration, you need to modify it to avoid this timing issue.

DDML Restrictions
The following restrictions apply to the Release 6.1 version of DDML:

• DDML is not supported on Solaris 64-bit (sol64) platforms.

• The following DDML warning message can be safely ignored:

Warning: com.odi.osdm.JosdmCPlusPlus.charPmap is a static
field of type com.odi.util.OSSmallMap which might refer to a
persistent object. If this field does refer to a persistent
object it must be user maintained.

Java Components of ObjectStore
The following sections describe the restrictions concerning the Java
components of ObjectStore — for example, OSJI and Javlin.

Upgrading Pre-6.0 OSJI Databases to Release 6.1
This release does not support the use of the dump/load facility for the
purpose of upgrading a pre-6.0 OSJI database to Release 6.1. If you have a
pre-6.0 OSJI database that you want to upgrade, you must contact
ObjectStore Technical Support.

Not Supported on 64-Bit Platforms
The Java components of ObjectStore are not supported on 64-bit platforms
for this release.
20 ObjectStore Release Notes

Release Information
Running Java Browser on UNIX
Running the Java browser on UNIX platforms from Exceed clients have the
following problems:

• The Message Box is Empty, because the Windows Manager does not
resize the Message Box correctly. You have to resize the Message Box so
the content will appear.

• Menu position is incorrect. You need to resize the main window so the
menu position is correct.

Use of JDK 1.2 and 1.4 on Solaris
To ensure compatibility between ObjectStore and JDK 1.3 or JDK 1.4 on
Solaris, you must set the LD_PRELOAD environment variable as follows:

setenv LD_PRELOAD libosopdel.so

Level One Integration
Level one integration (JTA transaction integration) is supported for BEA
WebLogic Server 6.1 and BEA WebLogic Server 7.0 only.

Terminated Sessions Do Not Release All Resources
Currently, a terminated session does not release all of its resources until each
thread in a session explicitly calls the Session.leave(),
Session.terminate(), Objectstore.shutdown(), Session.create() or
Session.join() method.

Terminating a session continues to make all threads leave the session for all
other purposes, except for releasing the session's resources.

The Session.leave() method has been modified so it can be called by
threads, even if they are not joined to a session. Previously, an exception
would be thrown.

Applications must ensure that all threads explicitly leave sessions that have
been terminated, so that session resources are freed. If this is not done,
resources allocated to sessions are not released, resulting in a possible
com.odi.AddressSpaceFullException being thrown when trying to create
a new session.

Threads Are Not Being Automatically Joined to
Release 6.1 21

Release Information
Nonglobal Sessions
Threads that do not belong to a session are not automatically joined to a
nonglobal session when they should be. Until this problem is resolved,
applications cannot rely on session absorption to make a thread that accesses
persistent objects join the appropriate session. As a work around,
applications can explicitly join each thread to a session by calling
Session.join() or using a global session.

More specifically, API methods whose only session-implying arguments are
persistent objects require that the calling thread already belong to the same
session as the persistent objects. This applies to nonglobal sessions. This
restriction will be lifted in a future release. The methods affected by this
restriction include the following:

• ObjectStore.deepFetch()

• ObjectStore.destroy()

• ObjectStore.dirty()

• ObjectStore.evict()

• ObjectStore.export()

• ObjectStore.fetch()

• ObjectStore.isDestroyed()

• ObjectStore.isExported()

• ObjectStore.migrate()

• Persistent.deepFetch()

• Persistent.destroy()

• Persistent.dirty()

• Persistent.evict()

• Persistent.fetch()

• Persistent.isDestroyed()

Schema Write-Lock Conflicts Might Occur Immediately
Following Schema Installation
Users running ObjectStore applications concurrently against a database
might encounter schema segment write-lock conflicts during a transaction
that immediately follows a transaction in which the schema was installed.

To work around this problem, run a small dummy transaction immediately
after the transaction that installed the schema. The dummy transaction must
22 ObjectStore Release Notes

Release Information
use the database, such as looking up a database root. Using the database
validates the schema and prevents potential future write lock conflicts.

Use of ossevol Utility
Do not use the ossevol utility on databases created with the Java interface
to ObjectStore (OSJI). Also, do not use the C++ API for this utility on OSJI
databases.

You can use the OSJI Database.evolveSchema() method to evolve the
schema in an OSJI database.

Use of osgc and oscompact Utilities
You should not run the osgc or oscompact utilities against databases that are
currently opened with applications that retain references to non-exported
objects. To prevent possible corruption you should close the databases before
running either utility.

Hosted Pathname Syntax Might Require Setting of
Environment Variable
If the directory specified in OS_LIBDIR uses the hosted pathname syntax
(host:/ dir) and the pathname syntax for that directory has the opposite style
of slash from the one for local pathnames on the client (that is, Windows and
UNIX), you must set the OS_META_SCHEMA_DB environment variable to the
pathname of the metaschema database. That database is named
metaschm.db, and its default location is in the lib subdirectory of OS_
ROOTDIR.

Transient Segmentation Violation Errors
On UNIX platforms there are some known interaction problems between the
Java VM and OSJI. If you encounter any transient segmentation violations
errors, choose a heap size and set both the initial and maximum heap size to
that value on the command line. For example, if you choose a 64 MB heap
size, specify both -Xms64m and -Xmx64m as arguments to the java command.

Applets
ObjectStore is a Java application that uses C++ native methods.
Consequently, you cannot use ObjectStore in an applet other than through
the Sun JDK Appletviewer application.
Release 6.1 23

Release Information
Troubleshooting Problems - It Might Be the JIT Compiler
Just In Time (JIT) compilers often make the difference between acceptable
and unacceptable performance. However, if you are having undiagnosed
trouble when using a JIT compiler, toggling the JIT compiler on and off
might pinpoint the JIT compiler as the source of the problem.

Object Design has tested the JIT compilers available with ObjectStore's
supported and maintained platforms. Some JIT compilers tested by Object
Design have exhibited problems when running tests of ObjectStore. These
problems often appear when NullPointerException is signaled
unexpectedly, although other incorrect behavior has also been seen. Object
Design has fixed or worked around the ObjectStore problems that have been
encountered. However, you might still encounter new problems in
ObjectStore or in your application when you use a JIT compiler.

Object Design's Technical Support might be able to assist you with JIT
compiler problems by recommending ways to work around the troublesome
behavior, but you might need to contact the compiler's vendor about the
issue.

The following sections describe how to toggle off the JIT compiler to
diagnose troublesome behavior.

Disabling JIT on Solaris

To disable the JDK JIT on Solaris, do one of the following:

• Set the JAVA_COMPILER environment variable to NONE:

setenv JAVA_COMPILER NONE

• Specify NONE as the value of the java.compiler system property:

java -Djava.compiler=NONE MyClass

Disabling Sun JDK JIT on Windows

To disable the Sun JDK JIT on Windows, do one of the following:

• Unset the JAVA_COMPILER environment variable:

set JAVA_COMPILER=

• Specify NONE as the value of the java.compiler system property:

java -Djava.compiler=NONE MyClass

Peer Generator Incorrectly Generates Code for Certain
24 ObjectStore Release Notes

Release Information
Abstract Classes
Under certain circumstances, the peer generator tool (osjcgen) fails to
recognize that a class is abstract, so it generates code that attempts to
instantiate the class. The generated C++ code does not compile.

A workaround is to suppress the generation of the methods that contain
compilation errors. To do this, specify the -suppress option with the name
of a problem method when you run the peer generator tool. This prevents the
problem methods from being generated.

For example, suppose the C++ person class has a Java peer class generated
into the com.people package and there are three methods that are not
compiling correctly. Run osjcgen and specify the -suppress option for each
problem method.

-suppress com.people.person.person \
-suppress com.people.personU.makeArray \
-suppress com.people.personU.set

The problem occurs when a C++ class inherits a pure virtual
function from a base class. For example:

/* class A is abstract */
class A {
 public:
 virtual void f() = 0;
}

/* class B is abstract, but osjcgen treats it as nonabstract */
class B : public A {
 public:
 virtual void f() = 0;
}

/* class C is abstract - the redeclaration of the pure virtual
 causes osjcgen to handle this correctly. */
class C : public B {
 public:
 virtual void f() = 0;
}

/* class D is nonabstract */
class D : public C {
 public:
 virtual void f();
}

Postprocessor Options Required for ObjectStore Peer
Release 6.1 25

Release Information
Collections with Indexes
If you use indexes with ObjectStore peer collections, you must specify the
-nothisopt and -noarrayopt options when you run the postprocessor on
your classes. Alternatively, you can specify the -noinitializeropt option
in place of the two options.

This ensures that the postprocessor does not apply certain optimizations,
which might cause your code to work incorrectly for evict operations
performed on ObjectStore collections. These evict operations can happen
during execution of the following methods:

• addIndex(), query(), queryPick(), and exists() on any collection

• insert(), replaceAt(), insertFirst(), insertLast(),
insertBefore(), and insertAfter() on collections with indexes that
have SIGNAL_DUPLICATES behavior

Solaris: Accessing Multithreaded C++ Applications
When OSJI applications access C++ libraries on Solaris, those libraries must
be linked with libosthr to work with the native threads version of the Java
virtual machine.

The C++ interface to ObjectStore (OSC++) provides two thread libraries:

• libosthr ensures that calls to ObjectStore from multiple C++ threads are
safe.

• libosths does not provide this protection.

To be used by an OSJI application running with the native threads version of
the Java virtual machine, multithreaded OSC++ libraries must use libosthr.

Using the native threads version of the Java virtual machine, you can link
multithreaded OSC++ libraries with libosthr and depend on the locking
primitives provided by OSC++. When you do this, the link line must include
-losthr and either -mt or -lthread.

Destroying Java Peer Objects
There is a bug that prevents ObjectStore from leaving a tombstone when you
destroy a Java peer object. This bug will be fixed in a future release.

For now, you must be careful that you do not destroy a Java peer object that
is still referred to by another object and then try to use that reference. While
doing so is always a mistake, in the current product there is no tombstone to
flag the mistake for Java peer objects.
26 ObjectStore Release Notes

Release Information
Using the Documentation with Netscape Browsers
The ObjectStore documentation set is compatible with Netscape Release 4.7x
and Release 6.1x. The documentation set cannot be properly displayed with
Netscape Release 6.0 on any platform. If you only have access to Netscape
Release 6.0, you should use the PDF versions of the documentation set.

Platform and Release Compatibility
This section lists this platforms and compilers supported by this release of
ObjectStore.

The Support Matrix on the Technical Support web site
(www.objectstore.net/support/matrix) contains an up-to-date list of all
supported and maintained platforms. Please refer to the Support Matrix if
you are in any doubt whether your compiler or operating system are
supported. If your compiler is not supported, you cannot use this release of
ObjectStore.

Compiler Compatibility
If you are using a supported compiler and are a first-time user of ObjectStore,
installing ObjectStore is a straightforward process. Likewise, if you are
upgrading from Release 6.0 and are using a supported compiler that is the
the same as the compiler you used for the previous release, the process of
upgrading to Release 6.1 is straightforward.

If you are upgrading from a pre-6.0 release or your compiler has changed
since the previous release, please refer to the ObjectStore Migration Guide
(www.objectstore.net/documentation/migration) that is available on
the Technical Support web site. The ObjectStore Migration Guide will provide
detailed instructions about upgrading to Release 6.1.

Platform Configuration: Solaris 32-bit (SOL2C5)
You can build and run 32-bit or 64-bit applications on 64-bit hardware, but
you cannot build or run 64-bit applications on 32-bit hardware

Supported Operating Systems Solaris 8

Solaris 9
Release 6.1 27

Release Information
Note The string xx refers to the latest available revision of the patch from Sun.

If you are using ObjectStore’s built-in failover or failover as provided by the
Sun Clusters 3.0 operating system, you may be able upgrade to Release 6.1
without having to take your system out of service by performing a rolling
upgrade. For more information, see ObjectStore Installation for UNIX.

Platform Configuration: Solaris 64-bit (SOL64)
You can build and run 32-bit or 64-bit applications on 64-bit hardware, but
you cannot build or run 64-bit applications on 32-bit hardware

Supported Clusters Sun Cluster 3.0 5/02 for Solaris 8

Supported C++ Compilers Sun ONE Studio 7 (C++ 5.4)

Supported Java Compilers Sun Java 2 SDK 1.3 or 1.4

Required Patches Solaris 8 systems require Sun Patch 108434-xx for
Sun ONE Studio 7 compiler use.

Solaris 9 systems require Sun Patch 111711-xx for
Sun ONE Studio 7 compiler use.

Recommended Patches Sun Patch 108528-xx is recommended but not
required for all Solaris 8 systems running
ObjectStore for its resolution of BugID 449415. This
patch is included in the current Solaris 8
recommended patch cluster.

Supported Operating Systems Solaris 8

Solaris 9

Supported Clusters Sun Cluster 3.0 5/02 for Solaris 8

Supported C++ Compilers Sun ONE Studio 7 (C++ 5.4)

Supported Java Compilers Not supported yet
28 ObjectStore Release Notes

Release Information
Note The string xx refers to the latest available revision of the patch from Sun.

If you are using ObjectStore’s built-in failover or failover as provided by the
Sun Clusters 3.0 operating system, you may be able upgrade to Release 6.1
without having to take your system out of service by performing a rolling
upgrade. For more information, see ObjectStore Installation for UNIX.

Required Patches Solaris 8 systems require Sun Patches 108434-xx
and 108435-xx for C++ compiler use.

Solaris 9 systems require Sun Patch 111711-xx and
111712-xx for Sun ONE Studio 7 compiler use.

Recommended Patches Sun Patch 108528-xx is recommended but not
required for all Solaris 8 systems running
ObjectStore for its resolution of BugID 449415. This
patch is included in the current Solaris 8
recommended patch cluster.

Unsupported Components OSJI

Javlin
Release 6.1 29

Release Information
Platform Configuration: Windows 32-bit VC6 (WINVC6)

Platform Configuration: Windows 32 bit VC7 (WINVC7)

Platform Configuration: Linux (LINX3)

Supported Operating Systems Windows NT 4.0 SP6a

Windows 2000

Windows XP

Supported C++ Compilers Microsoft Visual C++ 6.0 SP5

Supported Java Compilers Sun Java 2 SDK 1.3 or 1.4

Supported Operating Systems Windows 2000

Windows XP

Supported C++ Compilers Microsoft Visual Studio .NET

Supported Java Compilers Sun Java 2 SDK 1.3 or 1.4

Supported Operating Systems Red Hat 8.0 with kernel 2.4.18 and glibc 2.293

Supported C++ Compilers gcc 3.2

Supported Java Compilers Not supported yet

Unsupported Components OSJI

Javlin

DDML
30 ObjectStore Release Notes

Release 6.1
Index
A
abstract classes used as virtual bases 18
address markers, disabling 6
address space limitation on Linux 17
address-space release facility,

restriction 18
all architecture set, not supported 4
all32 architecture set 4
all32vbtrav architecture set 5
all64 architecture set 4
allocation strategy, restriction 18
-arch option (ossg) 3
architecture sets

all 4
all, not supported 4
all32 4
all32vbtrav 5
all64 4
standard 4
user-defined 4
versioned 4

attributes
commit_if_idle 20

-auditor option (ossg) 1

C
cache manager, performance 9
changes, summarized 12

changing the Windows registry location 5
classes, system-supplied

os_authentication 5
os_replicator 2
os_replicator_options 2
os_replicator_statistic_info 2

Cluster Growth Policy server
parameter 3

cluster operating system
failover 2
support for 3

-cluster_size option (osdbcontrol) 3
CMTL

address-space release restriction 18
Linux platforms 19

commit_if_idle attribute 20
cursors, optimizing 9

D
database

defragmenting 2
failover support 2
replication 2

Database File Growth Policy server
parameter 3

DDML, restrictions 20
defines

_OS_COLL_LIST_OPTIMIZE 9
31

E

_OS_COLL_SET_OPTIMIZE 9
defragmenting databases 2
disabling address markers 6
documentation, changes 12
dump/load facility 6

multi-process restriction 18
upgrading OSJI databases 20

E
-edgfe option (ossg) 1
empty abstract classes 18
environment variables

OS_ASMARKERS_USELESS 6
OS_REMOTE_AUTH_REGISTRY_

LOCATION 5
OS_USER_ARCH_SET 4

export()

objectstore, defined by 9

F
-f option (ossize) 3
failover support 2
forced-order base classes 4
front-end parser 1

G
generating schema, restriction 18
get_asmarkers_useless()

objectstore, defined by 6
get_fragmentation()

os_database, defined by 3

J
Java browser, problems with 21
Javlin, restrictions 20
JMTL, restrictions 20

L
level one integration, support for 21
libosth library 9
Linux platforms

address space limitation 17
CMTL 19
virtual base classes 5

lists, optimizing 9

M
macros

OS_EXPORT_API 9
OS_MARK_QUERY_FUNCTION_WITH_

NAMESPACE 8
migration aids

-auditor option (ossg) 1
platform and release information 27
summary of changes 12

-mt option (Solaris compiler) 9
multi-threaded applications, linking 9

N
neutralizing virtual base classes 4

O
objectstore, the class

export() 9
get_asmarkers_useless() 6
set_asmarkers_useless() 6

optimizing
cursors 9
lists 9
sets 9

options
-auditor (ossg) 1
-arch (ossg) 3
-cluster_size (osdbcontrol) 3
-ds (osdump) 6
-edgfe (ossg) 1
32 ObjectStore Release Notes

Index
-emit (osdump) 6
-f (ossize) 3
-mt (Solaris compiler) 9
-pr (osdump) 6
-pr (osload) 6
-r (osserver) 5
-showsets (ossg) 3
-size (osdbcontrol) 3

OS_ASMARKERS_USELESS environment
variable 6

os_authentication, the class 5
os_cluster, the class

set_size() 3
_OS_COLL_LIST_OPTIMIZE define 9
_OS_COLL_SET_OPTIMIZE define 9
os_database, the class

get_fragmentation() 3
set_size() 3
set_size_in_sectors() 3

OS_EXPORT_API macro 9
OS_MARK_QUERY_FUNCTION_WITH_

NAMESPACE macro 8
OS_REMOTE_AUTH_REGISTRY_LOCATION

environment variable 5
os_replicator, the class 2
os_replicator_options, the class 2
os_replicator_statistic_info, the

class 2
os_schema_evolution, the class

set_explanation_level() 12
set_resolve_ambiguous_void_

pointers() 12
OS_USER_ARCH_SET environment

variable 4
oscmgr6 utility 5
osconfig utility 12
osdbcontrol utilitiy 3
osdump utility 6
OSJI, restrictions 20
osload utility 6
osserver utility 5

ossg utilitiy
architecture sets 3
empty abstract classes 18
front-end parser 1

ossize utilitiy 3

P
page faults, preventing 6
platform support

Linux 30
Solaris 32-bit 27
Solaris 64-bit 28
Windows 32-bit 30

preventing page faults 6

Q
query functions 8

R
-r option (osserver) 5
RAWFS Partition Growth Policy server

parameter 3
registry location, changing 5
replicating databases 2
rolling upgrades 2

S
schema failures 16
schema generation, restriction 18
server parameters

Cluster Growth Policy 3
Database File Growth Policy 3
RAWFS Partition Growth Policy 3

set_asmarkers_useless()

objectstore, defined by 6
set_explanation_level()

os_schema_evolution, defined by 12
set_resolve_ambiguous_void_

pointers()
Release 6.1 33

T

os_schema_evolution, defined by 12
set_size()

os_cluster, defined by 3
os_database, defined by 3

set_size_in_sectors()

os_database, defined by 3
sets, optimizing 9
-showsets option (ossg) 3
single-threaded applications, linking 9
-size option (osdbcontrol) 3
Solaris

DDML restriction 20
Solaris platforms, restriction 18
standard architecture sets 4
summary of changes 12
Sun Clusters 3.0 system

failover 2
ObjectStore support for 3

T
threaded applications, linking 9
thread-safe library 9

U
upgrading OSJI databases, restriction 20
user-defined architecture sets 4
utilities

oscmgr6 5
osconfig 12
osdbcontrol 3
osdump 6
osload 6
osserver 5
ossg

architecture sets 3
empty abstract classes 18
front-end parser 1

ossize 3

V
vector header, restrictions 19
versioned architecture sets 4
virtual base classes, neutralizing 4
Visual C++

schema incompatibilities 16

W
Windows registry location, changing 5
34 ObjectStore Release Notes

	ObjectStore Release Notes
	Preface
	Release Information
	New and Changed Features
	ossg’s Default Front-End Parser
	Improved Support for Failover
	Replication API
	Defragmenting ObjectStore Databases
	Support for the Sun Clusters 3.0
	Architecture Sets for Release 6.1
	Standard Architecture Sets
	Versioned Architecture Sets
	User-Defined Architecture Sets

	Neutralizing Virtual Base Classes
	Changing the Windows Registration Location
	Preventing Excessive Page Faulting
	Changes to Dump and Load
	Using Dump and Load to Migrate Databases
	New osload Features
	Performance Improvements
	Note on Multi-process osdump and osload

	New Macro for Functions Used in Queries
	Optimizing Collections
	Compiling Single-Threaded Applications on Solaris
	objectstore::export() Renamed
	Changes to the ObjectStore Java Interface (OSJI)
	Changes to Javlin/JMTL
	com.odi.jmtl.env.JVMEnviroment Class Renamed
	com.odi.jmtl.env.JVMEnviroment.initialize() Method Renamed
	New Javlin/JMTL Deployment Descriptor Format
	New Cache Pool Attributes
	Integration with WebLogic Server 7.0
	Updated Examples Using Ant Build Files

	Changes to the Documentation
	Summary of Changes
	New C++ Classes and Functions
	New Environment Variables
	New Server Parameters
	New Options for ObjectStore Utilities
	Unsupported C++ Functions
	Unsupported Java Methods
	Unsupported Options for ObjectStore Utilities

	Restrictions, Limitations, and Known Problems
	Incompatibilities Between Visual C++ 6 and 7
	Differing Support for #pragma pack(pop,N)
	Differing Support for Integral Extension Types

	Red Hat Linux 8 Address Space Limitation
	Multi-process Dump and Load
	Address-Space Release Facility
	Generating Schema for Empty Abstract Classes
	Least-Space Allocation Strategy
	Vector Header Restrictions
	Allocator Framework Restrictions
	CMTL Restrictions
	Configuring CMTL from XML on Linux Platforms
	Setting the commit_if_idle attribute

	DDML Restrictions
	Java Components of ObjectStore
	Upgrading Pre-6.0 OSJI Databases to Release 6.1
	Not Supported on 64-Bit Platforms
	Running Java Browser on UNIX
	Use of JDK 1.2 and 1.4 on Solaris
	Level One Integration
	Terminated Sessions Do Not Release All Resources
	Threads Are Not Being Automatically Joined to Nonglobal Sessions
	Schema Write-Lock Conflicts Might Occur Immediately Following Schema Installation
	Use of ossevol Utility
	Use of osgc and oscompact Utilities
	Hosted Pathname Syntax Might Require Setting of Environment Variable
	Transient Segmentation Violation Errors
	Applets
	Troubleshooting Problems - It Might Be the JIT Compiler
	Peer Generator Incorrectly Generates Code for Certain Abstract Classes
	Postprocessor Options Required for ObjectStore Peer Collections with Indexes
	Solaris: Accessing Multithreaded C++ Applications
	Destroying Java Peer Objects

	Using the Documentation with Netscape Browsers

	Platform and Release Compatibility
	Compiler Compatibility
	Platform Configuration: Solaris 32-bit (SOL2C5)
	Platform Configuration: Solaris 64-bit (SOL64)
	Platform Configuration: Windows 32-bit VC6 (WINVC6)
	Platform Configuration: Windows 32 bit VC7 (WINVC7)
	Platform Configuration: Linux (LINX3)

	Index
	A
	C
	D
	E
	F
	G
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

